强子流和强子结构

Hua-Xing Chen

Southeast University

Collaborators: Wei Chen, Xiang Liu, T. G. Steele, and Shi-Lin Zhu

CONTENTS

Interpolating Currents

- QCD sum rule studies
- Productions of Pc states
- Decays of Pc states

The name pentaquark was first proposed by Lipkin in 1987

高上切凶音主/

WIS-87/32/May-PH

New Possibilities for Exotic Hadrons - Anticharmed Strange Baryons*

Harry J. Lipkin Department of Nuclear Physics Weizmann Institute of Science 76100 Rehovot, Israel Submitted to Physics Letters

PLB 195 (1987) 484

May 20, 1987

ABSTRACT

The name pentaquark was first proposed by Lipkin in 1987

高上切凶音主

WIS-87/32/May-PH

Volume 193, number 2,3

PHYSICS LETTERS B

16 July 1987

POSSIBILITY OF STABLE MULTIQUARK BARYONS

C GIGNOUX^a, B SILVESTRE-BRAC^a and J M RICHARD^{ab}

^a Institut des Sciences Nucléaires, 53, avenue des Martyrs, F-38026 Grenoble Cedex, France

^b Laboratoire de Physique Theorique et Hautes Energies¹, T16-E1, Universite Pierre et Marie Curie, F-75252 Paris Cedex 05, France

Received 8 April 1987

The name pentaquark was first proposed by Lipkin in 1987

高上切凶音主

WIS-87/32/May-PH

Volume 193, number 2,3

PHYSICS LETTERS B

16 July 1987

POSSIBILITY OF STABLE MULTIQUARK BARYONS

C GIGNOUX^a, B SILVESTRE-BRAC^a and J M RICHARD^{ab}

^a Institut des Sciences Nucléaires, 53, avenue des Martyrs, F-38026 Grenoble Cedex, France

^b Laboratoire de Physique Theorique et Hautes Energies¹, T16-E1, Universite Pierre et Marie Curie,

Y = 2 STATES IN SU(6) THEORY*

Freeman J. Dyson[†] and Nguyen-Huu Xuong Department of Physics, University of California, San Diego, La Jolla, California (Received 30 November 1964)

Two-baryon states. - The SU(6) theory of strongly interacting particles^{1,2} predicts a classification of two-baryon states into multiplets according to the scheme

 $56 \otimes 56 = 462 \oplus 1050 \oplus 1134 \oplus 490. \tag{1}$

We now propose the hypothesis that all lowlying resonant states of the two-baryon system belong to the <u>490</u> multiplet.³ This means that six zero-strangeness states shown in Table I should be observed. In all these states odd Tgoes with even J and vice versa.

Identifying exotic states is one of the most important issues of particle physics
 Various experimental signals provide us good platform to identify exotic state

Theoretical explanations of experimental signals

Resonant

Conventional hadrons

Exotic states

Molecular states:

loosely bound states composed of a pair of mesons/baryons; probably bounded by the pion exchange.

Multiquark states:

bound states of four/five/six quarks; bounded by colored-force between quarks; there are many states within the same multiplet.

> Hybrids:

bound states composed of a pair of quarks and one valance gluon.

Non-Resonant

Many exotic states lie very close to opencharm threshold; It's quite possible that some threshold enhancements are not real resonances.

- Kinematical effect
- Opening of new threshold
- Cusp effect
- Final state interaction
- Interference between continuum and charmonium states
- Triangle singularity due to the special kinematics

- $\bar{q}q \qquad J^P = 0^+$
- $\bar{q}\gamma_5 q \qquad J^P = 0^-$
- $\bar{q}\gamma_{\mu}q \qquad J^P = 1^-$
- $\bar{q}\gamma_{\mu}\gamma_{5}q \qquad J^{P}=1^{+}$
- $\bar{q}\sigma_{\mu\nu}q \qquad J^P = 1^{\pm}$

- $\bar{q}q \qquad J^P = 0^+$
- $\bar{q}\gamma_5 q \qquad J^P = 0^-$

Lorentz indices only

- $\bar{q}\gamma_{\mu}q$ $J^{P}=1^{-}$
- $\bar{q}\gamma_{\mu}\gamma_{5}q \qquad J^{P} = 1^{+}$
- $\bar{q}\sigma_{\mu\nu}q \qquad J^P = 1^{\pm}$

$\overline{q}q$	$J^P = 0^+$	
$\overline{q}\gamma_5 q$	$J^{P} = 0^{-}$	Lorentz indices only
$\overline{q}\gamma_{\mu}q$	$J^{P} = 1^{-}$	color indices needed
$\overline{q}\gamma_{\mu}\gamma_{5}q$	$J^{P} = 1^{+}$	flavor indices needed
$\overline{q}\sigma_{\mu u}q$	$J^P = 1^{\pm}$	

Operators	J^{PC}	Mesons	J^{PC}	Couplings	Decay Constants
$J^S = \bar{d}u$	0^{++}	—	0^{++}	_	_
$J^P = \bar{d}i\gamma_5 u$	0^{-+}	π^+	0^{-+}	$\langle 0 J^P \pi^+ angle=\lambda_\pi$	$\lambda_{\pi} = rac{f_{\pi}m_{\pi}^2}{m_u + m_d}$
$J^V_\mu = \bar{d}\gamma_\mu u$	1	$ ho^+$	1	$\langle 0 J^V_\mu ho^+ angle=m_ ho f_{ ho^+}\epsilon_\mu$	$f_{\rho^+} = 208 \text{ MeV} [82]$
$I^A = \bar{d} \gamma_{\mu} \gamma_{\tau} \eta_{\mu}$	1++	π^+	0^{-+}	$\langle 0 J^A_{\mu} \pi^+\rangle = ip_{\mu}f_{\pi^+}$	$f_{\pi^+} = 130.2 \text{ MeV} [1]$
$J_{\mu} = a_{\mu} J_{5} a$	1	$a_1(1260)$	1^{++}	$\langle 0 J^A_\mu a_1\rangle = m_{a_1}f_{a_1}\epsilon_\mu$	$f_{a_1} = 254 \text{ MeV} [87]$
$I^T = \bar{d}\sigma$ at	$1^{\pm -}$	$ ho^+$	1	$\langle 0 J_{\mu\nu}^T \rho^+\rangle = if_{\rho}^T(p_{\mu}\epsilon_{\nu} - p_{\nu}\epsilon_{\mu})$	$f_{\rho}^{T} = 159 \text{ MeV} [82]$
$J_{\mu\nu} = a J_{\mu\nu} a$	T	$b_1(1235)$	1+-	$\langle 0 J_{\mu u}^T b_1 angle=if_{b_1}^T\epsilon_{\mu ulphaeta}\epsilon^lpha p^eta$	$f_{b_1}^T = 180 \text{ MeV} [95]$
$I^S = \bar{c}c$	0^{++}	$\chi_{c0}(1P)$	0^{++}	$\langle 0 I^S \chi_{c0} angle=m_{\chi_{c0}}f_{\chi_{c0}}$	$f_{\chi_{c0}} = 343 \text{ MeV} [76]$
$I^P = \bar{c}i\gamma_5 c$	0^{-+}	η_c	0^{-+}	$\langle 0 I^P \eta_c angle = \lambda_{\eta_c}$	$\lambda_{\eta_c} = rac{f_{\eta_c} m_{\eta_c}^2}{2m_c}$
$I^V_\mu = \bar{c}\gamma_\mu c$	1	J/ψ	1	$\langle 0 I^V_\mu J/\psi angle=m_{J/\psi}f_{J/\psi}\epsilon_\mu$	$f_{J/\psi} = 418 \text{ MeV} [83]$
$I^A = \bar{c} \alpha \alpha c$	1++	η_c	0^{-+}	$\langle 0 I^A_\mu \eta_c angle=ip_\mu f_{\eta_c}$	$f_{\eta_c} = 387 \text{ MeV} [83]$
$I_{\mu} = c \gamma_{\mu} \gamma_5 c$	1	$\chi_{c1}(1P)$	1^{++}	$\langle 0 I^A_\mu \chi_{c1} angle=m_{\chi_{c1}}f_{\chi_{c1}}\epsilon_\mu$	$f_{\chi_{c1}} = 335 \text{ MeV} [77]$
$I^T - \bar{c}\sigma$	1 ^{±-}	J/ψ	1	$\langle 0 I_{\mu\nu}^T J/\psi\rangle = if_{J/\psi}^T(p_\mu\epsilon_\nu - p_\nu\epsilon_\mu)$	$f_{J/\psi}^T = 410 \text{ MeV} [83]$
$I_{\mu\nu} = co_{\mu\nu}c$	1-	$h_c(1P)$	1^{+-}	$\langle 0 I_{\mu\nu}^T h_c \rangle = i f_{h_c}^T \epsilon_{\mu\nu\alpha\beta} \epsilon^{\alpha} p^{\beta}$	$f_{h_c}^T = 235 \text{ MeV} [83]$

TABLE II: Couplings of meson operators to meson states. Color indices are omitted for simplicity.

- $\bar{q}q \qquad J^P = 0^+$ $\bar{q}\gamma_5 q \qquad J^P = 0^ \bar{q}\gamma_\mu q \qquad J^P = 1^-$
- $\bar{q}\gamma_{\mu}\gamma_{5}q \qquad J^{P} = 1^{+}$
- $\bar{q}\sigma_{\mu\nu}q \qquad J^P = 1^{\pm}$

Diquark Currents $q^T C q \qquad J^P = 0^$ $q^T C \gamma_5 q \qquad J^P = 0^+$ $q^T C \gamma_\mu q \qquad J^P = 1^+$ $q^T C \gamma_\mu \gamma_5 q \qquad J^P = 1^$ $q^T C \sigma_{\mu\nu} q \qquad J^P = 1^{\pm}$

Baryon Currents

 $\Lambda = \epsilon_{abc} \epsilon^{ABC} (q_A^{aT} C q_B^{b}) \gamma_5 q_C^{c},$ $N_1^{N} = \epsilon_{abc} \epsilon^{ABD} \lambda^N_{DC} (q_A^{aT} C q_B^{b}) \gamma_5 q_C^{c},$ $N_2^{N} = \epsilon_{abc} \epsilon^{ABD} \lambda^N_{DC} (q_A^{aT} C \gamma_5 q_B^{b}) q_C^{c},$ $N_\mu^{N} = \epsilon_{abc} \epsilon^{ABD} \lambda^N_{DC} (q_A^{aT} C \gamma_\mu \gamma_5 q_B^{b}) \gamma_5 q_C^{c},$ $\Delta_\mu^{P} = \epsilon_{abc} S_P^{ABC} (q_A^{aT} C \gamma_\mu q_B^{b}) q_C^{c},$ $\epsilon_{abc} \delta_\mu^{P} = \epsilon_{abc} S_P^{ABC} (q_A^{aT} C \sigma_\mu q_B^{b}) \gamma_5 q_C^{c}.$

Color: $3 \otimes 3 \otimes 3 = 1$ Flavor: $3 \otimes 3 \otimes 3 = 1 \oplus 8 \oplus 8 \oplus 10$ a,b,c are color indices A,B,C are flavor indices (q=u,d,s) ϵ^{ABC} denotes totally antisymmetric S_P^{ABD} denotes totally symmetric

The current well coupling to $[\overline{D}^0 \Sigma_c^+]$

$$\langle 0|J|X_{1/2}\rangle = f_X u(p)$$

存在多种构型:

- 分子态构型一: $[\bar{c}_d c_d][\epsilon^{abc} q_a q_b q_c]$
- 分子态构型二: $[\bar{c}_a q_a][\epsilon^{abc} c_a q_b q_c]$
- 紧束缚五夸克态构型一: $\epsilon^{abc} \bar{c}_a[\epsilon^{bde} c_d q_e][\epsilon^{cfg} q_f q_g]$

以上构型满足local条件时会存在一定的关联:

- The Fierz transformation
- The color rearrangement

$$\delta^{de} \epsilon^{abc} = \delta^{da} \epsilon^{ebc} + \delta^{db} \epsilon^{aec} + \delta^{dc} \epsilon^{abe}$$

$$\eta_1 = [\epsilon_{abc}(u_a^T C d_b) \gamma_5 u_c] [\bar{c}_d c_d]$$

$$= -\frac{5}{16}\xi_1 - \frac{5}{16}\xi_2 - \frac{1}{16}\xi_3 - \frac{1}{16}\xi_4 - \frac{5}{16}\xi_5$$

$$+\frac{5}{16}\xi_6 + \frac{1}{16}\xi_7 - \frac{1}{16}\xi_8 - \frac{5}{32}\xi_{10}$$

$$-\frac{1}{32}\xi_{11} - \frac{1}{16}\xi_{13} - \frac{1}{16}\xi_{14} - \frac{1}{16}\xi_{15}$$

$$-\frac{1}{16}\xi_{16} - \frac{1}{16}\xi_{17} + \frac{1}{16}\xi_{18} - \frac{1}{16}\xi_{19} + \frac{1}{16}\xi_{20}$$

$$+\frac{i}{16}\xi_{21} - \frac{i}{16}\xi_{22} + \frac{i}{16}\xi_{23} - \frac{i}{16}\xi_{24} - \frac{i}{16}\xi_{25}$$

$$-\frac{i}{16}\xi_{26} - \frac{i}{16}\xi_{27} - \frac{i}{16}\xi_{28} + \frac{1}{32}\xi_{29} + \frac{1}{32}\xi_{30}$$

$$-\frac{i}{16}\xi_{33} + \frac{i}{16}\xi_{34} + \frac{i}{16}\xi_{35} - \frac{i}{16}\xi_{36} + \frac{1}{32}\xi_{37}$$

$$+\frac{1}{32}\xi_{38} - \frac{i}{16}\xi_{43}$$

$$+\frac{1}{16}\psi_1 + \frac{1}{16}\psi_2 + \frac{1}{16}\psi_3 - \frac{1}{16}\psi_4 - \frac{i}{16}\psi_5$$

$$+\frac{i}{16}\psi_6 + \frac{i}{16}\psi_7 + \frac{i}{16}\psi_8 - \frac{1}{32}\psi_9 - \frac{1}{32}\psi_{10}$$

$$+\frac{i}{16}\psi_{16} - \frac{1}{32}\psi_{18} - \frac{1}{32}\psi_{19} + \frac{i}{16}\psi_{23}.$$

7个 $\bar{D}^{(*)}\Sigma_{c}^{(*)}$ 分子态和对应的试探流:

$$\begin{split} |\bar{D}\Sigma_{c};1/2^{-};\theta\rangle & (18) \\ &= \cos\theta |\bar{D}^{0}\Sigma_{c}^{+};1/2^{-}\rangle + \sin\theta |D^{-}\Sigma_{c}^{++};1/2^{-}\rangle, \\ |\bar{D}^{*}\Sigma_{c};1/2^{-};\theta\rangle & (19) \\ &= \cos\theta |\bar{D}^{*0}\Sigma_{c}^{+};1/2^{-}\rangle + \sin\theta |D^{*-}\Sigma_{c}^{++};1/2^{-}\rangle, \\ |\bar{D}^{*}\Sigma_{c};3/2^{-};\theta\rangle & (20) \\ &= \cos\theta |\bar{D}^{*0}\Sigma_{c}^{+};3/2^{-}\rangle + \sin\theta |D^{*-}\Sigma_{c}^{++};3/2^{-}\rangle, \\ |\bar{D}\Sigma_{c}^{*};3/2^{-};\theta\rangle & (21) \\ &= \cos\theta |\bar{D}^{0}\Sigma_{c}^{*+};3/2^{-}\rangle + \sin\theta |D^{-}\Sigma_{c}^{*++};3/2^{-}\rangle, \\ |\bar{D}^{*}\Sigma_{c}^{*};1/2^{-};\theta\rangle & (22) \\ &= \cos\theta |\bar{D}^{*0}\Sigma_{c}^{*+};1/2^{-}\rangle + \sin\theta |D^{*-}\Sigma_{c}^{*++};1/2^{-}\rangle, \\ |\bar{D}^{*}\Sigma_{c}^{*};3/2^{-};\theta\rangle & (23) \\ &= \cos\theta |\bar{D}^{*0}\Sigma_{c}^{*+};3/2^{-}\rangle + \sin\theta |D^{*-}\Sigma_{c}^{*++};3/2^{-}\rangle, \\ |\bar{D}^{*}\Sigma_{c}^{*};5/2^{-};\theta\rangle & (24) \\ &= \cos\theta |\bar{D}^{*0}\Sigma_{c}^{*+};5/2^{-}\rangle + \sin\theta |D^{*-}\Sigma_{c}^{*++};5/2^{-}\rangle, \end{split}$$

$$\eta_1 = [\delta^{ab} \bar{c}_a \gamma_5 u_b] [\epsilon^{cde} u_c^T \mathbb{C} \gamma_\mu d_d \gamma^\mu \gamma_5 c_e] = \bar{D}^0 \Sigma_c^+, \qquad (27)$$

$$\eta_2 = [\delta^{ab} \bar{c}_a \gamma_\nu u_b] \gamma^\nu \gamma_5 [\epsilon^{cde} u_c^T \mathbb{C} \gamma_\mu d_d \gamma^\mu \gamma_5 c_e] = \bar{D}_\nu^{*0} \gamma^\nu \gamma_5 \Sigma_c^+, \qquad (28)$$

$$\eta_3^{\alpha} = P_{3/2}^{\alpha\nu} \left[\delta^{ab} \bar{c}_a \gamma_{\nu} u_b \right] \left[\epsilon^{cde} u_c^T \mathbb{C} \gamma_{\mu} d_d \gamma^{\mu} \gamma_5 c_e \right]$$
$$= P_{3/2}^{\alpha\nu} \bar{D}_{\nu}^{*0} \Sigma_c^+, \qquad (29)$$

$$\eta_4^{\alpha} = [\delta^{ab} \bar{c}_a \gamma_5 u_b] P_{3/2}^{\alpha \mu} [\epsilon^{cde} u_c^T \mathbb{C} \gamma_{\mu} d_d c_e]$$

= $\bar{D}^0 \Sigma_c^{*+;\alpha}$, (30)

$$= \bar{D}^0 \Sigma_c^{*+;\alpha}, \qquad (30)$$

$$\eta_5 = \left[\delta^{ab} \bar{c}_a \gamma_{\nu} u_b\right] P^{\nu\mu}_{3/2} \left[\epsilon^{cde} u_c^T \mathbb{C} \gamma_{\mu} d_d c_e\right]$$
$$= \bar{D}^{*0}_{\nu} \Sigma^{*+;\nu}_{e}, \qquad (31)$$

$$= D_{\nu}^{*0} \Sigma_{c}^{*+,\nu}, \qquad (31)$$

$$\overset{\alpha}{=} \left[\delta_{c}^{ab} \overline{a} \gamma_{c} \gamma_{c}^{\mu} \right] P^{\alpha\rho} \gamma_{c}^{\nu} \gamma_{c} D^{3/2} \left[\epsilon^{cde} \gamma^{T} \mathcal{C} \gamma^{\mu} d \gamma_{c} \right]$$

$$\eta_6^{\alpha} = \left[\delta^{ab}\bar{c}_a\gamma_{\nu}u_b\right] P_{3/2}^{\alpha\rho} \gamma^{\nu}\gamma_5 P_{\rho\mu}^{3/2} \left[\epsilon^{cde}u_c^T \mathbb{C}\gamma^{\mu}d_d c_e\right]$$
$$= \bar{D}_{\nu}^{*0} P_{2/2}^{\alpha\rho} \gamma^{\nu}\gamma_5 \Sigma_{cre}^{*+}, \qquad (32)$$

$$= D_{\nu}^{\alpha\beta} P_{3/2}^{\alpha\beta} \gamma^{\epsilon} \gamma_{5} \Sigma_{c;\rho}^{\alpha\beta}, \qquad (32)$$

$$^{\beta} = P_{\sigma}^{\alpha\beta,\nu\rho} \left[\delta^{ab} \bar{c}_{c} \gamma_{\nu} u_{b} \right] P^{3/2} \left[\epsilon^{cde} u^{T} \mathbb{C} \gamma^{\mu} d_{d} c_{c} \right]$$

$$\eta_7^{\alpha\beta} = P_{5/2}^{\alpha\beta,\nu\rho} \left[\delta^{ab} \bar{c}_a \gamma_\nu u_b \right] P_{\rho\mu}^{3/2} \left[\epsilon^{cde} u_c^T \mathbb{C} \gamma^\mu d_d c_e \right]$$
$$= P_{5/2}^{\alpha\beta,\nu\rho} \bar{D}_\nu^{*0} \Sigma_{c;\rho}^{*+}, \qquad (33)$$

Discussions on interpolating currents

- The current well describes the internal color, flavor, spin and orbital quantum numbers.
- The current well describes hadron's internal symmetries, e.g, Pauli principle is automatically satisfied.
- A current can couple to different states, and different currents can couple to the same state.
- What happens if we diagonalize all the currents, given that the number of currents is more the number of states?

CONTENTS

- Interpolating Currents
- QCD sum rule studies
- Productions of Pc states
- Decays of Pc states

QCD Sum Rules

• In sum rule analyses, we consider two-point correlation functions:

$$\Pi (q^2) \stackrel{\text{def}}{=} i \int d^4 x e^{iqx} \langle 0 | T\eta(x) \eta^+(0) | 0 \rangle$$
$$\approx \sum_n \langle 0 | \eta | n \rangle \langle n | \eta^+ | 0 \rangle$$

where $\boldsymbol{\eta}$ is the current which can couple to hadronic states.

• By using the dispersion relation, we can obtain the spectral density

$$\Pi\left(q^2\right) = \int_{s_<}^\infty \frac{\rho(s)}{s-q^2-i\varepsilon} ds$$

• In QCD sum rule, we can calculate these matrix elements from QCD (OPE) and relate them to observables by using dispersion relation.

QCD Sum Rules

• Borel transformation to suppress the higher order terms:

$$\Pi(M_B^2) \equiv f^2 \, e^{-M^2/M_B^2} = \int_{s_<}^{s_0} e^{-s/M_B^2} \rho(s) ds$$

• Two parameters

M_{B} , s_{0}

We need to choose certain region of (M_{B}, s_{0}) .

• Criteria

1. Stability

- 2. Convergence of OPE
- 3. Positivity of spectral density
- 4. Sufficient amount of pole contribution

Parity of Pentaquark

Y. Chung, H. G. Dosch, M. Kremer and D. Schall, Nucl. Phys. B 197, 55 (1982)

D. Jido, N. Kodama and M. Oka, Phys. Rev. D 54, 4532 (1996)

Y. Kondo, O. Morimatsu and T. Nishikawa, Nucl. Phys. A 764, 303 (2006)

K. Ohtani, P. Gubler and M. Oka, Phys. Rev. D 87, no. 3, 034027 (2013)

- Assuming J is a pentaquark current, $\gamma_5 J$ is its partner having the opposite parity.
- They can couple to the same physical state through

 $< 0|J|P(q) > = f_P u(q), || < 0|\gamma_5 J|P(q) > = f_P \gamma_5 u(q).$ The same pentaquark current J can couple to states of both positive and negative parities through $<0|J|P(q)>=f_Pu(q), < <0|J|P'(q)>=f_P\gamma_5u'(q).$ where |P(q) > has the same parity as J, while |P'(q) > I as the opposite parity. $f_P^2 \frac{q + M}{a^2 - M^2}$ $f_P^2 \frac{-q + M}{a^2 - M^2}$

The sum rule results obtained using $J_{\mu}^{D^*\Sigma_c}$ are:

$$M_{[\bar{D}^*\Sigma_c],3/2^-} = 4.37^{+0.18}_{-0.12} \text{ GeV}.$$

FIG. 1: The variation of $M_{[\bar{D}^*\Sigma_c],3/2^-}$ with respect to the threshold value s_0 (left) and the Borel mass M_B (right). In the left figure, the

QCD sum rule results

State	$M [{\rm MeV}]$
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$
$P_{c}(4457)^{+}$	$4457.3\pm0.6^{+4.1}_{-1.7}$

TABLE I: Masses and decay constants of the $X_{1\dots7}$, extracted from the currents $J_{1\dots7}$.

Currents Configuration		e^{min} [GeV ²]	Working	g Regions	Pole [%]	Mass [GeV]	$f_{\rm Y}$ [GeV ⁶]	Candidate
Currents	Configuration		$s_0 \; [{ m GeV}^2]$	$M_B^2 \ [{ m GeV}^2]$			JX [Gev]	Candidate
J_1	$ \bar{D}\Sigma_c;1/2^-\rangle$	22.4	24.0 ± 1.0	3.27–3.52	40-48	$4.30\substack{+0.10 \\ -0.10}$	$(1.19^{+0.18}_{-0.19}) \times 10^{-3}$	$P_c(4312)^+$
J_2	$ \bar{D}^*\Sigma_c;1/2^-\rangle$	25.5	27.0 ± 1.0	3.78 – 3.99	40-46	$4.48^{+0.10}_{-0.10}$	$(2.24^{+0.30}_{-0.34}) \times 10^{-3}$	$P_c(4457)^+$ (?)
J_3	$ \bar{D}^*\Sigma_c;3/2^- angle$	24.6	26.0 ± 1.0	3.51 – 3.72	40-46	$4.46\substack{+0.10 \\ -0.11}$	$(1.15^{+0.16}_{-0.18}) \times 10^{-3}$	$P_c(4440)^+$ (?)
J_4	$ \bar{D}\Sigma_c^*;3/2^-\rangle$	24.2	25.0 ± 1.0	3.33 - 3.45	40-44	$4.43_{-0.10}^{+0.10}$	$\left(0.65^{+0.10}_{-0.11}\right) \times 10^{-3}$	
J_5	$ \bar{D}^*\Sigma_c^*;1/2^-\rangle$	26.0	27.0 ± 1.0	3.43 - 3.56	40–44	$4.51_{-0.10}^{+0.11}$	$(1.12^{+0.17}_{-0.19}) \times 10^{-3}$	
J_6	$ \bar{D}^*\Sigma_c^*;3/2^-\rangle$	25.3	27.0 ± 1.0	3.69 - 3.98	40-48	$4.52_{-0.11}^{+0.11}$	$\left(0.85^{+0.13}_{-0.14}\right) \times 10^{-3}$	
J_7	$ \bar{D}^*\Sigma_c^*;5/2^-\rangle$	24.7	26.0 ± 1.0	3.22 – 3.42	40–46	$4.55_{-0.15}^{+0.13}$	$\left(0.65^{+0.10}_{-0.11}\right) \times 10^{-3}$	

Uncertainties not enough to extract binding energies

QCD sum rule results

TABLE I: Masses and decay constants of the $X_{1\cdots7}$, extracted from the currents $J_{1\cdots7}$.

Currents	Configuration	s_{2}^{min} [GeV ²]	Working	g Regions	Pole [%]	Mass [GeV]	$f_{\rm Y}$ [GeV ⁶]	Candidate
	comguration	<i>s</i> 0 [det]	$s_0 \; [{ m GeV}^2]$	$M_B^2 \; [{ m GeV}^2]$			JX [007]	
J_1	$ \bar{D}\Sigma_c;1/2^-\rangle$	22.4	24.0 ± 1.0	3.27 - 3.52	40-48	$4.30_{-0.10}^{+0.10}$	$(1.19^{+0.18}_{-0.19}) \times 10^{-3}$	$P_c(4312)^+$
J_2	$ \bar{D}^*\Sigma_c;1/2^-\rangle$	25.5	27.0 ± 1.0	3.78 – 3.99	40-46	$4.48^{+0.10}_{-0.10}$	$(2.24^{+0.30}_{-0.34}) \times 10^{-3}$	$P_c(4457)^+$ (?)
J_3	$ \bar{D}^*\Sigma_c;3/2^-\rangle$	24.6	26.0 ± 1.0	3.51 – 3.72	40–46	$4.46\substack{+0.10 \\ -0.11}$	$(1.15^{+0.16}_{-0.18}) \times 10^{-3}$	$P_c(4440)^+$ (?)
J_4	$ \bar{D}\Sigma_c^*;3/2^-\rangle$	24.2	25.0 ± 1.0	3.33 – 3.45	40-44	$4.43_{-0.10}^{+0.10}$	$\left(0.65^{+0.10}_{-0.11}\right) \times 10^{-3}$	
J_5	$ \bar{D}^*\Sigma_c^*;1/2^-\rangle$	26.0	27.0 ± 1.0	3.43 – 3.56	40–44	$4.51_{-0.10}^{+0.11}$	$(1.12^{+0.17}_{-0.19}) \times 10^{-3}$	
J_6	$ \bar{D}^*\Sigma_c^*;3/2^-\rangle$	25.3	27.0 ± 1.0	3.69 – 3.98	40–48	$4.52_{-0.11}^{+0.11}$	$(0.85^{+0.13}_{-0.14}) \times 10^{-3}$	
J_7	$ \bar{D}^*\Sigma_c^*;5/2^-\rangle$	24.7	26.0 ± 1.0	3.22 – 3.42	40–46	$4.55_{-0.15}^{+0.13}$	$\left(0.65^{+0.10}_{-0.11}\right) \times 10^{-3}$	

 $\langle 0|J|X_{1/2}\rangle = f_X u(p)$

CONTENTS

- Interpolating Currents
- QCD sum rule studies
- Productions of Pc states
- Decays of Pc states

P_c^+ in $\Lambda_b^0 \longrightarrow J/\psi K^- p$ decays

$$P_c^+$$
 in $\Lambda_b^0 \longrightarrow J/\psi K^- p$ decays

$$\begin{split} \epsilon^{abc} \delta^{de} \delta^{fg} &= \left(\epsilon^{ebc} \delta^{da} + \epsilon^{aec} \delta^{db} + \epsilon^{abe} \delta^{dc} \right) \times \delta^{fg} \\ &= \epsilon^{gbc} \delta^{da} \delta^{fe} + \epsilon^{egc} \delta^{da} \delta^{fb} + \epsilon^{ebg} \delta^{da} \delta^{fc} \\ &+ \epsilon^{gec} \delta^{db} \delta^{fa} + \epsilon^{agc} \delta^{db} \delta^{fe} + \epsilon^{aeg} \delta^{db} \delta^{fc} \\ &+ \epsilon^{gbe} \delta^{dc} \delta^{fa} + \epsilon^{age} \delta^{dc} \delta^{fb} + \epsilon^{abg} \delta^{dc} \delta^{fe} \,. \end{split}$$

 $\Lambda_b^0 \longrightarrow J_{\Lambda_b^0}(x) = [\epsilon^{abc} u_a^T \mathbb{C} \gamma_5 d_b b_c](x)$

$$\Lambda_b^0 \longrightarrow J_{\Lambda_b^0}(x) = [\epsilon^{abc} u_a^T \mathbb{C} \gamma_5 d_b b_c](x)$$
$$\xrightarrow{\text{weak}} [\epsilon^{abc} u_a^T \mathbb{C} \gamma_5 d_b \gamma_\rho (1 - \gamma_5) c_c](x) \times [\delta^{de} \bar{c}_d \gamma^\rho (1 - \gamma_5) s_e](y)$$

$$\begin{split} \Lambda_b^0 & \longrightarrow J_{\Lambda_b^0}(x) = [\epsilon^{abc} u_a^T \mathbb{C} \gamma_5 d_b b_c](x) \\ & \xrightarrow{\text{weak}} \quad [\epsilon^{abc} u_a^T \mathbb{C} \gamma_5 d_b \gamma_\rho (1 - \gamma_5) c_c](x) \ \times \ [\delta^{de} \bar{c}_d \gamma^\rho (1 - \gamma_5) s_e](y) \\ & \xrightarrow{\text{QPC}} \quad [\epsilon^{abc} u_a^T \mathbb{C} \gamma_5 d_b \gamma_\rho (1 - \gamma_5) c_c](x) \ \times \ [\delta^{de} \bar{c}_d \gamma^\rho (1 - \gamma_5) s_e](y) \ \times \ [\delta^{fg} \bar{u}_f u_g](z) \end{split}$$

Current algebra results

 \approx

$$\Lambda_b^0 \longrightarrow + \frac{1+\gamma_5}{8\sqrt{2}} \times [\bar{u}_a \gamma_5 s_a](z)$$

$$+ \frac{(1+\gamma_5)(g_{\nu\rho} - i\sigma_{\nu\rho})}{16\sqrt{2}} \left[\xi_3^{\nu}(x) - \frac{1}{4} \gamma^{\nu} \gamma_5 \xi_2(x) \right] [\bar{u}_a \gamma^{\rho} \gamma_5 s_a](z)$$

$$+ \frac{(1+\gamma_5)(g_{\alpha\nu} \gamma_{\rho} + g_{\alpha\rho} \gamma_{\nu})}{8\sqrt{2}} \left[\xi_7^{\alpha\nu}(x) - \frac{1}{9} \gamma^{\alpha} \gamma_5 \xi_6^{\nu}(x) - \frac{1}{9} \gamma^{\nu} \gamma_* \xi_6^{\alpha}(x) + \frac{2}{9} g^{\alpha} \xi_5(x) \right] [\bar{u}_a \gamma^{\rho} \gamma_5 s_a](z)$$

$$+ \cdots .$$

$$\frac{\mathcal{B}\left(\Lambda_{b}^{0} \to K^{-}\left(|\bar{D}\Sigma_{c}\rangle_{1/2^{-}} : |\bar{D}^{*}\Sigma_{c}\rangle_{1/2^{-}} : |\bar{D}^{*}\Sigma_{c}\rangle_{3/2^{-}} : |\bar{D}^{*}\Sigma_{c}^{*}\rangle_{3/2^{-}} : |\bar{D}^{*}\Sigma_{c}^{*}\rangle_{3/2^{-}} : |\bar{D}^{*}\Sigma_{c}^{*}\rangle_{3/2^{-}} : |\bar{D}^{*}\Sigma_{c}^{*}\rangle_{3/2^{-}} : |\bar{D}^{*}\Sigma_{c}^{*}\rangle_{3/2^{-}} : |\bar{D}^{*}\Sigma_{c}\rangle_{3/2^{-}} : |\bar{D}^{*}\Sigma_{$$

CONTENTS

- Interpolating Currents
- QCD sum rule studies
- Productions of Pc states

Decays of Pc states

$$P_c^+ \rightarrow J/\psi p$$
 decays

$$\begin{bmatrix} \delta^{ab} \bar{c}_a(x) u_b(x) \end{bmatrix} \begin{bmatrix} \epsilon^{cde} u_c(y) d_d(y) c_e(y) \end{bmatrix}$$

$$\xrightarrow{\text{color}} \frac{1}{3} \delta^{ae} \epsilon^{bcd} \bar{c}_a(x) u_b(x) u_c(y) d_d(y) c_e(y) + \cdots$$

$$\xrightarrow{\text{nove}} \frac{1}{3} \delta^{ae} \epsilon^{bcd} \bar{c}_a(x) u_b(y) u_c(y) d_d(y) c_e(x) + \cdots$$

$$\xrightarrow{\text{Fierz}} \frac{1}{3} \begin{bmatrix} \delta^{ae} \bar{c}_a(x) c_e(x) \end{bmatrix} \begin{bmatrix} \epsilon^{bcd} u_c(y) d_d(y) u_b(y) \end{bmatrix} + \cdots$$

$$P_c^+ \rightarrow J/\psi p$$
 decays

 P_c^+ decays

Fierz transform results

Configuration	Decay Channels										
	$J/\psi p$	$\eta_c p$	$\chi_{c0} p$	$\chi_{c1} p$	$h_c p$	$\bar{D}^0 \Lambda_c^+$	$\bar{D}^{*0}\Lambda_c^+$	$\bar{D}^0 \Sigma_c^+$	$D^-\Sigma_c^{++}$	$\bar{D}^{*0}\Sigma_c^+$	$D^{*-}\Sigma_c^{++}$
$ \bar{D}\Sigma_c;1/2^-\rangle$	1	3.8	_		_	-	0.69t	_	_	_	-
$ \bar{D}^*\Sigma_c;1/2^-\rangle$	1	0.35	0.016	10^{-4}	_	3.4t	1.2t	0.12t	0.23t		
$ \bar{D}^*\Sigma_c;3/2^-\rangle$	1	0.005	—		-	-	0.34t	$10^{-5}t$	$10^{-5}t$		
$ \bar{D}\Sigma_c^*;3/2^-\rangle$	1	0.70			Ι	-	250t	1	Ţ	l	
$ \bar{D}^*\Sigma_c^*;1/2^-\rangle$	1	31	0.30	0.10	0.02	34t	1.5t	0.15t	0.30t	0.35t	0.70t
$ \bar{D}^*\Sigma_c^*;3/2^-\rangle$	1	0.006	_	0.008		_	0.39t	$10^{-5}t$	$10^{-4}t$	0.04t	0.08t
$ \bar{D}^*\Sigma_c^*;5/2^-\rangle$			_						_		

Our results

Configuration		Decay Channels									Productions		Candidata	
Conngulation	$J/\psi p$	$\eta_c p$	$\chi_{c0} p$	$\chi_{c1}p$	$h_c p$	$\bar{D}^0 \Lambda_c^+$	$\bar{D}^{*0}\Lambda_c^+$	$\bar{D}^0 \Sigma_c^+$	$D^-\Sigma_c^{++}$	$\bar{D}^{*0}\Sigma_c^+$	$D^{*-}\Sigma_c^{++}$	\mathcal{R}_1	\mathcal{R}_2	Candidate
$ \bar{D}\Sigma_c;1/2^-\rangle$	1	3.8	Т			1	0.69t				—	8.2	2.0	$P_c(4312)^+$
$ \bar{D}^*\Sigma_c;1/2^- angle$	1	0.35	0.016	10^{-4}	_	3.4t	1.2t	0.12t	0.23t		—	1.2	0.25	$P_c(4457)^+$ (?)
$ \bar{D}^*\Sigma_c; 3/2^-\rangle$	1	0.005		_	_	_	0.34t	$10^{-5}t$	$10^{-5}t$		—	1	1	$P_c(4440)^+$ (?)
$ \bar{D}\Sigma_c^*;3/2^-\rangle$	1	0.70	_	_	_	_	250t	_			—	_	_	
$ \bar{D}^*\Sigma_c^*;1/2^-\rangle$	1	31	0.30	0.10	0.02	34t	1.5t	0.15t	0.30t	0.35t	0.70t	4.8	0.09	
$ \bar{D}^*\Sigma_c^*;3/2^-\rangle$	1	0.006	_	0.008	_	_	0.39t	$10^{-5}t$	$10^{-4}t$	0.04t	0.08t	0.18	0.16	
$ \bar{D}^*\Sigma_c^*;5/2^-\rangle$			_						_			_	—	

$$\mathcal{R} \equiv \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}$$

State	R [%]
$P_c(4312)^+$	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_{c}(4440)^{+}$	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_{c}(4457)^{+}$	$0.53 \pm 0.16^{+0.15}_{-0.13}$

$$\frac{\mathcal{R}(P_c(4312)^+)}{\mathcal{R}(P_c(4440)^+)} = 0.27^{+0.32}_{-0.14},$$

$$\frac{\mathcal{R}(P_c(4457)^+)}{\mathcal{R}(P_c(4457)^+)} = 0.48^{+0.25}_{-0.25}.$$

$$\mathcal{R} \equiv \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}$$

State	\mathcal{R} [%]
$\overline{P_c(4312)^+}$	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_{c}(4440)^{+}$	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_{c}(4457)^{+}$	$0.53 \pm 0.16^{+0.15}_{-0.13}$

$$\frac{\mathcal{R}(P_c(4312)^+)}{\mathcal{R}(P_c(4440)^+)} = 0.27^{+0.32}_{-0.14}, \frac{\mathcal{R}(P_c(4457)^+)}{\mathcal{R}(P_c(4457)^+)} = 0.48^{+0.25}_{-0.25}.$$

t ≈ 1:

$$\mathcal{R}_2(|\bar{D}\Sigma_c;1/2^-\rangle) = \frac{\mathcal{R}_2(|\bar{D}\Sigma_c;1/2^-\rangle)}{\mathcal{R}_2(|\bar{D}^*\Sigma_c;3/2^-\rangle)} \approx 2.0,$$

$$\mathcal{R}_2(|\bar{D}^*\Sigma_c;1/2^-\rangle) = \frac{\mathcal{R}_2(|\bar{D}^*\Sigma_c;1/2^-\rangle)}{\mathcal{R}_2(|\bar{D}^*\Sigma_c;3/2^-\rangle)} \approx 0.25,$$

$$\mathcal{R} \equiv \frac{\mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p)}{\mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)}$$

State	\mathcal{R} [%]
$\overline{P_c(4312)^+}$	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_{c}(4440)^{+}$	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_{c}(4457)^{+}$	$0.53 \pm 0.16^{+0.15}_{-0.13}$

$$\frac{\mathcal{R}(P_c(4312)^+)}{\mathcal{R}(P_c(4440)^+)} = 0.27^{+0.32}_{-0.14},$$

$$\frac{\mathcal{R}(P_c(4457)^+)}{\mathcal{R}(P_c(4457)^+)} = 0.48^{+0.25}_{-0.25}.$$

Uncertainties:

Masses from QCD sum rules	$X \pm 5\%$
Decays	$X^{+100\%}_{-50\%}$
Productions	$X^{+200\%}_{-66\%}$
R_2	$X^{+300\%}_{-75\%}$

t ≈ 1:

$$\mathcal{R}_2(|\bar{D}\Sigma_c;1/2^-\rangle) = \frac{\mathcal{R}_2(|\bar{D}\Sigma_c;1/2^-\rangle)}{\mathcal{R}_2(|\bar{D}^*\Sigma_c;3/2^-\rangle)} \approx 2.0,$$

$$\mathcal{R}_2(|\bar{D}^*\Sigma_c;1/2^-\rangle) = \frac{\mathcal{R}_2(|\bar{D}^*\Sigma_c;1/2^-\rangle)}{\mathcal{R}_2(|\bar{D}^*\Sigma_c;3/2^-\rangle)} \approx 0.25,$$

Hadronic molecules in B decays

 $D^{(*)}\overline{D}^{(*)}$ molecules

 $D^{(*)}D_s^{(*)-}$ molecules

Hadronic molecules in B decays

 $D^{(*)}\overline{D}^{(*)}$ molecules

$ Dar{D};0^{++} angle$	_	
$ D\bar{D}^*;1^{++}\rangle$	X(3872)	
$ D\bar{D}^*;1^{+-}\rangle$	$Z_{c}(3900)$]/ψπ
$ D^*\bar{D}^*;0^{++} angle$		
$ D^*\bar{D}^*;1^{+-}\rangle$	$Z_c(4020)$	
$ D^*\bar{D}^*;2^{++}\rangle$	_	

 $D^{(*)}D_s^{(*)-}$ molecules

$ D\bar{D}_s;0^+ angle$		
$ D\bar{D}_s^*;1^{++}\rangle$	$Z_{cs}(3985)$	
$ D\bar{D}_s^*;1^{+-}\rangle$	$Z_{cs}(4000)$	J/ψK
$ D^*\bar{D}^*_s;0^+ angle$		
$ D^*\bar{D}^*_s;1^+\rangle$	$Z_{cs}(4220)$	
$ D^*\bar{D}_s^*;2^+\rangle$	_	

$$\sqrt{2} |D\bar{D}_{s}^{*}; 1^{++}\rangle = |DD_{s}^{*-}\rangle_{J=1} + |D^{*}D_{s}^{-}\rangle_{J=1},$$

$$\sqrt{2} |D\bar{D}_{s}^{*}; 1^{+-}\rangle = |DD_{s}^{*-}\rangle_{J=1} - |D^{*}D_{s}^{-}\rangle_{J=1},$$

Configuration	\mathcal{R}_1	\mathcal{R}_2	$\eta_c \bar{K}$	$J/\psi ar{K}$	$\chi_{c0} \bar{K}$	$h_c \bar{K}$	$\eta_c \bar{K}^*$	$J/\psi \bar{K}^*$	$\chi_{c1} ar{K}^*$	$D\bar{D}_s^*$	$D^* \bar{D}_s$	$D^* \bar{D}_s^*$	Candidate
$ D\bar{D}_s;0^+ angle$	_	$11d_6$	1	—	—	—	—	0.001		_	_	_	_
$ D\bar{D}_s^*;1^{++}\rangle$	$0.79d_{3}$	$6.6d_{6}$	_	—	0.012	_	—	1	—	25	68	—	$Z_{cs}(3985)$
$ D\bar{D}_{s}^{*};1^{+-}\rangle$	$0.75d_{3}$	$6.2d_{6}$	-	1	—		0.093	_	_	41	87	—	$Z_{cs}(4000)$
$ D^{*}\bar{D}_{s}^{*};0^{+} angle$		—	1	—		-	—	0.088	_	_	_	0.001	—
$ D^*\bar{D}^*_s;1^+ angle$	$1.8d_{3}$	_	-	1		0.002	0.36	_	10^{-7}	_	_	31	$Z_{cs}(4220)$
$ D^*\bar{D}^*_s;2^+ angle$		—	1	—	—	-	_	27		_	_	0.055	—

$$\mathcal{B}(B^- \to K^- X(3872) \xrightarrow{\omega} K^- J/\psi \pi \pi \pi) = (6.0 \pm 2.2) \times 10^{-6} ,$$

$$\begin{split} \mathcal{B}(B^- \to \phi J/\psi K^-) &= (5.0 \pm 0.4) \times 10^{-5} \,, \\ \frac{\mathcal{B}(B^- \to \phi Z_{cs}(4000) \to \phi J/\psi K^-)}{\mathcal{B}(B^- \to \phi J/\psi K^-)} \\ &= (9.4 \pm 2.1 \pm 3.4) \times 10^{-2} \,, \\ \frac{\mathcal{B}(B^- \to \phi Z_{cs}(4220) \to \phi J/\psi K^-)}{\mathcal{B}(B^- \to \phi J/\psi K^-)} \\ &= (10 \pm 4^{+10}_{-7}) \times 10^{-2} \,. \end{split}$$

$$\frac{\mathcal{B}(B^- \to \phi Z_{cs}(4000) \to \phi J/\psi K^-)}{\mathcal{B}(B^- \to K^- X(3872) \xrightarrow{\omega} K^- J/\psi \pi \pi \pi)} = 0.78 \pm 0.44,$$
$$\frac{\mathcal{B}(B^- \to \phi Z_{cs}(4220) \to \phi J/\psi K^-)}{\mathcal{B}(B^- \to K^- X(3872) \xrightarrow{\omega} K^- J/\psi \pi \pi \pi)} = 0.83^{+0.95}_{-0.74}.$$

$$\frac{\mathcal{B}(B^- \to \phi | D\bar{D}_s^*\rangle_{1^{+-}} \to \phi J/\psi K^-)}{\mathcal{B}(B^- \to K^- | D\bar{D}^*\rangle_{1^{++}} \xrightarrow{\omega} K^- J/\psi \pi \pi \pi)} \approx 0.28,$$
$$\frac{\mathcal{B}(B^- \to \phi | D^*\bar{D}_s^*\rangle_{1^{+-}} \to \phi J/\psi K^-)}{\mathcal{B}(B^- \to K^- | D\bar{D}^*\rangle_{1^{++}} \xrightarrow{\omega} K^- J/\psi \pi \pi \pi)} \approx 2.7,$$

Summary

• We studied mass spectra of Pc states through QCD sum rules.

• We studied their productions in Λ_b decays through current algebra.

• We studied their decays through Fierz transformation.

Thank you very much!