强子流和强子结构

Hua-Xing Chen

Southeast University

Collaborators: Wei Chen, Xiang Liu, T. G. Steele, and Shi-Lin Zhu

CONTENTS

\bullet **Interpolating Currents**

- QCD sum rule studies
- **Productions of Pc states**
- Decays of Pc states

The name pentaquark was first proposed by Lipkin in 1987

高上加凶者主/

WIS-87/32/May-PH

New Possibilities for Exotic Hadrons - Anticharmed Strange Baryons*

Harry J. Lipkin Department of Nuclear Physics Weizmann Institute of Science 76100 Rehovot, Israel Submitted to Physics Letters

PLB 195 (1987) 484

May 20, 1987

ABSTRACT

The name pentaquark was first proposed by Lipkin in 1987

WIS-87/32/May-PH

Volume 193, number 2,3

PHYSICS LETTERS B

16 July 1987

POSSIBILITY OF STABLE MULTIQUARK BARYONS

C GIGNOUX^a, B SILVESTRE-BRAC^a and J M RICHARD^{ab}

^a Institut des Sciences Nucléaires, 53, avenue des Martyrs, F-38026 Grenoble Cedex, France

^b Laboratoire de Physique Theorique et Hautes Energies¹, T16-E1, Universite Pierre et Marie Curie, F-75252 Paris Cedex 05, France

Received 8 April 1987

The name pentaquark was first proposed by Lipkin in 1987

高上加凶音主

WIS-87/32/May-PH

Volume 193, number 2,3

PHYSICS LETTERS B

16 July 1987

POSSIBILITY OF STABLE MULTIQUARK BARYONS

C GIGNOUX^a, B SILVESTRE-BRAC^a and J M RICHARD^{ab}

^a Institut des Sciences Nucléaires, 53, avenue des Martyrs, F-38026 Grenoble Cedex, France

^b Laboratoire de Physique Theorique et Hautes Energies¹, T16-E1, Universite Pierre et Marie Curie,

$Y = 2$ STATES IN SU(6) THEORY*

Freeman J. Dyson† and Nguyen-Huu Xuong Department of Physics, University of California, San Diego, La Jolla, California (Received 30 November 1964)

Two-baryon states. - The SU(6) theory of strongly interacting particles^{1,2} predicts a classification of two-baryon states into multiplets according to the scheme

> $56@56 = 462@1050@1134@490.$ (1)

We now propose the hypothesis that all lowlying resonant states of the two-baryon system belong to the 490 multiplet.³ This means that six zero-strangeness states shown in Table I should be observed. In all these states odd T goes with even J and vice versa.

 Identifying exotic states is one of the most important issues of particle physics Various experimental signals provide us good platform to identify exotic state

Theoretical explanations of experimental signals

Resonant

Conventional hadrons

\bullet **Exotic states**

Molecular states:

loosely bound states composed of a pair of mesons/baryons; probably bounded by the pion exchange.

➤ **Multiquark states:**

bound states of four/five/six quarks; bounded by colored-force between quarks; there are many states within the same multiplet.

➤ **Hybrids:**

bound states composed of a pair of quarks and one valance gluon.

Non-Resonant

Many exotic states lie very close to opencharm threshold; It's quite possible that some threshold enhancements are not real resonances.

- •**Kinematical effect**
- •**Opening of new threshold**
- •**Cusp effect**
- •**Final state interaction**
- • **Interference between continuum and charmonium states**
- \bullet **Triangle singularity due to the special kinematics**

- $\overline{q}q \qquad J^P=0^+$
- $\overline{q}\gamma_5 q$ $J^P=0^-$
- $\overline{q}\gamma_{\mu}q \qquad J^{P}=1^{-}$
- $\overline{q}\gamma_{\mu}\gamma_{5}q$ $J^{P}=1^{+}$
- $\overline{q}\sigma_{\mu\nu}q$ $J^P=1^{\pm}$

- $\overline{q}q \qquad J^P=0^+$
- $\overline{q}\gamma_5 q$ $J^P=0^-$

Lorentz indices only

- $\overline{q}\gamma_{\mu}q \qquad J^{P}=1^{-}$
- $\overline{q}\gamma_{\mu}\gamma_{5}q$ $J^{P}=1^{+}$
- $\overline{q}\sigma_{\mu\nu}q$ $J^P=1^{\pm}$

Operators	J^{PC}	Mesons	J^{PC}	Couplings	Decay Constants	
$J^S=\bar{d}u$	0^{++}		0^{++}			
$J^P = \bar{d}i\gamma_5 u$	0^{-+}	π^+	0^{-+}	$\langle 0 J^P \pi^+ \rangle = \lambda_\pi$	$\lambda_{\pi}=\frac{f_{\pi}m_{\pi}^2}{m_u+m_d}$	
$J^V_\mu = \bar{d}\gamma_\mu u$	1^{--}	ρ^+	1^{--}	$\langle 0 J_\mu^V \rho^+ \rangle = m_\rho f_{\rho^+} \epsilon_\mu$	$f_{\rho^+} = 208 \text{ MeV} [82]$	
$J^A_\mu = \bar{d}\gamma_\mu\gamma_5 u$	1^{++}	π^+	0^{-+}	$\langle 0 J_\mu^A \pi^+ \rangle = i p_\mu f_{\pi^+}$	$f_{\pi^+} = 130.2 \text{ MeV}$ [1]	
		$a_1(1260)$	1^{++}	$\langle 0 J_\mu^A a_1 \rangle = m_{a_1} f_{a_1} \epsilon_\mu$	$f_{a_1} = 254 \text{ MeV} [87]$	
$J_{\mu\nu}^T = \bar{d}\sigma_{\mu\nu}u$	$1^{\pm -}$	ρ^+	1^{--}	$\langle 0 J^T_{\mu\nu} \rho^+\rangle = i f^T_\rho(p_\mu\epsilon_\nu-p_\nu\epsilon_\mu)$	$f_{\rho}^{T} = 159 \text{ MeV} [82]$	
		$b_1(1235)$	1^{+-}	$\langle 0 J^T_{\mu\nu} b_1 \rangle = i f^T_{b_1} \epsilon_{\mu\nu\alpha\beta} \epsilon^{\alpha} p^{\beta}$	$f_{b_1}^T = 180 \text{ MeV} [95]$	
$I^S = \bar{c}c$	0^{++}	$\chi_{c0}(1P)$	0^{++}	$\langle 0 I^S \chi_{c0}\rangle = m_{\chi_{c0}}f_{\chi_{c0}}$	$f_{\chi_{c0}}=343$ MeV [76]	
$I^P = \overline{c}i\gamma_5c$	0^{-+}	η_c	0^{-+}	$\langle 0 I^P \eta_c \rangle = \lambda_{\eta_c}$	$\lambda_{\eta_c} = \frac{f_{\eta_c} m_{\eta_c}^2}{2 m_c}$	
$I^V_\mu = \bar{c}\gamma_\mu c$	1^{--}	J/ψ	1^{--}	$\langle 0 I^V_\mu J/\psi \rangle = m_{J/\psi} f_{J/\psi} \epsilon_\mu$	$f_{J/\psi} = 418 \text{ MeV} [83]$	
$I^A_\mu = \bar{c}\gamma_\mu\gamma_5 c$	1^{++}	η_c	0^{-+}	$\langle 0 I_\mu^A \eta_c \rangle = i p_\mu f_{\eta_c}$	$f_{\eta_c}=387$ MeV [83]	
		$\chi_{c1}(1P)$	1^{++}	$\langle 0 I_\mu^A \chi_{c1} \rangle = m_{\chi_{c1}} f_{\chi_{c1}} \epsilon_\mu$	$f_{\chi_{c1}}=335$ MeV [77]	
$I_{\mu\nu}^T = \bar{c}\sigma_{\mu\nu}c$	$1^{\pm -}$	J/ψ	1^{--}	$\langle 0 I^T_{\mu\nu} J/\psi \rangle = i f^T_{J/\psi} (p_\mu \epsilon_\nu - p_\nu \epsilon_\mu)$	$f_{J/\psi}^T = 410 \text{ MeV} [83]$	
		$h_c(1P)$	1^{+-}	$\langle 0 I_{\mu\nu}^T h_c \rangle = i f_{h_c}^T \epsilon_{\mu\nu\alpha\beta} \epsilon^{\alpha} p^{\beta}$	$f_{h_c}^T = 235 \text{ MeV} [83]$	

TABLE II: Couplings of meson operators to meson states. Color indices are omitted for simplicity.

- ହ $\bar{q}\gamma_{\mu}q$ $P = \Omega +$ $P = \Omega^{-1}$ $P = 1 -$
- μ Y 5 $P = 1$
- $\mu\nu$ $P = 1$

Diquark Currents

- $T_{C\alpha}$ $I^P \Omega^{-1}$
- ${}^{T} {\cal C} \gamma_{5}$ $P = \Omega +$
- T C γ_{μ} $P = 1$
- T C $\gamma_{\mu}\gamma_{5}$ $P = 1 -$
- T C $\sigma_{\mu\nu}$ $P = 1$

Baryon Currents

 $\Lambda = \epsilon_{abc} \epsilon^{ABC} (q_A^{aT} C q_B^{b}) \gamma_5 q_C^{c},$ $N_1^N = \epsilon_{abc} \epsilon^{ABD} \lambda^N_{DC} (q_A^{aT} C q_B^{b}) \gamma_5 q_C^{c},$ $N_2^N = \epsilon_{abc} \epsilon^{ABD} \lambda^N{}_{DC} (q_A^{aT} C \gamma_5 q_B^{b}) q_C^c$ $N_{\mu}{}^N = \epsilon_{abc} \epsilon^{ABD} \lambda^N{}_{DC} (q_A{}^{aT} C \gamma_{\mu} \gamma_5 q_B{}^b) \gamma_5 q_C{}^c$ $\Delta_{\mu}^{P} = \epsilon_{abc} S_{P}^{ABC} (q_A^{aT} C \gamma_{\mu} q_B^{b}) q_C^{c},$ $\Delta_{\mu\nu}^{\ \ P} = \epsilon_{abc} S_P^{\ \ ABC} (q_A^{\ \ aT} C \sigma_{\mu\nu} q_B^{\ \ b}) \gamma_5 q_C^{\ \ c}.$ a,b,c are color indices A, B, C are flavor indices $(q=v, d, s)$ ϵ^{ABC} denotes totally antisymmetric S_p ^{ABD} denotes totally symmetric Flavor: $3\otimes 3\otimes 3 = 1\oplus 8 \oplus 8 \oplus 10$ Color: $3@3@3 = 1$

The current well coupling to $\lceil \overline{D}^0 \Sigma_c^+ \rceil$

$$
\boxed{\langle 0|J|X_{1/2}\rangle = f_X u(p)}
$$

存在多种构型:

· · · · · ·

- 分子态构型一: $[\bar c_d c_d]$ [$\epsilon^{abc} q_a q_b q_c$
- •• 分子态构型二: $[\bar{c}_d q_d][\epsilon^{abc} c_a q_b q_c]$
- •• 紧束缚五夸克态构型一: $\epsilon^{abc}\bar{c}_a[\epsilon^{bde}c_dq_e][\epsilon^{cfg}q_fq_g]$

以上构型满足**local**条件时会存在一定的关联:

- The Fierz transformation
- The color rearrangement

$$
\delta^{de}\epsilon^{abc} = \delta^{da}\epsilon^{ebc} + \delta^{db}\epsilon^{aec} + \delta^{dc}\epsilon^{abe}
$$

$$
\begin{array}{ccc}\n[\bar{c}_d c_d][\epsilon^{abc} u_a u_b d_c] & \longrightarrow & [\bar{c}_d u_d][\epsilon^{abc} c_a u_b d_c] & \frac{\bar{c}_d d_d][\epsilon^{abc} c_a u_b u_c]}{\zeta} \\
\eta & & & \zeta & \mathbf{g} & \psi\n\end{array}
$$

$$
\eta_1 = [\epsilon_{abc} (u_a^T C d_b) \gamma_5 u_c][\bar{c}_d c_d]
$$

$$
= -\frac{5}{16}\xi_1 - \frac{5}{16}\xi_2 - \frac{1}{16}\xi_3 - \frac{1}{16}\xi_4 - \frac{5}{16}\xi_5
$$

\n
$$
+ \frac{5}{16}\xi_6 + \frac{1}{16}\xi_7 - \frac{1}{16}\xi_8 - \frac{5}{32}\xi_{10}
$$

\n
$$
- \frac{1}{32}\xi_{11} - \frac{1}{16}\xi_{13} - \frac{1}{16}\xi_{14} - \frac{1}{16}\xi_{15}
$$

\n
$$
- \frac{1}{16}\xi_{16} - \frac{1}{16}\xi_{17} + \frac{1}{16}\xi_{18} - \frac{1}{16}\xi_{19} + \frac{1}{16}\xi_{20}
$$

\n
$$
+ \frac{i}{16}\xi_{21} - \frac{i}{16}\xi_{22} + \frac{i}{16}\xi_{23} - \frac{i}{16}\xi_{24} - \frac{i}{16}\xi_{25}
$$

\n
$$
- \frac{i}{16}\xi_{26} - \frac{i}{16}\xi_{27} - \frac{i}{16}\xi_{28} + \frac{1}{32}\xi_{29} + \frac{1}{32}\xi_{30}
$$

\n
$$
- \frac{i}{16}\xi_{33} + \frac{i}{16}\xi_{34} + \frac{i}{16}\xi_{35} - \frac{i}{16}\xi_{36} + \frac{1}{32}\xi_{37}
$$

\n
$$
+ \frac{1}{32}\xi_{38} - \frac{i}{16}\xi_{43}
$$

\n
$$
+ \frac{1}{16}\psi_1 + \frac{1}{16}\psi_2 + \frac{1}{16}\psi_3 - \frac{1}{16}\psi_4 - \frac{i}{16}\psi_5
$$

\n
$$
+ \frac{i}{16}\psi_6 + \frac{i}{16}\psi_7 + \frac{i}{16}\psi_8 - \frac{1}{32}\psi_9 - \frac{1}{32}\psi_{10}
$$

\n
$$
+ \frac{i}{16}\psi_{13} - \frac{i}{16}\psi_{14} - \frac{i}{16}\psi_{15}
$$

\n
$$
+ \frac{i}{16}\psi_{16} - \frac{
$$

7个D(*) Σ(*) 分子态和对应的试探流:

$$
|\bar{D}\Sigma_c; 1/2^-; \theta\rangle \qquad (18)
$$
\n
$$
= \cos\theta |\bar{D}^0 \Sigma_c^+; 1/2^- \rangle + \sin\theta |\bar{D}^-\Sigma_c^{++}; 1/2^- \rangle, \qquad (19)
$$
\n
$$
|\bar{D}^* \Sigma_c; 1/2^-; \theta\rangle \qquad (19)
$$
\n
$$
= \cos\theta |\bar{D}^{*0} \Sigma_c^+; 1/2^- \rangle + \sin\theta |\bar{D}^{*-} \Sigma_c^{++}; 1/2^- \rangle, \qquad (20)
$$
\n
$$
|\bar{D}^* \Sigma_c; 3/2^-; \theta\rangle \qquad (20)
$$
\n
$$
= \cos\theta |\bar{D}^{*0} \Sigma_c^+; 3/2^- \rangle + \sin\theta |\bar{D}^{*-} \Sigma_c^{++}; 3/2^- \rangle, \qquad (21)
$$
\n
$$
|\bar{D}\Sigma_c^*; 3/2^-; \theta\rangle \qquad (21)
$$
\n
$$
= \cos\theta |\bar{D}^0 \Sigma_c^{++}; 3/2^- \rangle + \sin\theta |\bar{D}^-\Sigma_c^{++}; 3/2^- \rangle, \qquad (22)
$$
\n
$$
|\bar{D}^* \Sigma_c^*; 1/2^-; \theta\rangle \qquad (22)
$$
\n
$$
= \cos\theta |\bar{D}^{*0} \Sigma_c^{++}; 1/2^- \rangle + \sin\theta |\bar{D}^{*-} \Sigma_c^{++}; 1/2^- \rangle, \qquad |\bar{D}^* \Sigma_c^*; 3/2^-; \theta\rangle \qquad (23)
$$
\n
$$
= \cos\theta |\bar{D}^{*0} \Sigma_c^{++}; 3/2^- \rangle + \sin\theta |\bar{D}^{*-} \Sigma_c^{++}; 3/2^- \rangle, \qquad |\bar{D}^* \Sigma_c^*; 5/2^-; \theta\rangle \qquad (24)
$$
\n
$$
= \cos\theta |\bar{D}^{*0} \Sigma_c^{++}; 5/2^- \rangle + \sin\theta |\bar{D}^{*-} \Sigma_c^{++}; 5/2^- \rangle, \qquad (24)
$$

$$
\eta_1 = [\delta^{ab}\bar{c}_a \gamma_5 u_b] [\epsilon^{cde} u_c^T \mathbb{C} \gamma_\mu d_d \gamma^\mu \gamma_5 c_e]
$$

= $\bar{D}^0 \Sigma_c^+,$ (27)

$$
\eta_2 = \left[\delta^{ab} \bar{c}_a \gamma_\nu u_b \right] \gamma^\nu \gamma_5 \left[\epsilon^{cde} u_c^T \mathbb{C} \gamma_\mu d_d \gamma^\mu \gamma_5 c_e \right]
$$

= $\bar{D}^{*0}_\nu \gamma^\nu \gamma_5 \Sigma_c^+,$ (28)

$$
\eta_3^{\alpha} = P_{3/2}^{\alpha\nu} [\delta^{ab}\bar{c}_a \gamma_{\nu} u_b] [\epsilon^{cde} u_c^T \mathbb{C} \gamma_{\mu} d_d \gamma^{\mu} \gamma_5 c_e]
$$

= $P_{3/2}^{\alpha\nu} \bar{D}_{\nu}^{*0} \Sigma_c^+,$ (29)

$$
\eta_4^{\alpha} = \left[\delta^{ab} \bar{c}_a \gamma_5 u_b \right] P_{3/2}^{\alpha \mu} [\epsilon^{cde} u_c^T \mathbb{C} \gamma_{\mu} d_d c_e]
$$

= $\bar{D}^0 \Sigma_c^{*+;\alpha},$ (30)

$$
\eta_5 = \left[\delta^{ab} \bar{c}_a \gamma_\nu u_b \right] P_{3/2}^{\nu \mu} \left[\epsilon^{cde} u_c^T \mathbb{C} \gamma_\mu d_d c_e \right]
$$

$$
= \bar{D}^{*0} \Sigma^{*+;\nu} \tag{31}
$$

$$
= D_{\nu}^{*0} \Sigma_{c}^{*+;\nu}, \tag{31}
$$

$$
\eta_6^{\alpha} = \left[\delta^{ab} \bar{c}_a \gamma_\nu u_b \right] P_{3/2}^{\alpha \rho} \gamma^\nu \gamma_5 P_{\rho \mu}^{3/2} \left[\epsilon^{cde} u_c^T \mathbb{C} \gamma^\mu d_d c_e \right]
$$

$$
= \bar{D}_{\nu}^{*0} P_{3/2}^{\alpha \rho} \gamma^\nu \gamma_5 \Sigma_{c; \rho}^{*+}, \tag{32}
$$

$$
\eta_7^{\alpha\beta} = P_{5/2}^{\alpha\beta,\nu\rho} \left[\delta^{ab}\bar{c}_a \gamma_\nu u_b \right] P_{\rho\mu}^{3/2} \left[\epsilon^{cde} u_c^T \mathbb{C} \gamma^\mu d_d c_e \right]
$$

$$
= P_{5/2}^{\alpha\beta,\nu\rho} \bar{D}_\nu^{*0} \Sigma_{c;\rho}^{*+}, \tag{33}
$$

Discussions on interpolating currents

- \bullet The current well describes the internal color, flavor, spin and orbital quantum numbers.
- \bullet The current well describes **hadron's internal symmetries**, e.g, Pauli principle is automatically satisfied.
- A current can couple to different states, and different currents can couple to the same state.
- \bullet What happens if we diagonalize all the currents, given that the number of currents is more the number of states?

CONTENTS

- \bullet **Interpolating Currents**
- **QCD sum rule studies**
- **Productions of Pc states**
- Decays of Pc states

QCD Sum Rules

• In sum rule analyses, we consider two-point correlation functions:

$$
\Pi (q^2) \stackrel{\text{def}}{=} i \int d^4 x e^{iqx} \langle 0 | \text{Tr}(\pi(x)) \eta^+(0) | 0 \rangle
$$

$$
\approx \sum_{n} \langle 0 | \text{Tr}(\pi(x)) \eta^+(0) | 0 \rangle
$$

where η is the current which can couple to hadronic states.

• By using the dispersion relation, we can obtain the spectral density

$$
\Pi\left(q^2\right) = \int_{s_<}^{\infty} \frac{\rho(s)}{s - q^2 - i\varepsilon} ds
$$

 $\bm{\cdot}$ In QCD sum rule, we can calculate these matrix elements from QCD (OPE) and relate them to observables by using dispersion relation.

QCD Sum Rules

• Borel transformation to suppress the higher order terms:

$$
\Pi(M_B^2) \equiv f^2\, e^{-M^2/M_B^2} = \int_{s_<}^{s_0} e^{-s/M_B^2} \rho(s) ds
$$

• Two parameters

M_B , s_0

We need to choose certain region of $(M_{\rm B}, s_{\rm O})$.

Criteria

1. Stability

- 2. Convergence of OPE
- 3. Positivity of spectral density
- 4. Sufficient amount of pole contribution

Parity of **Pentaquark**

Y. Chung, H. G. Dosch, M. Kremer and D. Schall, Nucl. Phys. B 197, 55 (1982)

D. Jido, N. Kodama and M. Oka, Phys. Rev. D 54, 4532 (1996)

Y. Kondo, O. Morimatsu and T. Nishikawa, Nucl. Phys. A 764, 303 (2006)

K. Ohtani, P. Gubler and M. Oka, Phys. Rev. D 87, no. 3, 034027 (2013)

- •Assuming **J** is a pentaquark current, γ_5 **J** is its partner having the opposite parity.
- •They can couple to the same physical state through

 $< 0|J|P(q) > = f_P u(q)$, $| < 0| \gamma_5 J |P(q) > = f_P \gamma_5 u(q)$. • The same pentaq ark current \boldsymbol{J} can couple to states $\boldsymbol{\cdot}$ f both positive and negative parities through $\leq 0|\mathbf{J}|P(q) > = |f_P u(q)|, \quad \leq 0|\mathbf{J}|P'(q) > = f_P|\gamma_5 u'(q).$ where $|P(q)$ > has the same parity as **J**, while $|P'(q)| > |\mathbf{a}|$ as the opposite parity. \pmb{P} $\overline{2}$ \overline{a} $\overline{M2}$ $\overline{M2}$ $\overline{2}$ $2 - M2$

 $\overline{D}^*\Sigma_C$ The sum rule results obtained using J^D_μ are:

$$
M_{[\bar{D}^*\Sigma_c],3/2^-}=4.37^{+0.18}_{-0.12}~\text{GeV}.
$$

FIG. 1: The variation of $M_{\left|\bar{D}^*\Sigma_c\right|,3/2^-}$ with respect to the threshold value s_0 (left) and the Borel mass M_B (right). In the left figure, the

QCD sum rule results

State	M [MeV]
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$
$P_c(4440)^+$	$4440.3 \pm 1.3_{-4.7}^{+4.1}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$

TABLE I: Masses and decay constants of the $X_{1\cdots7}$, extracted from the currents $J_{1\cdots7}$.

Uncertainties not enough to extract binding energies

QCD sum rule results

TABLE I: Masses and decay constants of the $X_{1...7}$, extracted from the currents $J_{1...7}$.

Currents	Configuration	s_0^{min} [GeV ²]	Working Regions		Pole $[\%]$	Mass [GeV]	f_X [GeV ⁶]	Candidate
				s_0 [GeV ²] M_B^2 [GeV ²]				
J_1	$ \bar{D}\Sigma_c;1/2^-\rangle$	22.4	24.0 ± 1.0	$3.27 - 3.52$	$40 - 48$	$4.30^{+0.10}_{-0.10}$	$(1.19^{+0.18}_{-0.19}) \times 10^{-3}$	$P_c(4312)^+$
$J_{2}% =\frac{1}{2}J_{1}^{2}+\frac{1}{2}J_{2}^{2}+\frac{1}{2}J_{1}^{2}+\frac{1}{2}J_{2}^{2}+\frac{1}{2}J_{1}% =\frac{1}{2}J_{1}% =\frac{$	$ \bar{D}^* \Sigma_c ;1/2^-\rangle$	25.5	27.0 ± 1.0	$3.78 - 3.99$	$40 - 46$	$4.48^{+0.10}_{-0.10}$	$(2.24^{+0.30}_{-0.34}) \times 10^{-3}$ $P_c(4457)^+$ (?)	
$J_{3}% =\frac{1}{3}\left(1+\left\vert \mathcal{A}\right\vert \mathcal{A}^{2}\right) ^{2}$	$ \bar{D}^* \Sigma_c; 3/2^- \rangle$	24.6	26.0 ± 1.0	$3.51 - 3.72$	$40 - 46$	$4.46^{+0.10}_{-0.11}$	$(1.15^{+0.16}_{-0.18}) \times 10^{-3}$ $P_c(4440)^+$ (?)	
J_4	$ \bar{D}\Sigma_c^*;3/2^-\rangle$	24.2	25.0 ± 1.0	$3.33 - 3.45$	$40 - 44$	$4.43^{+0.10}_{-0.10}$	$(0.65^{+0.10}_{-0.11}) \times 10^{-3}$	
J_5	$ \bar{D}^* \Sigma_c^*; 1/2^- \rangle$	26.0	27.0 ± 1.0	$3.43 - 3.56$	$40 - 44$	$4.51^{+0.11}_{-0.10}$	$(1.12^{+0.17}_{-0.19}) \times 10^{-3}$	
J_{6}	$ \bar{D}^* \Sigma_c^*; 3/2^- \rangle$	25.3	27.0 ± 1.0	$3.69 - 3.98$	$40 - 48$	$4.52^{+0.11}_{-0.11}$	$(0.85^{+0.13}_{-0.14}) \times 10^{-3}$	
J_7	$ \bar{D}^* \Sigma_c^*;5/2^-\rangle$	24.7	26.0 ± 1.0	$3.22 - 3.42$	$40\hbox{--}46$	$4.55^{+0.13}_{-0.15}$	$(0.65^{+0.10}_{-0.11}) \times 10^{-3}$	

 $\left\langle 0|J|X_{1/2}\right\rangle =f_{X}u(p)$

CONTENTS

- \bullet **Interpolating Currents**
- QCD sum rule studies
- **Productions of Pc states**
- Decays of Pc states

P_c^+ in $\Lambda_b^0 \rightarrow J/\psi K^- p$ decays

$$
P_c^+
$$
 in $\Lambda_b^0 \longrightarrow J/\psi K^- p$ decays

$$
\epsilon^{abc}\delta^{de}\delta^{fg} = (\epsilon^{abc}\delta^{da} + \epsilon^{aec}\delta^{db} + \epsilon^{abe}\delta^{dc}) \times \delta^{fg}
$$

=
$$
\epsilon^{gbc}\delta^{da}\delta^{fe} + \epsilon^{egc}\delta^{da}\delta^{fb} + \epsilon^{ebg}\delta^{da}\delta^{fc}
$$

+
$$
\epsilon^{gec}\delta^{db}\delta^{fa} + \epsilon^{agc}\delta^{db}\delta^{fe} + \epsilon^{aeg}\delta^{db}\delta^{fc}
$$

+
$$
\epsilon^{gbe}\delta^{dc}\delta^{fa} + \epsilon^{age}\delta^{dc}\delta^{fb} + \epsilon^{abg}\delta^{dc}\delta^{fe}.
$$

 $\Lambda_b^0 \hspace{2mm} \longrightarrow \hspace{2mm} J_{\Lambda_b^0}(x) = [\epsilon^{abc} u^T_a \mathbb{C} \gamma_5 d_b b_c](x)$

$$
\Lambda_b^0 \longrightarrow J_{\Lambda_b^0}(x) = [\epsilon^{abc} u_a^T \mathbb{C} \gamma_5 d_b b_c](x)
$$

\n
$$
\longrightarrow \left[\epsilon^{abc} u_a^T \mathbb{C} \gamma_5 d_b \gamma_\rho (1 - \gamma_5) c_c](x) \times [\delta^{de} \bar{c}_d \gamma^\rho (1 - \gamma_5) s_e](y)\right]
$$

Current algebra results

 \approx

$$
\Lambda_b^0 \longrightarrow + \frac{1+\gamma_5}{8\sqrt{2}} \times \frac{\xi_1(x)}{\xi_1(x)} \times \left[\bar{u}_a \gamma_5 s_a\right](z) \n+ \frac{(1+\gamma_5)(g_{\nu\rho} - i\sigma_{\nu\rho})}{16\sqrt{2}} \left[\frac{\xi_3^{\nu}(x)}{\xi_3^{\nu}(x)} - \frac{1}{4}\gamma^{\nu}\gamma_5 \xi_2(x)\right] \left[\bar{u}_a \gamma^{\rho}\gamma_5 s_a\right](z) \n+ \frac{(1+\gamma_5)(g_{\alpha\nu}\gamma_{\rho} + g_{\alpha\rho}\gamma_{\nu})}{8\sqrt{2}} \left[\frac{\xi_3^{\alpha\nu}(x)}{\xi_7^{\alpha\nu}(x)} - \frac{1}{9}\gamma^{\alpha}\gamma_5 \xi_6^{\nu}(x)\right] - \frac{1}{9}\gamma^{\nu}\gamma_5 \xi_6^{\alpha}(x) + \frac{2}{9}g^{\alpha} \xi_5(x)\right] \left[\bar{u}_a \gamma^{\rho}\gamma_5 s_a\right](z) \n+ \cdots
$$

$$
\frac{\mathcal{B}\left(\Lambda_b^0 \to K^-\left(|\bar{D}\Sigma_c\rangle_{1/2^-}:|\bar{D}^*\Sigma_c\rangle_{1/2^-}:|\bar{D}^*\Sigma_c\rangle_{3/2^-}:|\bar{D}\Sigma_c^*\rangle_{3/2^-}:|\bar{D}^*\Sigma_c^*\rangle_{1/2^-}:|\bar{D}^*\Sigma_c^*\rangle_{3/2^-}:|\bar{D}^*\Sigma_c^*\rangle_{5/2^-}\right)\right)}{\mathcal{B}\left(\Lambda_b^0 \to |\bar{D}^*\Sigma_c\rangle_{3/2^-}K^-\right)}
$$
\n
$$
8.2 \qquad : \qquad 1.2 \qquad : \qquad 1 \qquad : \qquad 0 \qquad : \qquad 4.8 \qquad : \qquad 0.18 \qquad : \qquad 0.
$$

CONTENTS

- \bullet **Interpolating Currents**
- QCD sum rule studies
- **Productions of Pc states**

Decays of Pc states

$$
P_c^+ \longrightarrow J/\psi p \text{ decays}
$$

$$
\begin{aligned}\n\left[\delta^{ab}\bar{c}_a(x)u_b(x)\right] \left[\epsilon^{cde}u_c(y)d_d(y)c_e(y)\right] \\
\frac{\text{plor}}{\mathbf{r}} \quad & \frac{1}{3}\delta^{ae}\epsilon^{bcd} \bar{c}_a(x)u_b(x) \ u_c(y)d_d(y)c_e(y) + \cdots \\
\frac{\text{plor}}{\mathbf{r}} \quad & \frac{1}{3}\delta^{ae}\epsilon^{bcd} \ \bar{c}_a(x)u_b(y) \ u_c(y)d_d(y)c_e(x) + \cdots \\
\frac{\text{pwr}}{\mathbf{r}} \quad & \frac{1}{3} \left[\delta^{ae}\bar{c}_a(x)c_e(x)\right] \ \left[\epsilon^{bcd}u_c(y)d_d(y)u_b(y)\right] + \cdots.\n\end{aligned}
$$

 $\overline{}$

$$
P_c^+ \longrightarrow J/\psi p \text{ decays}
$$

$$
\frac{u}{c} \frac{u}{c} \frac{u}{c} \frac{u}{c} \frac{u}{c} \frac{u}{c} + \left[\bar{c}_a \gamma_\mu c_a\right] \left(-\frac{1}{32} g^{\alpha \mu} - \frac{i}{96} \sigma^{\alpha \mu}\right) N + \left[\bar{c}_a \gamma_\mu \gamma_5 c_a\right] \left(-\frac{1}{32} g^{\alpha \mu} \gamma_5 - \frac{i}{96} \sigma^{\alpha \mu} \gamma_5\right) N + \left[\bar{c}_a \sigma_{\mu \nu} c_a\right] \left(\frac{i}{48} g^{\alpha \mu} \gamma^\nu + \frac{1}{96} \epsilon^{\alpha \mu \nu \rho} \gamma_\rho \gamma_5\right) N + \cdots,
$$

 P_c^+ decays

Fierz transform results

Our results

$$
\mathcal{R}_1(P_c) \equiv \frac{\mathcal{B}(\Lambda_b^0 \to P_c K^-)}{\mathcal{B}(\Lambda_b^0 \to |\bar{D}^* \Sigma_c\rangle_{3/2^-} K^-)} \qquad \qquad \mathcal{R}_2(P_c) \equiv \frac{\mathcal{B}(\Lambda_b^0 \to P_c K^- \to J/\psi p K^-)}{\mathcal{B}(\Lambda_b^0 \to |\bar{D}^* \Sigma_c\rangle_{3/2^-} K^- \to J/\psi p K^-)}
$$

LHCb, PRL 122, 222001 (2019)

$$
\mathcal{R} \equiv \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}
$$

$$
\frac{\mathcal{R}(P_c(4312)^+)}{\mathcal{R}(P_c(4440)^+)} = 0.27^{+0.32}_{-0.14},
$$

$$
\frac{\mathcal{R}(P_c(4457)^+)}{\mathcal{R}(P_c(4440)^+)} = 0.48^{+0.25}_{-0.25}.
$$

LHCb, PRL 122, 222001 (2019)

$$
\mathcal{R} \equiv \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}
$$

$$
\frac{\mathcal{R}(P_c(4312)^+)}{\mathcal{R}(P_c(4440)^+)} = 0.27^{+0.32}_{-0.14},
$$

$$
\frac{\mathcal{R}(P_c(4440)^+)}{\mathcal{R}(P_c(4440)^+)} = 0.48^{+0.25}_{-0.25}.
$$

 $t \approx 1$:

$$
\mathcal{R}_2(|\bar{D}\Sigma_c; 1/2^-)\rangle = \frac{\mathcal{R}_2(|\bar{D}\Sigma_c; 1/2^-)\rangle}{\mathcal{R}_2(|\bar{D}^*\Sigma_c; 3/2^-)\rangle} \approx 2.0,
$$

$$
\mathcal{R}_2(|\bar{D}^*\Sigma_c; 1/2^-)\rangle = \frac{\mathcal{R}_2(|\bar{D}^*\Sigma_c; 1/2^-)\rangle}{\mathcal{R}_2(|\bar{D}^*\Sigma_c; 3/2^-)\rangle} \approx 0.25,
$$

LHCb, PRL 122, 222001 (2019)

$$
\mathcal{R} \equiv \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}
$$

$$
\frac{\mathcal{R}(P_c(4312)^+)}{\mathcal{R}(P_c(4440)^+)} = 0.27^{+0.32}_{-0.14},
$$

$$
\frac{\mathcal{R}(P_c(4440)^+)}{\mathcal{R}(P_c(4440)^+)} = 0.48^{+0.25}_{-0.25}.
$$

Uncertainties:

 $t \approx 1$:

$$
\mathcal{R}_2(|\bar{D}\Sigma_c; 1/2^- \rangle) = \frac{\mathcal{R}_2(|\bar{D}\Sigma_c; 1/2^- \rangle)}{\mathcal{R}_2(|\bar{D}^* \Sigma_c; 3/2^- \rangle)} \approx 2.0,
$$

$$
\mathcal{R}_2(|\bar{D}^* \Sigma_c; 1/2^- \rangle) = \frac{\mathcal{R}_2(|\bar{D}^* \Sigma_c; 1/2^- \rangle)}{\mathcal{R}_2(|\bar{D}^* \Sigma_c; 3/2^- \rangle)} \approx 0.25,
$$

Hadronic molecules in B decays

 $D^{(*)}\overline{D}^{(*)}$ molecules

 $D^{(*)}D^{(*)}_S$ *^{)−} molecules

Hadronic molecules in B decays

 $D^{(*)}\overline{D}^{(*)}$ molecules

 $D^{(*)}D_s^{(*)-}$ molecules

$$
\sqrt{2}|D\bar{D}_s^*;1^{++}\rangle = |DD_s^{*-}\rangle_{J=1} + |D^*D_s^-\rangle_{J=1},
$$

$$
\sqrt{2}|D\bar{D}_s^*;1^{+-}\rangle = |DD_s^{*-}\rangle_{J=1} - |D^*D_s^-\rangle_{J=1},
$$

$$
\mathcal{B}(B^- \to K^- X(3872) \xrightarrow{\omega} K^- J/\psi \pi \pi \pi) \n= (6.0 \pm 2.2) \times 10^{-6},
$$

i
I

$$
\mathcal{B}(B^- \to \phi J/\psi K^-) = (5.0 \pm 0.4) \times 10^{-5},
$$

\n
$$
\frac{\mathcal{B}(B^- \to \phi Z_{cs}(4000) \to \phi J/\psi K^-)}{\mathcal{B}(B^- \to \phi J/\psi K^-)} = (9.4 \pm 2.1 \pm 3.4) \times 10^{-2},
$$

\n
$$
\frac{\mathcal{B}(B^- \to \phi Z_{cs}(4220) \to \phi J/\psi K^-)}{\mathcal{B}(B^- \to \phi J/\psi K^-)} = (10 \pm 4^{+10}_{-7}) \times 10^{-2}.
$$

$$
\frac{\mathcal{B}(B^{-} \to \phi Z_{cs}(4000) \to \phi J/\psi K^{-})}{\mathcal{B}(B^{-} \to K^{-} X(3872) \xrightarrow{\omega} K^{-} J/\psi \pi \pi \pi)} = 0.78 \pm 0.44,
$$

$$
\frac{\mathcal{B}(B^{-} \to \phi Z_{cs}(4220) \to \phi J/\psi K^{-})}{\mathcal{B}(B^{-} \to K^{-} X(3872) \xrightarrow{\omega} K^{-} J/\psi \pi \pi \pi)} = 0.83^{+0.95}_{-0.74}.
$$

$$
\frac{\mathcal{B}(B^- \to \phi | D\bar{D}_s^*)_{1^{+-}} \to \phi J/\psi K^-)}{\mathcal{B}(B^- \to K^- | D\bar{D}^*)_{1^{++}} \xrightarrow{\omega} K^- J/\psi \pi \pi \pi]} \approx 0.28,
$$

$$
\frac{\mathcal{B}(B^- \to \phi | D^* \bar{D}_s^*)_{1^{+-}} \to \phi J/\psi K^-)}{\mathcal{B}(B^- \to K^- | D\bar{D}^*)_{1^{++}} \xrightarrow{\omega} K^- J/\psi \pi \pi \pi]} \approx 2.7,
$$

Summary

• We studied mass spectra of Pc states through QCD sum rules.

• We studied their productions in Λ_b decays through current algebra.

• We studied their decays through Fierz transformation.

Thank you very much!