

Investing Cosmic rays with gamma-ray astronomy

Ruizhi Yang University of Science and Technology of China

- **1. Galactic Cosmic rays: direct measurement**
- **2. Spatial distribution of Galactic Cosmic rays**
- **3. Low energy Cosmic rays**
- **4. PeV CR sources (PeVatrons)**

Cosmic Rays: Relativistic particles (mainly protons) in interstellar medium (ISM)

Consensus

- Single power law spectrum from 10 GeV (10^{10} eV) up to 1 PeV (10^{15} eV)
- Energy-dependent confinement in the Galactic halo
- Supernova remnants (SNR) as sources

Detection method

- Direct measurement (ballon, satellite or extensive air shower array), measure the local spectrum and anisotropy
- Indirect measurement (via Gamma-rays). spectrum and distribution in the Galaxy

Direct measurement

Direct measurement

Phys. Rev. Lett. 120, 021101 (2018)

Cosmic Ray Spectra of Various Experiments

<https://www.physics.utah.edu/~whanlon/spectrum.html>

Spatial distribution from gammaray astronomy

Gamma-ray Astronomy (2) +8科学技术大学

- Atmosphere is opaque for gamma-rays
- Satellite or air shower
- above 100 MeV

Fermi LAT $(0.1 \sim 1000 \text{ GeV})$

H.E.S.S $(0.1 \sim 10 \text{ TeV})$ LHAASO (>1 TeV)

Spaceborne detectors

- pair conversion telescopes
- Large FOV $($ \sim 3 sr)
- $0.1 1000$ GeV
- small effective area $($ \sim 1 m \textdegree 2)
- moderate PSF (0.1 1 degree)
- continuous monitoring

Air Cherenkov telescope arrays

- detect cherenkov light of secondary electrons in air shower.
- small FOV $($ \sim 5 degree)
- $0.1 100$ TeV
- large effective area (\sim 1e5 m^2)
- excellent PSF (down to 1 arcmin)
- only at clear night without moon FIFESS

Extensive air showers

- detect muon/electrons in air shower (scintillator/water cherenkov).
- large FOV $(\sim$ several sr)
- above 1 TeV
- large effective area (\sim 1e5 m^2)
- poor PSF (0.3 degree)
- example and the continuous monitoring measurement of the Milagro

From gamma-rays

• Gamma-ray emission (in molecular clouds or diffuse):

Point sources+ CR interaction with ambient gas + ICs +isotropic

- CR interaction with gas dominates in dense environment.
- Gamma-ray map + gas distribution -> CR distribution

gamma-rays from giant molecular clouds (GMCs)

- Gamma-rays show good correlation with gas (CR uniformly distributed inside GMCs)
- Can be used to study the CR spectra

Gas (CO) distribution example and the system of the gamma-ray observations (GeV)

Derived CR spectrum

In comparison with the Local Measured CR: consistent above 10 GeV (solar modulation)

uniform or not?

Test the uniformity of CRs

• Some hint of inhomogeneous distribution in Taurus-Perseus region

Dust opacity (gas distribution) gamma residual (CR density)

Uniform or not?

Test the uniformity of CRs

• Low energy CRs cannot penetrate into the core: slower diffusion due to higher turbulence inside GMCs?

Diffuse gamma-ray emission

Gamma-ray counts map

Point source contribution

Dust opacity map (gas column)

CR Radial distributions

Hardening towards GC

More GMCs!

- Rice et.al (2016) have identified thousands of Molecular Clouds in the **Galaxy**
- Possible to measure CR density in each position of the Galaxy.

Aharonian et.al 2019

More GMCs

- The enhancement and hardening is caused due to the CR sources?
- A uniform CR "sea" plus some "islands" with higher density and harder spectra?

Aharonian et.al 2019

(Yang, Liu and Aharonian 2020 in prep)

Low energy (LE) CRs

- E < 100 MeV, No pion-decay gamma-rays
- significant contribution to the energy density of ISM $($ \sim e V/cm^{\land}3)
- Heating the gas
- Govern the astro-chemistry
- dominate ionization in MCs
- At MeV energy ionization dominate cooling
- Voyager measurement in ISM (Cummings et.al 2016)

LECRs: Ionization

- CR dominates ionization inside MC cores (UV shielded)
- The measured Ionization rates from astro-chemistry are larger than expected

Calculation from Phan et.al 2018, Black curve is the ionization rate assuming voyager measurement is the universal LECR spectrum

LE CR propagation

- But is the LECR spectrum universal?
- For LECR ionization cooling (see below) is significant in MeV range and the propagation is slow

LECR propagation

• LECR should be similar to VHE electrons, cannot propagate far Flux can be very different at different distances to the source

Gamma-ray line

- The same CRs can be studied also in gamma-rays through deexcitation line of nuclei
- Well studied in solar flare (Kozlovsky et.al 2002)

Gamma-ray line

Inverse and direct process

Use line ratio to diagnose CR spectrum

Use line ratio to diagnose CR spectrum

MeV gamma-ray, "LAST" electromagnetic window and interesting physics

PeVatrons

Cosmic Ray Spectra of Various Experiments

Knee: GCR at least to PeV

<u>Why SNRs?</u>

- Energy budget reasonable: 1e40 erg/s considering 10% efficiency
- Acceleration: 1st order Fermi acceleration in the shock front
- Observation proofs

SNRs as CR source?

Mid-age SNRs

- Clear Pion-decay feature.
- Hadronic origin or Bremsstrahlung ?
- Break at \sim 10 GeV
- Cannot account for all CRs up to PeV Fermi Collaboration 2013

Gamma-ray observation of Young SNRs

• All gamma-ray spectrum of young SNRs shows soft spectrum or early cutoff at \sim 10 TeV

中国科学技术大学 University of Science and Technology of China

- corresponding to CR energy of 100 TeV
- Hard to address a single power law spectrum of CRs up to PeV

Very young SNRs?

- PeVatron phase could be accomplished only during the first years of the explosion (e.g., Bell et.al 2013)
- The youngest SNR in the Galaxy: $G1.9+0.3$, t ~ 100 yr
- VHE protons cannot propagate more than 30 pc.
- HESS reveals $L(> 1$ TeV) $<$ 1e32 erg/ s can be used to set limit on proton energy budget.
- Considering a high density in the vicinity (near GC), the total energy on VHE protons are below 1e45 erg. Not enough to account for the CR flux up to the knee.

- Isotope measurement favor a superbubble origin. (W.R Binns 2016)
- Most of OB stars exist in associations or clusters, stellar wind can accelerate CRs (Cesarsky & Montmerle 83).
- Efficiency may even better than SNR (high speed wind lasts much longer than SNR shock)
- Sufficient wind power $(10^{38} 10^{39} \,\mathrm{erg/s})$ for each cluster, more than -10^{41} erg/s in the Galaxy) to account for CRs

CR Radial distributions

Young massive clusters

Westerlund 2 (HST image) MGC 3603 (VLT image)

- More than dozens of OB stars and WRs
- Compact structures (\sim pc)

Young massive clusters

• ~20 in our Galaxy

• More to be discovered (high extinction in Galactic plane)

• The wind power of a single young star can be as high

Acceleration site?

• non-thermal Radio and X-rays show hints of particle accelerations

Acceleration site?

- $\mathbb{R}^{x=-0}$ colliding with wind termination
	- Can accelerate to PeV

Alternative sources: Young massive clusters

Cygnus Cocoon (Fermi Collaboration 2012) 30 Doradus C (H.E.S.S Collaboration 2015)

Westerlund 1 (H.E.S.S Collaboration 2011)

Source population

• Cygnus Cocoon

- More: NGC3603 (Yang & Aharonian 2017), Westerlund 2 (Yang et.al 2018), W43 (Yang & Wang 2020), W40 (Sun et.al 2020) RSGC 1 (Sun et.al 2020)… and more to be discovered and investigated
- All reveal extended gamma-ray emission and hard (2.3 type) gamma-ray spectra

Radial distribution of Cosmic Rays

- CR distribution derived by gamma-ray profile and gas distributions
- All four sources (Wd1, Wd2, Cygnus cocoon, GC) show 1/r distribution of CRs
- In diffusion, $1/r$ profile implies a continuous injection (in the lifetime of clusters)

Massive star clusters

Prospect

PeVatron searching

- **• Hard gamma-ray spectrum without cutoff can hardly be addressed in leptonic model (cooling and KN effects).**
- **• no-cutoff in the gammaray spectrum up to 25 TeV => no-cutoff in the parent proton spectrum** up to \sim PeV.

 Hess J1641-463 (H.E.S.S collaboration 2016)

Large High Altitude Air ShowerObservatory

• KM2A: 1 km² scintillator (ED) and muon detector (MD) array, focus on the ultra high energy gamma-rays (>50 TeV)

• WCDA: Water Cherenkov detector arrays, mainly for TeV gamma-rays

• WFCTA: wide field of view Cherenkov telescope array, measure the shower shape, mainly for the direct measurement of Cosmic rays.

LHAASO sensitivities

LHAASO sensitivity for SNRs

Cassionpeia A

Concluding Remarks

- CR distributions from the gamma-ray: origin and propagation
- Low energy end: interplay with the star forming/astrochemistry, nuclear line may open a new window.
- High energy end : PeVatron searching, LHAASO will play a leading role.

Thanks!

CCTA Sensitivity

3-times more sensitive than CTA north (under construction) above 10 TeV order of magnitude better than the running instruments (H.E.S.S, MAGIC, Veritas)

Further test

- use HII gas to trace massive star forming regions (potential CR sources)
- Diffuse gamma can be separated into two components
- One associated with total gas column (dust opacity), with soft spectra. CR "sea"?
- Another with HII gas, with harder spectrum, CR "islands" near sources?

Chinese Cerenkov Telescope array (CCTA)

Preliminary plan:

32 Cerenkov telescopes

inside LHAASO site

Further test

- use HII gas to trace massive star forming regions (potential CR sources)
- Diffuse gamma can be separated into two components
- One associated with total gas column (dust opacity), with soft spectra. CR "sea"?
- Another with HII gas, with harder spectrum, CR "islands" near sources?

