

用于原子核基本性质测量的激光核谱技术

杨晓菲 Xiaofei.yang@pku.edu.cn

北京大学物理学院 核物理与核技术国家重点实验室

General physics motivation

Hyperfine structure and nuclear properties

Laser spectroscopy technique and recent highlights

Development of Laser spectroscopy

Nuclear structure of exotic isotopes

- How does the nuclear chart emerge from underlying interactions?
- How does nuclear structure evolve across the nuclear landscape?
- What shape can nuclei adopt?
- What are the limits of existence of nuclei?

《NuPECC LRP 2017》

Nuclear structure of exotic isotopes

Exotic phenomena near dripline
Nuclear astrophysics
Super heavy element

Radioactive ion beam Experimental investigation

> Theoretical development

Experiments: Reactions, αβγ decay, basic properties measurement....

Nuclear properties of (exotic) nuclei

- \rightarrow test for state-of-the-art nuclear theories
- \rightarrow input for nuclear astrophysics models
- \rightarrow insight into the nuclear structure
- \rightarrow study of the nucleon-nucleon interaction

- Mass and Lifetime
- Spin and Parity
- Nuclear Magnetic dipole and Electric quadrupole moments

core

Charge Radii and matter radii

Can be measured with one technique: laser spectroscopy

Achievements until now

General physics motivation

Hyperfine structure and nuclear properties

Laser spectroscopy technique and recent highlights

Development of Laser spectroscopy

From Atoms to Nuclei

--Spectroscopy of electronic transitions of atoms/ions

Atomic hyperfine structure

$\Delta E = \mathbf{A} \cdot \mathbf{K}/2 + \mathbf{B} \cdot \{3\mathbf{K}(\mathbf{K}+1)/4 - \mathbf{I}(\mathbf{I}+1)\mathbf{J}(\mathbf{J}+1)\}/\{2(2\mathbf{I}-1)(2\mathbf{J}-1)\mathbf{I}\mathbf{J}\}, \mathbf{K} = \mathbf{F}(\mathbf{F}+1) - \mathbf{I}(\mathbf{I}+1) - \mathbf{J}(\mathbf{J}+1)$

Atomic parameters

• Magnetic dipole HF parameter

$$A = \frac{\mu_I B_J}{IJ} \qquad \mathbf{I},$$

- Electric quadrupole HF parameter $B = eQV_{zz} \qquad \mathbf{Qs}$
- Centroid $v_0 =>$ Isotopes shift

$$\delta v^{AA'} = M \frac{A'-A}{AA'} + F \, \delta < r^2 > AA'$$

$$\mathbf{I} \qquad \mathbf{\mu} \qquad \mathbf{Qs} \qquad <\mathbf{r}^2 >^{1/2}$$

J = l + s F = J + I(nuclear spins)

Fine structure

Hyperfine structure

All quantities are deduced (nuclear) model-independently

Observables from laser spectroscopy

---and its link to nuclear information

Providing complementary nuclear information!

General physics motivation

Hyperfine structure and nuclear properties

Laser spectroscopy techniques and recent highlights

Development of Laser spectroscopy

Production of radioactive beams

• **BISOL** @CIAE/PKU(Planned)

Phys. Scr. T152 (2013) 014023 (24pp)

Laser spectroscopy methods

-Collinear laser spectroscopy -Laser spectroscopy of trapped atoms

Multiple laser beams

- -Collinear resonant ionization
- -In source spectroscopy
- -In gas cell/ gas-jet spectroscopy

J. Phys. G: Nucl. Part. Phys. 37 (2010) 113101 ; Prog. Part. Nucl. Phys. 86, 127 (2016).

Laser spectroscopy techniques

J. Phys. G: Nucl. Part. Phys. 37 (2010) 113101 (38pp) Prog. Part. Nucl. Phys. 86, 127 (2016).

In source spectroscopy

lon/atom trap (e.g MOT)

In-gas-cell/Jet

Laser spectroscopy techniques

J. Phys. G: Nucl. Part. Phys. 37 (2010) 113101 (38pp) Prog. Part. Nucl. Phys. 86, 127 (2016).

Collinear laser spectroscopy

In source spectroscopy

In-gas-cell/Jet

Laser spectroscopy techniques

J. Phys. G: Nucl. Part. Phys. 37 (2010) 113101 (38pp) Prog. Part. Nucl. Phys. 86, 127 (2016).

Collinear laser spectroscopy

In source spectroscopy

In-gas-cell/Jet

CERN-ISOLDE (COLLAPS/CRIS)

http://isolde.web.cern.ch/

Collinear laser spectroscopy (COLLAPS)

http://collaps.web.cern.ch/

Collinear : High resolution

C Photon detec.: Sensitivity 10³ pps

Collinear ionization laser spectroscopy (CRIS)

R.P. De Groote et al., PRL. 115 (2015) 132501

Relative Frequency (MHz)

19

R.P. De Groote et al., PRL C96(2017)041302(R)

Research interests (COLLAPS/CRIS)

• With strong collaboration with theoretical collages

Research interests (COLLAPS/CRIS)

"New magic numbers" (*N* = 32, *N* = 34)!!

"New magic numbers" (*N* = 32, *N* = 34)!!??

Quenching of the N = 32 neutron shell closure studied via precision mass measurements of neutron-rich vanadium isotopes M. P. Reiter *et al.*

M. P. Reiter *et al.* Phys. Rev. C **98**, 024310 – Published 15 August 2018 Magic Nature of Neutrons in ${}^{54}\mathrm{Ca}$: First Mass Measurements of ${}^{55-57}\mathrm{Ca}$

S. Michimasa *et al.* Phys. Rev. Lett. **121**, 022506 – Published 11 July 2018

"New magic numbers" (N = 32, N = 34) ??

Theoretical challenges

CW laser

-5

11 13 15

ġ

ġ 5 20

A.Koszorus, **X.F. Yang*** et al., PRC100, 034304 (2019): **Reaching higher precision of ~1 MHz for light mass isotopes.** b)

28

26

24

22 24 Neutron number

Cross N = 32 for the first time!!

- New F, M largely reduced the systematic errors New Journal of Physics 22, 012001(2020)
- The increased radii at N =32 has similar trend for openshell e.g. Mn
- No sign of magicity at N=32

2016 Ab initio CC (NNLOsat)

Fitting to the data of binding energies and radii of selected nuclei up to mass number A = 25.

SRG1 and SRG2

Fitting only to properties of A≤4

2020

Newly developed **ANNLOgo**

- Fitting only to properties of A < 4 and nuclear saturation properties
- Includes pion-physics and effects of the (1232) isobar.

Improved CC method

- start from a symmetry-breaking reference state
- Allow to calculate the radii of whole K chain

General physics motivation

Hyperfine structure and nuclear properties

Laser spectroscopy techniques and recent highlights

Development of Laser spectroscopy

World-wide RI beam facilities

World-wide laser spectroscopy

First application: BRIF@CIAE (北京放射性离子装置)

First application; BRIF@CIAE (北京放射性离子装置)

Photon detection

Layout around BRIF

First application: BRIF@CIAE (北京放射性离子装置)

Collinear ionization resonance spectroscopy

FWHM: <100 MHz Sensitivity: 10¹⁻² pps Observables: I, u, Q, <r²>

Sub-atomic Particle Detection Laboratory

Offline laser spectroscopy lab

SKL

Offline laser spectroscopy lab

Final goal: To be applied at the new facilities at their

early stage

Under construction

"HIAF"

High-Intensity Heavy Ion Accelerator Facility

E_{B1}: 0.8 AGeV, 3×10¹⁰ppp ²³⁸U³⁵⁺ HIAF-I: 2018-2025 1.75AGeV, 7.5×10¹⁰ppp ⁷⁸Kr¹⁹⁺ Budget: 1.62+1.2 B CNY, approved 2.6~3.0AGeV, 1.0×10¹¹ppp ¹⁶O⁶⁺ External target station L: 180m, Bp: 25 Tm **High Energy Density Physics** HFRS SRing: Spectrometer ring Nuclear Matter study-CEE Circumference: 273m Hypernuclear Rigidity: 13-15 Tm High energy irradiation Electron/Stochastic cooling Pricise Measurement by Two TOF detectors, Four operation modes BRing1: Booster ring/1 Circumference: 600 m SECRAL and FECR Rigidity: 34 Tm 28-45GHz, 1.0emA(U35+) Large acceptance (200/100) Two planes painting injection iLinac: Superconducting linac Low energy nuclear Fast ramping rate (3-10Hz) Length:100 m structure terminal Energy: 17~22 MeV/u(U35+~46+) Reactor Post-accelerator target RIBS target reactor ISOL Accelerator n-irra ISOL d- accelerator 20m

Planned "BISOL"

Beijing Isotope-Separation-On-Line

Summary and outlook!!

- Laser spectroscopy is a powerful tool to access multiple nuclear properties of exotic isotopes.
- Continues efforts are still on going toward a higher resolution and higher sensitivity.
- For the exotic nuclear structure study in different mass region of nuclear chart.
- Important benchmark for the test and development of state-of-art nuclear theory.

Potentially have many aspects of applications using RI beams

"An atomic nucleus is an elephant" Prof. Jacek Dobaczewski

https://collaps.web.cern.ch

M. Bissell, K. Blaum, B. Cheal, R.F. Garcia Rniz, C. Gorges, H. Heyle ,S. Kanfma, M. Kowalska, S. Malbrunot-Ettenauer, R. Nengart, G. Neyens, W. Nortershanser, L. Vazqnez-Rodrignez, X.F. Yang, D. Yordanov

J. Billowes, C. Binnersley, T.E. Cocolios, G. Farooq-Smith, K.T. Flanagan, W. Gins, K.M. Lynch,S. Franchoo, M. Bissell, R.P. De Groote, R.F. Garcia Ruiz, A. Koszorus G. Neyens, C. Ricketts, H.H. Stroke, A. Vernon, K. Wendt, S. Wilkins, X.F Yang

Experimental Nuclear Physics Group

http://genp.pku.edu.cn/News.html

Sep. 22th, 2019

Laser Spectroscopy and Nuclear properties

http://genp.pku.edu.cn/LPNP/research.html

Thanks for your attention!