

A non-minimal SU(6) GUT and high-quality Axion

南开大学物理科学学院 陈宁

2021.07.09, @USTC

based on <u>2106.00223</u> with 刘宇统,滕召隆

- * The grand(gauge) unified theory (GUT) was first invented by Georgi & Glashow in 1974, with SU(5) as the minimal simple Lie group to unify $\mathscr{G}_{SM} = SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$, with $rank(\mathscr{G}_{SM}) = rank(SU(5)) = 4.$
- * 15 SM complex chiral fermions fit into irreps of $\bar{\mathbf{5}}_{\mathrm{F}}$ and $\mathbf{10}_{\mathrm{F}}$ in the SU(5), which are required by the gauge anomaly cancellation.
- * There was also an SO(10) GUT by Fritzsch & Minkowski in 1975. This is automatically anomaly-free, and its irrep of 16_F even includes a ν_R .

* Over 40 yrs since the SU(5) and SO(10), there is convincing evidence that the BSM new physics should be put forth to address:

(1) Strong CP problem, e.g., the Peccei-Quinn mechanism
(2) neutrino masses through the seesaw mechanism
(3) Baryon asymmetry through the baryogenesis/leptogenesis
(4) Dark matter

* The simplest SU(5), SO(10) and their varieties, do not seem to include all necessary ingredients for BSM. One often needs to put new physical ingredients into the SU(5) && SO(10) GUTs by hand.

Topics	Authors	Publications	Date	
Fourth color unification	Pati, Salam	[5]	1974	
SU(5) GUT	Georgi, Glashow	[6]	1974	
SO(10) GUT	Fritzsch, Minkowski	[7]	1975	
Peccei-Quinn mechanism	Peccei, Quinn	[8]	1977	
Seesaw mechanism	Yanagida	[9]	1979	
	Gell-Mann, Ramond, Slansky	[10]	1979	
KSVZ axion	Kim	[11]	1979	
	Shifman, Vainshtein, Zakharov	[12]	1980	
SU(N+4) global symmetry	Dimopoulos, Raby, Susskind	[13]	1980	
SUSY SU (5) GUT	Dimopoulos, Georgi	[14]	1981	
DFSZ axion	Zhitnitsky	[15]	1980	
	Dine, Fischler, Srednicki	[16]	1981	
Axion in $SU(5)$ GUT	Wise, Georgi, Glashow	[17]	1981	
Leptogenesis	Fukugita, Yanagida	[18]	1986	

Table 1: Collections of the major theoretical advances in the GUT and some related BSM physical issues listed in chronological order.

- * We call SU(5) and SO(10) the minimal GUTs due to their fermion representations. The original 1974 Georgi & Glashow SU(5) paper assumed ``as few leptons (fermions) as possible, no unobserved leptons (fermions)...".
- * Our assumption: a successful GUT can address as many BSM issues as possible, with the minimal set of fields unless otherwise necessary.
- * We choose to deal with the PQ-quality issue for the strong CP problem, and we get more than that (see next).

Background: Strong CP

* The strong CP problem, a topological term for the QCD vacuum $\mathscr{L}_{\theta} = \theta \frac{\alpha_{3c}}{8\pi} G^a_{\mu\nu} \tilde{G}^{\mu\nu a}$, and experimentally from the neutron EDM: $|\bar{\theta}| \leq 10^{-10}$, with $\bar{\theta} = \theta + \arg \det M_q$, very different from the $\mathcal{O}(1)$ expectation of θ parameter.

- * PQ mechanism: to replace θ by a periodic pseudo-scalar field $a \rightarrow a + 2\pi f_a$, f_a is known as the axion decay constant. There is a classical window of $10^8 \text{ GeV} \lesssim f_a \lesssim 10^{12} \text{ GeV}$.
- * Axion induced potential: $V_{\text{QCD}} = -\Lambda_{\text{QCD}}^4 \cos(a/f_a)$.
- * Invisible axion models such as KSVZ and DFSZ, *a* comes from a complex scalar field $\Phi = \frac{1}{\sqrt{2}}(v_a + \rho_a)\exp(ia/f_a)$.

Background: Strong CP

* PQ quality: $U(1)_{PQ}$ symmetry (expressed in terms of Φ) is global and put in by hand, and the gravity does not respect global symmetries, it can induce a general operator of $\mathcal{O}_{PQ}^{d=2m+n} = k \frac{|\Phi|^{2m} \Phi^n}{M_{pl}^{2m+n-4}} + H.c.$ ['92

Kamionkowski, March-Russell, and etc.] $\Delta PQ = n$ with $PQ(\Phi) = 1$.

* The
$$\mathcal{O}_{PQ}^{d=2m+n}$$
 shifts the V_{QCD} minima $|\bar{\theta}| = |\langle a \rangle / f_a| \leq 10^{-10}$

- * if $|k| \sim 10^{-2}$ and 2m + n = 5, $\Rightarrow f_a \leq 10 \text{ GeV}$, ruled out, else if $f_a \sim 10^{12} \text{ GeV}$ and 2m + n = 5, $\Rightarrow |k| \leq 10^{-55}$, very fine-tuned.
- * NB, the renormalizable operators with $2m + n \le 4$ are in principle possible. The discussion above considered a general Φ w.o. any gauge symmetry.

Global Symmetries

- * The usual wisdom of a high-quality PQ is to have the $U(1)_{PQ}$ as an emergent global symmetry.
- * The QCD has the global symmetry of: $\mathscr{G}_{global} = SU(3)_L \otimes SU(3)_R \otimes U(1)_V \otimes U(1)_A$, while QCD is vectorial.
- * The chiral gauge theory w.o. Unification: to put another confining theory with the SM, e.g. $SU(5) \otimes \mathcal{G}_{SM}$ by Gavela, Ibe, Quilez, and Yanagida [1812.08174].
- * Dimopoulos-Raby-Susskind (1980) studied a strongly-interacting theory: an anomaly-free SU(N + 4) chiral gauge theory with N anti-fundamental fermions and one rank-2 anti-symmetric fermion, and it has $\mathscr{G}_{global} = SU(N) \otimes U(1)$, $N \ge 2$.

Our result:

- * We start from SU(6), and identify $\mathscr{G}_{global} = SU(2)_F \otimes U(1)_{PQ}$.
- * Our finding is that a non-minimal SU(6) GUT with its minimal fermion && Higgs setup can lead to:

(1) Automatic high-quality PQ symmetry breaking @ $10^8 \text{ GeV} \leq f_a \leq 10^{10} \text{ GeV}$, with an extended symmetry of $\mathscr{G}_{331} = \text{SU}(3)_c \otimes \text{SU}(3)_L \otimes \text{U}(1)_N$ (2) Automatic KSVZ vector-like quarks $m_D \sim f_a$, with fixed electric charge of -1/3. (3) A cosmological-safe axion model, no DW formation

(4) Automatic Type-I seesaw mechanism with sterile neutrino mass at $\sim f_a$

(5) Automatic Type-II 2HDM at the EW scale

The SU(6) model

The SU(6) model

* The minimal anomaly-free SU(6) has fermions of: $2 \times \overline{6}_F \oplus 15_F$

- * How to break the SU(6) to the $\mathscr{G}_{SM} = SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$? The Georgi-Glashow SU(5) is a subgroup of the SU(6), while the direct breaking to the SU(5) is unwelcome. The sequential breaking of SU(5) $\rightarrow \mathscr{G}_{SM}$ leads to the proton decays with lower mass scale, hence faster decay rate.
- * Alternative pattern is: $SU(6) \rightarrow \mathcal{G}_{331} \rightarrow \mathcal{G}_{SM}$, with $\mathcal{G}_{331} = SU(3)_c \otimes SU(3)_L \otimes U(1)_N$. This is achievable with an adjoint Higgs of $\mathbf{35}_{\mathbf{H}}$ at the GUT scale (1974 Ling-Fong Li).

The SU(6) Higgs sector

- * An adjoint Higgs of $35_{\rm H}$ at the GUT scale.
- * There is a brute-force method: to perform the tensor products of all SU(6) fermions $\overline{6} \otimes \overline{6} = \overline{15} \oplus \overline{21}$, $\overline{6} \otimes 15 = 6 \oplus 84$, and $15 \otimes 15 = \overline{15} \oplus \overline{105} \oplus \overline{105}'$, and include all possible Higgs fields to form gauge-invariant Yukawa couplings.
- * Physical requirements: all SM Yukawa couplings should be reproduced $\Rightarrow \mathbf{6}_{\mathbf{H}}$ (for d^i and ℓ^i) and $\mathbf{15}_{\mathbf{H}}$ (for u^i)
- * Two $\mathbf{6}_{\mathbf{H}}^{\mathrm{I},\mathrm{II}}$ are needed to respect the $\mathrm{SU}(2)_{F}$.

* A $21_{\rm H}$ is introduced for the sterile neutrino Yukawa couplings.

The SU(6) Higgs sector

* minimal Higgs sector: $6_{H}^{\alpha=I,II}$, 15_{H} , 21_{H} , 35_{H}

* Hierarchies of Higgs VEVs: $\langle 35_{\rm H} \rangle \sim \Lambda_{\rm GUT}$, $\langle 6_{\rm H}^{\rm II} \rangle = v_3$, $\langle 21_{\rm H} \rangle = v_6$, $v_3 \sim v_6 \sim v_{331}$ $\langle 6_{\rm H}^{\rm I} \rangle = v_d = v_{\rm EW} \sin \beta$, $\langle 15_{\rm H} \rangle = v_u = v_{\rm EW} \cos \beta$ $\Lambda_{\rm GUT} \gg v_{331} \gg v_{\rm EW} = (\sqrt{2}G_F)^{-1/2} \simeq 246 \,{\rm GeV}$

* $\mathbf{6}_{\mathbf{H}}^{\mathbf{II}}$ and $\mathbf{21}_{\mathbf{H}}$ are responsible for the $\mathcal{G}_{331} \to \mathcal{G}_{\mathbf{SM}}$ breaking.

* Two Higgs doublets from $\mathbf{6}_{H}^{l}$ and $\mathbf{15}_{H}$ are responsible for the EWSB.

The SU(6) fermions

SU(6)	\mathcal{G}_{331}	$\mathcal{G}_{ ext{SM}}$		
$ar{f 6}^{ m I}_{f F}$	$(ar{3}, 1, +rac{1}{3})^{\mathrm{I}}_{\mathbf{F}}$	$(ar{3}, {f 1}, + rac{2}{3})^{ m I}_{f F} \;\;:\;\; \underline{d^c_R}$		
	$(1,\mathbf{ar{3}},-rac{1}{3})^{\mathrm{I}}_{\mathbf{F}}$	$(1, 2, -1)^{\mathrm{I}}_{\mathbf{F}} : \underline{(e_L, -\nu_L)}$		
		$(1,1,0)^{\mathrm{I}}_{\mathbf{F}}$: N		
$ar{6}_{ m F}^{ m II}$	$(ar{3},1,+rac{1}{3})^{\mathrm{II}}_{\mathbf{F}}$	$(\bar{3}, 1, +\frac{2}{3})_{\mathbf{F}}^{\mathrm{II}} : D_{R}^{c}$		
	$(1,\mathbf{ar{3}},-rac{1}{3})^{\mathrm{II}}_{\mathbf{F}}$	$(1, 2, -1)_{\mathbf{F}}^{\mathrm{II}} : (e'_L, -\nu'_L)$		
		$(1,1,0)_{\mathbf{F}}^{\mathrm{II}}: N'_{\mathbf{H}}$		
$15_{ m F}$	U	$({f ar 3},{f 1},-{4\over 3})_{f F}~:~{\underline u}_R^c$		
	$({f 1},{f ar 3},+{2\over 3})_{f F}$	$(1, 2, +1)_{\mathbf{F}} : (\nu_R'^c, e_R'^c)$		
		$(1,1,+2)_{\mathbf{F}} : \underline{e_R^c}$		
	$({f 3},{f 3},0)_{f F}$	$(3,2,+rac{1}{3})_{\mathbf{F}} : \underline{(u_L,d_L)}$		
		$(3,1,-\frac{2}{3})_{\mathbf{F}} : D_L$		

14

- * The most general Yukawa coupling: $15_F \bar{6}_F^{\alpha} 6_H^{\alpha}^{*} + 15_F 15_F 15_H + \bar{6}_F^{\alpha} (i\sigma_2)_{\alpha\beta} \bar{6}_F^{\beta} 21_H + H \cdot c$.
- * The PQ charge and a discrete \mathbb{Z}_4 symmetry:

	${f ar 6}^lpha_{f F}$	$15_{ m F}$	$6_{\mathbf{H}}^{lpha}$	15_{H}	21_{H}	$35_{ m H}$
$\mathrm{U}(1)_{\mathrm{PQ}}$	1	1	2	-2	-2	0
$U(1)_{PQ}$ $SU(2)_{F}$		1		1	1	1
\mathbb{Z}_4	1	$\frac{1}{2}$	$\frac{3}{2}$	-1	-2	0

At the UV the global $U(1)_{PQ}[SU(6)]^2$ anomaly: $N_{SU(6)} = 9$

* At the
$$\mathscr{G}_{331} \to \mathscr{G}_{SM}$$
 breaking:
 $\mathbf{15_F \bar{6}_F^{II} 6_H^{II}}^* + H.c. \supset$
 $(\mathbf{3}, \mathbf{3}, 0)_F \otimes (\bar{\mathbf{3}}, \mathbf{1}, +\frac{1}{3})_F^{II} \otimes (\mathbf{1}, \bar{\mathbf{3}}, -\frac{1}{3})_H^{II} + H.c.$
 $(\mathbf{1}, \bar{\mathbf{3}}, +\frac{2}{3})_F \otimes (\mathbf{1}, \bar{\mathbf{3}}, -\frac{1}{3})_F^{II} \otimes (\mathbf{1}, \bar{\mathbf{3}}, -\frac{1}{3})_H^{II} + H.c$
 $\Rightarrow m_D \sim m_{e'} \sim m_{\nu'} \simeq \mathcal{O}(v_{331})$

D-hadron lifetime: $\tau_D \sim m_D^{-1} \sim \mathcal{O}(10^{-36}) - \mathcal{O}(10^{-34})$ sec, Vs. the BBN constraint of $\tau_Q \lesssim 10^{-2}$ sec.

*
$$\bar{\mathbf{6}}_{\mathbf{F}}^{[I}\bar{\mathbf{6}}_{\mathbf{F}}^{[I]}\mathbf{21}_{\mathbf{H}} + H.c. \supset$$

 $(\mathbf{1}, \bar{\mathbf{3}}, -\frac{1}{3})_{\mathbf{F}}^{[I} \otimes (\mathbf{1}, \bar{\mathbf{3}}, -\frac{1}{3})_{\mathbf{F}}^{[I]} \otimes (\mathbf{1}, \mathbf{6}, +\frac{2}{3})_{\mathbf{H}} + H.c$
 $\Rightarrow m_{N,N'} \simeq \mathcal{O}(v_{331})$

*
$$\mathbf{15}_{\mathbf{F}} \mathbf{\overline{6}}_{\mathbf{F}}^{\mathbf{I}} \mathbf{6}_{\mathbf{H}}^{\mathbf{I}*} + H.c. \supset$$

 $(\mathbf{3}, \mathbf{2}, +\frac{1}{3})_{\mathbf{F}} \otimes (\mathbf{\overline{3}}, \mathbf{1}, +\frac{2}{3})_{\mathbf{F}}^{\mathbf{I}} \otimes (\mathbf{1}, \mathbf{2}, -1)_{\mathbf{H}}^{\mathbf{I}} + H.c.$
 $(\mathbf{1}, \mathbf{2}, -1)_{\mathbf{F}} \otimes (\mathbf{1}, \mathbf{1}, +2)_{\mathbf{F}}^{\mathbf{I}} \otimes (\mathbf{1}, \mathbf{2}, -1)_{\mathbf{H}}^{\mathbf{I}} + H.c.$
 $\Rightarrow m_{d,\ell} \simeq \mathcal{O}(v_{\mathrm{EW}})$
 $\mathbf{15}_{\mathbf{F}} \mathbf{15}_{\mathbf{F}} \mathbf{15}_{\mathbf{H}} + H.c. \supset$
 $(\mathbf{3}, \mathbf{2}, +\frac{1}{3})_{\mathbf{F}} \otimes (\mathbf{\overline{3}}, \mathbf{1}, -\frac{4}{3})_{\mathbf{F}}^{\mathbf{I}} \otimes (\mathbf{1}, \mathbf{2}, +1)_{\mathbf{H}} + H.c.$
 $\Rightarrow m_{u} \simeq \mathcal{O}(v_{\mathrm{EW}})$
The EW EFT = type-II 2HDM

The SU(6) Axion

The SU(6) Axion

* The physical axion field comes from: $\mathbf{6}_{\mathbf{H}}^{\mathbf{II}} \supset (\mathbf{1}, \mathbf{3}, +\frac{1}{3})_{\mathbf{H}}^{\mathbf{II}} \supset \frac{v_3}{\sqrt{2}} \exp(ia_3/v_3)$

and
$$21_{\rm H} \supset (1, 6, +\frac{2}{3})_{\rm H} \supset \frac{v_6}{\sqrt{2}} \exp(ia_6/v_6)$$

- * To impose an orthogonality condition between the U(1)_{PQ} $J^{\mu}_{PQ} = q_3 v_3 (\partial^{\mu} a_3) + q_6 v_6 (\partial^{\mu} a_6) \text{ and the } U(1)_N J^{\mu}_N = \frac{1}{3} v_3 (\partial^{\mu} a_3) + \frac{2}{3} v_6 (\partial^{\mu} a_6)$ currents. Physical charge: $q \equiv c_1 PQ + c_2 N$.
- * 't Hooft global anomaly matching: $N_{SU(3)_c} = N_{SU(6)} \Rightarrow c_1 = 1$.

*
$$a_{\text{phys}} = \cos \phi \, a_3 + \sin \phi \, a_6$$
, $\tan \phi = \frac{v_3}{2v_6}$.

* Axion decay const:
$$9v_{331}^{-2} = \frac{1}{4}v_6^{-2} + v_3^{-2}$$
 and $f_a = v_{331}/18$.

The PQ quality

* The leading PQ-breaking operator respecting the $SU(2)_F$ and \mathbb{Z}_4 :

$$\mathcal{O}_{PQ}^{d=6} = \left[\epsilon_{\alpha\beta} \epsilon_{abc} (\mathbf{1}, \mathbf{3}, +\frac{1}{3})^{a,\alpha} (\mathbf{1}, \mathbf{3}, +\frac{1}{3})^{b,\beta} (\mathbf{1}, \mathbf{3}, -\frac{2}{3})^{c} \right]^{2}$$

if no \mathbb{Z}_{4} : $\mathcal{O}_{PQ}^{d=3} = \epsilon_{\alpha\beta} \epsilon_{abc} (\mathbf{1}, \mathbf{3}, +\frac{1}{3})^{a,\alpha} (\mathbf{1}, \mathbf{3}, +\frac{1}{3})^{b,\beta} (\mathbf{1}, \mathbf{3}, -\frac{2}{3})^{c}$ is dangerous in PQ-quality.

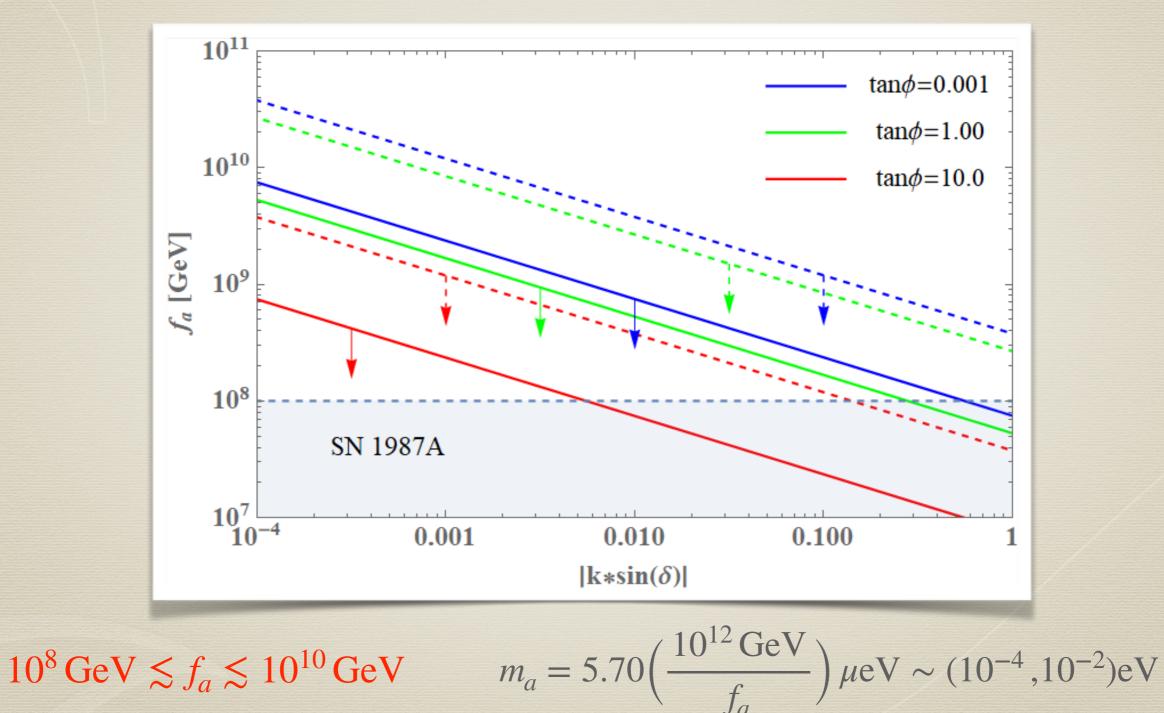
* Axion effective potential:

$$V = -\Lambda_{\text{QCD}}^4 \cos\left(\frac{a_{\text{phys}}}{f_a}\right) + \frac{|k|(v_u v_d v_3)^2}{4M_{\text{pl}}^2} \cos\left(\frac{a_{\text{phys}}}{6f_a} + \delta\right)$$

*
$$|\bar{\theta}| \equiv \left|\frac{\langle a_{\text{phys}}\rangle}{f_a}\right| \lesssim 10^{-10} \Rightarrow f_a \lesssim \frac{3.7 \times 10^7 \cos \phi}{|k \sin(\delta)|^{1/2}} (\tan \beta + \frac{1}{\tan \beta}) \text{GeV}$$

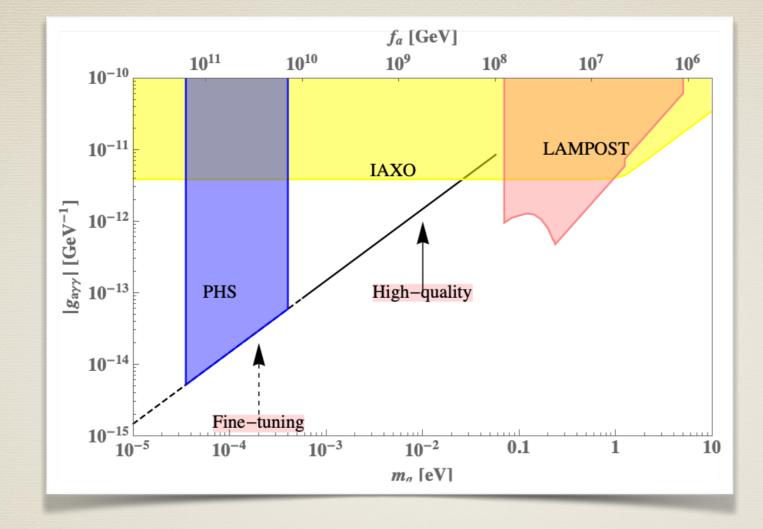
This is solely determined by symmetry considerations in a GUT!

The PQ quality



21

The axion searches



$$g_{a\gamma\gamma} = \left(\frac{E}{N_{SU(3)_c}} - 1.92\right) \left(\frac{1.14 \times 10^{-3} \text{ GeV}}{f_a}\right) \text{GeV}^{-1}$$
$$U(1)_{PQ} [U(1)_{em}]^2 \text{ anomaly factor} : E = \sum_f PQ_f \dim(\mathscr{C}_f) \text{Tr}q_f^2 = 24$$

The Axion domain walls

* Back to the axion effective potential:

$$V = -\Lambda_{\text{QCD}}^4 \cos\left(\frac{a_{\text{phys}}}{f_a}\right) + \frac{|k|(v_u v_d v_3)^2}{4M_{\text{pl}}^2} \cos\left(\frac{a_{\text{phys}}}{6f_a} + \delta\right)$$

* The $\cos(\frac{a_{\text{phys}}}{f_a})$ term is periodic and has degenerate minima, this leads to the DWs.

* DWs are problematic in cosmology, with the energy density $\rho_{\rm DW} \sim \sigma/t$. The energy densities for radiation/matter: $\rho_{\rm rad} \propto t^{-2}$, $\rho_{\rm matt} \propto t^{-3/2}$. DWs can overtake the Universe once they are formed.

The Axion domain walls

- * The second PQ-breaking term acts as the biased term to collapse the DWs.[Vilenkin ('81), Gelmini, Gleiser, Kolb, ('89), Larsson, Sarkar, White ('96)]
- * To have DWs collapse before formation: $t_{dec} < t_{form}$.
- * In our case:

$$t_{\text{form}} \sim 10^2 \sec\left(\frac{10^{13} \text{ GeV}}{v_{331}}\right) \sim \mathcal{O}(10^4) - \mathcal{O}(10^6) \sec^2 t_{\text{dec}} \approx \frac{\sigma_{\text{DW}}}{v_{331}^4} \sim 10^{-66} \sec\left(\frac{M_{\text{pl}}v_{331}}{v_u v_d}\right)^2 \left(\frac{10^{13} \text{ GeV}}{v_{331}}\right)^3 \sim \mathcal{O}(10^{-8}) - \mathcal{O}(10^{-6}) \sec^2 t_{\text{c}}$$

The SU(6) Unification

The SU(6) unification

* The gauge couplings: $(\alpha_{3c}, \alpha_{3L}, \alpha_N)$ for the \mathscr{G}_{331} , and $(\alpha_{3c}, \alpha_{2L}, \alpha_Y)$ for the \mathscr{G}_{SM} . Use $\alpha_1 = \frac{4}{3}\alpha_N$ for the \mathscr{G}_{331} embedding into the SU(6).

* The RGEs of the SU(6): $\alpha_i^{-1}(\mu_2) = \alpha_i^{-1}(\mu_1) - \frac{b_i^{(1)}}{2\pi} \log\left(\frac{\mu_2}{\mu_1}\right) + \delta_i$

 δ_i to account for higher-order effects: two-loop && mass threshold.

* The matching conditions: $\alpha_{3L}^{-1}(v_{331}) = \alpha_{2L}^{-1}(v_{331})$, $\alpha_1^{-1}(v_{331}) = -\frac{1}{4}\alpha_{2L}^{-1}(v_{331}) + \frac{3}{4}\alpha_Y^{-1}(v_{331})$.

The SU(6) unification
* non-SUSY:
$$b_i^{(1)} = -\frac{11}{3}C_2(\mathscr{G}_i) + \frac{2}{3}\sum_f T(\mathscr{R}_f^i) + \frac{1}{3}\sum_s T(\mathscr{R}_s^i)$$

SUSY: $b_i^{(1)} = -3C_2(\mathscr{G}_i) + \sum_{\chi} T(\mathscr{R}_{\chi}^i)$

* SUSY extension: $21_{\rm H}$ super-multiplet is anomalous, we include a $\overline{21}_{\rm H}$.

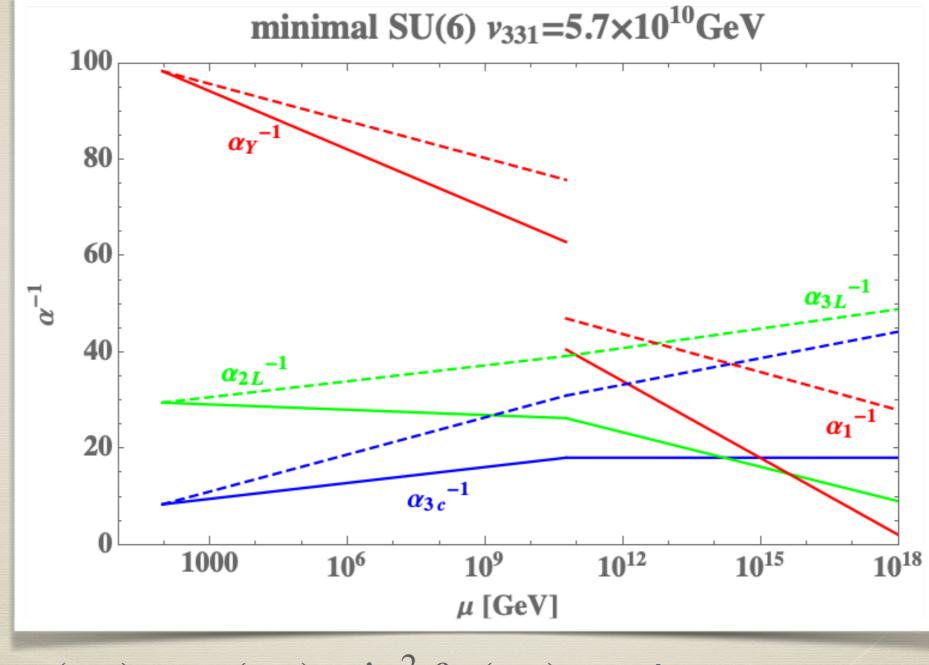
* The SU(6) SUSY extension can avoid the μ -problem, since $\mathbf{6}_{\mathbf{H}}^{\mathbf{I}*}\mathbf{15}_{\mathbf{H}}$ is not gauge-invariant.

* non-SUSY:
$$m_Z \le \mu \le v_{331} : (b_{SU(3)_c}^{(1)}, b_{SU(2)_L}^{(1)}, b_{U(1)_Y}^{(1)}) = (-7, -3, 7)$$

 $v_{331} \le \mu \le \Lambda_{GUT} : (b_{SU(3)_c}^{(1)}, b_{SU(3)_L}^{(1)}, b_{U(1)_1}^{(1)}) = (-5, -\frac{11}{3}, \frac{43}{6})$

* SUSY: $m_Z \le \mu \le v_{331} : (b_{SU(3)_c}^{(1)}, b_{SU(2)_L}^{(1)}, b_{U(1)_Y}^{(1)}) = (-3, 1, 11)$ $v_{331} \le \mu \le \Lambda_{GUT} : (b_{SU(3)_c}^{(1)}, b_{SU(3)_L}^{(1)}, b_{U(1)_1}^{(1)}) = (0, \frac{13}{2}, \frac{29}{2})$ 27

The SU(6) unification



 $\alpha_{3c}(m_Z), \alpha_{em}(m_Z), \sin^2\theta_W(m_Z)$ as inputs

The SU(6) unification

* To impose the unification condition at the UV: $\alpha_{3c}^{-1}(\Lambda_{GUT}) = \alpha_{3L}^{-1}(\Lambda_{GUT}) = \alpha_{1}^{-1}(\Lambda_{GUT}) = \alpha_{GUT}^{-1}(\Lambda_{GUT})$

- * Benchmark $v_{331} = 5.7 \times 10^{10} \,\text{GeV}$, we find: $\Lambda_{\text{GUT}} \approx 7.8 \times 10^{15} \,\text{GeV}$, $\alpha_{\text{GUT}}^{-1}(\Lambda_{\text{GUT}}) = 18.14$ $\sin^2 \theta_W(m_Z) = 0.22923$ PDG: $\sin^2 \theta_W(m_Z) = 0.23117$
- * Proton lifetime:

$$\tau[p \to e^+ \pi^0] \sim 10^{36} \,\mathrm{yrs} \left(\frac{\alpha_{\mathrm{GUT}}^{-1}}{35}\right)^2 \left(\frac{\Lambda_{\mathrm{GUT}}}{10^{16} \,\mathrm{GeV}}\right)^2 \\ \approx 9.8 \times 10^{34} \,\mathrm{yrs} \\ \mathrm{Super-Kamionkande:} \ \tau_p \gtrsim 2.4 \times 10^{34} \,\mathrm{yrs} \end{cases}$$

Summary

- * We show a *non-minimal* SU(6) GUT model with the minimal setup to achieve a high-quality axion by identifying the U(1)_{PQ} as the Abelian component of the emergent global symmetries.
- * The axion decay constant: $10^8 \text{ GeV} \leq f_a \leq 10^{10} \text{ GeV}$ w.o. much fine-tuning of the EFT parameter.
- * The GUT spectrum contains vector-like KSVZ *D*-quarks, and heavy leptons && singlet neutrinos, type-I seesaw.
- * Safe from the cosmological constraints.

Outlook

* Why SU(6)? Beyond the SU(6)? SU(7)? No answer now.

- * $SU(7) \rightarrow SU(4)_{PS} \otimes SU(3)_L \otimes U(1)_N$, there can be small instanton effect.
- * The discrete symmetries from the SUSY?
- * The RGE analysis, usually involves many details, two-loops, mass threshold effects.
- * String theory? SU(6) \otimes SU(2) \subset $E_6 \subset E_8$

Backups

*
$$\overline{6}_{F}^{[I}\overline{6}_{F}^{II]}15_{H} + H.c. \supset$$

 $(1, 2, -1)_{F}^{[I} \otimes (1, 1, 0)_{F}^{[I]} \otimes (1, 2, +1)_{H} + H.c.$
 $\Rightarrow m_{\nu N'} \sim m_{\nu' N} \simeq \mathcal{O}(v_{EW})$

* Type-I seesaw: $(\nu, N') \mathcal{M}(\nu, N')^T \Rightarrow m_{\nu} \sim \frac{v_{\text{EW}}^2}{v_{331}}, m_{N'} \sim v_{331}$

The SU(6) fermions

* To obtain the spectrum: $N = \frac{1}{3} \operatorname{diag}(-\mathbb{I}_3, +\mathbb{I}_3)$ for the SU(6) fundamental, and $Y = \operatorname{diag}(\frac{1}{3} + 2N, \frac{1}{3} + 2N, -\frac{2}{3} + 2N)$ for the SU(3)_L fundamental.

* In the SU(5) GUT: $\overline{\mathbf{5}}_{\mathbf{F}} = d_R^c \oplus \ell_L$, $\mathbf{10}_{\mathbf{F}} = q_L \oplus u_R^c \oplus e_R^c$

* In the SU(6) GUT: $\mathbf{\overline{6}}_{\mathbf{F}}^{\mathrm{I}} \supset d_{R}^{c} \oplus \ell_{L}^{c}, \mathbf{15}_{\mathbf{F}}^{c} \supset q_{L} \oplus u_{R}^{c} \oplus e_{R}^{c}$

* Additional SU(6) fermions are vectorial: (D_L, D_R^c) , (N, N'), (ℓ'_L, ℓ'_R^c)