

Constraining the Higgs-charm Yukawa coupling in the CMS experiment

USTC Seminar 2022.05.13

Introduction

 \Box Discovery of the Higgs boson in 2012: A new chapter of particle physics

Understanding the Higgs boson

Tremendous progress in our understanding of the Higgs boson in the past ten years

How charming is the Higgs boson?

Tremendous progress in our understanding of the Higgs boson in the past ten years

Probing the Higgs-charm coupling

Constraining Higgs-charm coupling in CMS

 \mathcal{L} on the normalized pT; h spectrum in inclusive Higgs Higg

– May 13, 2022 - Huilin Qu (CERN)

 \Box Several methods explored by CMS to probe the Higgs-charm Yukawa coupling (y_c)

Direct search for $H \rightarrow cc$

Constraining Higgs-charm coupling in CMS

Constraining Higgs-charm coupling in CMS - May 13, 2022 - Huilin Qu (CERN)

– May 13, 2022 - Huilin Qu (CERN)

Particle-flow reconstruction

\Box Particle-flow (PF): powerful approach for jet reconstruction and flavor tagging

- excellent energy and angular resolutions
- \blacksquare each particle (PF candidate) contains a rich set of information from multiple sub-detectors $-$ inputs to de

Phase-1 pixel detector upgrade

Improved tracking and flavour tagging performance in the 2017 - 2018

Analysis overview

Two complementary approaches for Higgs boson candidate reconstruction

\Box Resolved-jet topology

- reconstructs $H \rightarrow cc$ decay with two small-R jets (R=0.4, "AK4")
- § probes the bulk (>95%) of the signal phase space

Merged-jet topology

- **E** reconstructs H \rightarrow cc decay with one large-R jets (R=1.5, "AK15")
- § small signal acceptance (<5%) but higher purity
- better exploits the correlation between the two charm quarks

Merged-jet topology

$H \rightarrow cc$ identification

Q Merged-jet topology: Higgs boson candidate reconstructed via a single large-R jet ($p_T > 30$

JHEP 03 (2020) 131

- DeepAK8 (DeepAK15) [JINST 15 (2020) P06005]
- multi-class DNN boosted jet classifier r. directly uses jet constituents (particle-flow
- candidates / secondary vertices)
- 1D convolutional neural network mass decorrelation via adversarial training

$H \rightarrow cc$ identification

Q Merged-jet topology: Higgs boson candidate reconstructed via a single large-R jet ($p_T > 30$)

q A major improvement: **ParticleNet** tagger used to identify H → cc decay

>2x improvement in the final sensitivity

ParticleNet architecture

\Box New jet representation: "particle cloud"

§ treating a jet as an unordered set of particles, distributed in the η *—* φ space

\Box ParticleNet [H. Qu and L. Gouskos, *Phys.Rev.D 101 (2020) 5, 056019* (2020)

- graph neural network architecture adapted from DGCNN [arXiv:1801.07829]
- permutation-invariant architecture leads to significant performance improvement architecture leads to significant performance improvement. The top tagging β

$collision event$ *[SciPost Phys. 7, 014 (2019)]* collision event $SciPosi$

the result from the median-accuracy training, and the standard deviation of the nine trainings is Δ

 \sim

 $ResNet-50$ P-CNN PFN

Mass decorrelation

Mass-decorrelated

\Box "Mass sculpting": background jet becomes similar to signal after tagge

- \Box New approach to prevent mass s
	- using a special signal sample for train
		- hadronic decays of a spin-0 partic
			- \rightarrow X \rightarrow bb, X \rightarrow cc, X \rightarrow gq
		- **•** not a fixed mass, but a **flat mass s**
			- m(X) \in [15, 250] GeV
	- allows to easily reweight both signal to a ~flat 2D distribution in (p_T , mass)

\Box Signal and background have the same (\Box) mass spectrum, thus no sculpting will the training

Mass decorrelation (II)

 \Box "Mass sculpting": background jet becomes similar to signal after tagge

- \Box New approach to prevent mass s
	- **using a special signal sample for train**
		- hadronic decays of a spin-0 partic
			- \rightarrow X \rightarrow bb, X \rightarrow cc, X \rightarrow qq
		- **not a fixed mass, but a flat mass s**
			- § m(X) ∈ [15, 250] GeV
	- \blacksquare allows to easily reweight both signal to a ~flat 2D distribution in (p_T , mass)

 \Box Performance loss due to mass de greatly reduced compared to the prev (DeepAK8-MD, based on "adversarial

Calibration of the cc-tagger

\Box Need to measure ParticleNet cc-tagging efficiency in data

- no pure sample of H \rightarrow cc jets (or even Z \rightarrow cc) in data
- using $g \rightarrow cc$ in QCD multi-jet events as a proxy
- \Box Difficulty: select a phase-space in g \rightarrow cc that resembles H \rightarrow cc
	- solution: a dedicated BDT developed to distinguish hard 2-prong splittings (*i.e., high quark contribution to the jet momentum*) from soft cc radiations (*i.e., high gluon contribution to the jet momentum*)
	- also allows to adjust the similarity between proxy and signal jets
		- by varying the sfBDT cut treated as a systematic uncertainty

Perform a fit to the secondary vertex mass shapes in the "passing" and "failing" regions simultaneously to extract the scale factors

- three templates: cc (+ single c), bb (+ single b), light flavor jets
- \Box Derived cc-tagging scale factors typically 0.9–1.3
	- § corresponding uncertainties are 20—30%

Large-R jet mass regression

 \Box Jet mass: one of the most powerful observable to distinguish signal and backgrounds

\Box New ParticleNet-based regression algorithm to improve the large-R jet mass reconstructic

- training setup similar to the ParticleNet tagger; the regression target:
	- signal $(X \rightarrow bb/cc/qq)$: generated particle mass of X [flat spectrum in 15 250 GeV]
	- background (QCD) jets: soft drop mass of the particle-level jet

20 – 25% impr in the final ser

Analysis strategy

Factorized approach for analysis design

- event-level **kinematic BDT** developed in each channel to better suppress main backgrounds (V+jets, tt)
	- § using only *event kinematics*, no intrinsic properties (e.g., mass/flavor) of the large-R jet
- **ParticleNet cc-tagger** then used to define 3 cc-flavor enriched regions and reject light/bb-flavor jets
- finally: fit to the ParticleNet-regressed large-R jet mass shape for signal extraction
- \Box Kinematic BDT, ParticleNet cc-tagger and regressed jet mass largely independent of each other
	- § allowing for a simple and robust strategy for background estimation and signal extraction

Background estimation

\Box Normalizations of main backgrounds estimated via dedicated data control regions (CRs)

- § V+jets CR: use the low kinematic BDT region
- tt CR (0L & 1L): invert the cut on the number of additional small-R jets (i.e., N_{aj} \geq 2)
- free-floating parameters scale the normalizations in CRs and signal regions (SRs) simultaneously

CRs designed to have similar jet flavor composition as the SR

- flavor-independent kinematic BDT + same cc-tagging requirement in CRs as in SR
- allows to correct cc-tagging efficiency for backgrounds directly from data
- cc -tagging SFs only needed for the signal VH(H \rightarrow cc) process (and VZ(Z \rightarrow cc))
	- conservative uncertainty (2x/0.5x) for the misidentification of $H(Z) \rightarrow bb$ as $H(Z) \rightarrow cc$

$□$ Minor backgrounds (single top, dibosons, VH(H $→$ bb)) estimated from simulation

dibosons: applying differential NNLO QCD + NLO EW corrections as a function of $p_T(V)$ [JHEP 2002 (2020) 087]

kinBDT

() Not used in 2L channel*

cc tagger

SR V+jets CR

Resolved-jet topology

Charm quark identification

- □ Resolved-jet topology: Higgs boson candidate reconstructed with two small-R jets q Charm quark jet identification: **DeepJet** algorithm *JINS*
	- ~2x (~40%) improvement in light (b) jet rejection at 40% c jet efficiency compared to DeepCSV

Charm tagging calibration

\Box Novel calibration method to correct the entire distributions of the c-tagging discriminants *JINST 17 (2022) P03014*

Charm jet energy regression

\Box Dedicated jet energy regression algorithm developed to improve the c-jet energy scale and

- based on the b jet energy regression [*Comput.Softw.Big Sci. 4 (2020) 10*] used in several CMS H→bb anal
- re-trained for c jets instead of b jets
	- c jets collected from W→cx decay in tt MC events
- provides simultaneous estimation of the c jet energy and its resolution

 $Loss = Huber(y, F(x)) + \rho_{0.75}(y - F(x)) + \rho_{0.25}(y - F(x))$

■ both used as inputs to the signal extraction BDT

- jet kinematics
- jet composition pileup information
- semi-leptonic decays
- secondary vertex

Higgs boson candidate reconstruction

- Higgs boson candidate reconstructed using the two small-R jets with highest CvsL scores
- \Box To improve the Higgs candidate mass resolution:
	- § recovery of final state radiations (FSR)
		- additional jets within Δ R < 0.8 from either of the two selected jets are included in the calculation of the Higgs candidate's 4-momentum
		- improves the Higgs mass resolution by a few percent
	- new DNN-based c-jet energy regression
		- \sim 20% improvement in Higgs candidate mass resolution
	- § improved kinematic fit in the 2L channel
		- § better reconstruction of the Higgs candidate's 4 momentum using constraints from the $Z \rightarrow \ell \ell$ system
		- § up to 30% improvement in Higgs candidate mass resolution

Signal extraction strategy

Event-level BDT trained in each channel to maximize the signal vs background separation

- inputs: event kinematics, Higgs candidate properties, c-tagging discriminants
	- § + kinematic fit variables in 2L
- \Box Background estimation
	- dedicated CRs to constrain the normalizations of main backgrounds ($V + jets$, tt)
		- V + jets split based on flavor: $V + b$, $V + c$, $V + u$ dsg

\Box Simultaneous fit of SRs (BDT shapes) and CRs (c-tagging discriminants) for signal extraction

Results

Combination of the two topologies

The two topologies are made orthogonal via the presence of large-R jet with $p_T > 300$ GeV

 p_T threshold chosen to maximize expected sensitivity

Uncertainties

\Box Systematic uncertainties correlated between topologies, except:

- background normalizations for V+jets and tt
- charm quark identification efficiencies

\Box Main uncertainties

- limited statistics of the data set
- size of simulated samples (especially NLO V+jets)
- charm quark identification efficiencies

Table 1: The relative contributions to the total uncertainty on the signal strength modifier *µ* for *Relative contributions to the total uncertainty on μ*

$VZ(Z\rightarrow cc)$ results

\Box The full analysis procedure is validated by measuring the VZ(Z \rightarrow cc) process

- **•** resolved-jet topology:
	- BDT re-trained using $VZ(Z \rightarrow cc)$ as signal
	- fit to the BDT shapes to extract the signal
- merged-jet topology:
	- § no change to the analysis procedure
	- fit to the large-R jet mass shapes to extract the signal

$VZ(Z \rightarrow cc)$ results

 \Box The full analysis procedure is validated by measuring the VZ(Z \rightarrow cc) process

Observed significance for VZ(Z → cc): 5.7 - expected significance: 5.9σ

ar $\frac{ar}{2}$

First observation of Z→cc at a hadron co

Constraining Higgs-charm coupling in CMS - May 13, 2022 - Huilin Qu (CERN) *– May 13, 2022 - Huilin Qu (CERN) Constraining Higgs-charm coupling in CMS*

$VZ(Z \rightarrow cc)$ results

 \Box The full analysis procedure is validated by measuring the VZ(Z \rightarrow cc) process

Best-fit signal strength: $\mu_{VZ(Z \to cc)} = 1.01^{+0.21}_{-0.21}$ $+0.23$

- very good agreement with SM expectat

ar $\frac{ar}{2}$

- consistent results between topologies/c

$VH(H \rightarrow cc)$ results

\Box Post-fit distributions in the two topologies and the combination

ar $\frac{ar}{2}$

$VH(H \rightarrow cc)$ results

 \Box Upper limits on the VH(H \rightarrow cc) signal strength $\frac{ar\lambda}{2}$ at 95% CL:

- \blacksquare $\mu_{VHH \to cc}$ < 14 (7.6) observed (expected)
- substantially stronger than ATLAS full Run 2 result
	- \blacksquare $\mu_{VHH \to cc}$ < 26 (31) obs. (exp.) [arXiv:2201.11428]

\Box Best fit signal strength

- $\mu_{VH(H \to cc)} = 7.7^{+3.8}_{-3.5}$
- consistent with the SM prediction within 2σ

VH(H → cc) results for the test statistic [91, 92]. The observed (expected) 95% CL UL on *^µ*VH(H!cc) is 14 (7.6+3.4 2.3 ²⁰⁷), 206 ± 0.06 if it is defined from 206 ± 0.04 under the asymptotic approximation μ which is equivalent to an observed (expected) UL on \mathcal{L} (expected) UL on \mathcal{L} $\frac{1}{2}$. $\frac{1}{2}$ $\frac{1}{2}$

\Box Results used to set a constraint on the charm **g** quark Yukawa coupling modifier κ_c = y_c/ y_cSM by _σ¹⁰E 2328 at 95% CL. The 95% CL UL on *^µ*VH(H!cc) ²⁰⁹ in each individual channel is summarized in Figure

3.5. An upper limit (UL) on *^µ*VH(H!cc) ²⁰⁵ is extracted based on a mod-

ैं for simplicity, only considering effects on B(H→cc) ^{of} CMS and fixing all other couplings at SM values: decay with $\frac{d}{dt}$

$$
\mu_{\text{VH(H}\rightarrow c\overline{c})} = \frac{\kappa_c^2}{1 + \mathcal{B}_{\text{SM}}(H \rightarrow c\overline{c}) \times (\kappa_c^2 - 1)}.
$$

- $\frac{1}{3}$ The 95% CL interval on κ_c : $\frac{1}{4}$
- **a** observed: **1.1** \leq $\left| K_c \right|$ < 5.5 $\qquad \qquad$ ³
	-

Δ15 with the CMS detector of the CMS detector during the CMS detector during the CMS detector during the CMS detector during to an integrated lu-tegrated lu-tegrated lu-tegrated lu-tegrated lu-tegrated lu-tegrated lu-te

es the comparable to the previous projection for HL-LHC w/ $\overline{\text{max}}$ 3000 fb⁻¹: k_c < 3.0 [ATL-PHYS-PUB-2021-039]

ar

mined as *^µ*VH(H!cc) ⁼ 7.7+3.8

Prospects: HL-LHC

Projection at HL-LHC: Setup

- \Box Extrapolation of the merged-jet analysis to HL-LHC with 3000 fb-1 data
- \Box Modifications to the Run 2 analysis to allow for a simultaneous constraint on H → bb and
	- addition of 3 categories enriched in H → bb decays, selected with the ParticleNet bb-tagging discriminan
		- very small (1-2%) overlap of bb and cc categories events assigned to a unique category
	- **E** large-R jet p_T threshold lowered from 300 GeV to 200 GeV increasing signal acceptance

□ Systematic uncertainties adjusted according to the Yellow Report [CERN-2019-007]

- theoretical uncertainties: reduced by half
- most experimental uncertainties: scaled down with $\sqrt{\mathcal{L}}$
	- bb and cc tagging efficiencies: constrained by VZ(Z \rightarrow bb) and VZ(Z \rightarrow cc) events to ~3% and ~5%
	- **misidentification of H** \rightarrow **bb as H** \rightarrow **cc: a prominent uncertainty on H** \rightarrow **cc measurement at HL-LHC**
		- assumed to be reduced from $~100\%$ (Run 2) to 20% in the projection

Projection at HL-LHC

$□$ Simultaneous extraction of the H \rightarrow bb and H \rightarrow cc signal strengths

 $\mu_{VHH(H \to bb)} = 1.00 \pm 0.03$ (stat.) ± 0.04 (syst.) = 1.00 ± 0.05 (total)

 $\mu_{VHH(H \to cc)}$ = 1.0 ± 0.6 (stat.) ± 0.5 (syst.) = 1.0 ± 0.8 (total)

Expected sensitivity approaches the SM value for the Higgs-charm coupling.

<u>ርለ</u>

Prospects: ML for jet tagging

(a) Particle Transformer

Interaction features and 4-vectors

Motivated by LundNet (*px,i, py,i, pz,i*) is the momentum 3-vector and k *·* k is the *[F. Dreyer and H. Qu,* norm, for *i*², *b*. Since the set variables the set variables the set variables the set variables the set variable set variables the set variable set variables to the set variables to the set variables to the set variab a long-tail distribution, we take the logarithm and use *JHEP 03 (2021) 052]*

$\overline{\text{eNet}}$ eNet

Beyond ParticleNet: JetClass dataset

Beyond ParticleNet: Particle Transformer *Table 1.* Jet tagging performance on the JETCLASS dataset. ParT is compared to PFN (Komiske et al., 2019b), P-CNN (Sirunyan et al., Particle Transformer for Jet Tagging

Fine-tuning result on Top-tagging Benchmark $(\sim 2M$ jets) [SciPost Phys. 7 (201) nificant jump in the discovery potential for related physics *Fine-tuning result on Top-tagging Benchmark (~2M jets) [SciPost Phys. 7 (2019) 014]*

 \triangle animals \triangle discovery potential for relationships \overline{P} related potential for \overline{P} relationships \overline{P} relationships \overline{P} relationships \overline{P} relationships \overline{P} relationships \overline{P} relationsh $P-CNN$ 0.930 Another observation is that there is a large variation in tag- $JEDI-net(w/\sum O)$ 0.940 0.9807 — 1015 \pm 93
JEDI-net (w/ $\sum O$) 0.930 0.9807 — 774.6 **best separation against is achieved** 0.940 0.9855 392 ± 7 1533 ± 101 f_{r} **the** *t* f_{r} **b** f_{r} **b** f_{r} **b** f_{r} *b* f_{r} **a** f_{r} *c* f_{r} *c* f_{r} *c* f_{r} *c* f_{r} *c* f_{r} *c* f_{r} *<i>c* f_{r} *c* f_{r} *<i>c* f_{r} *c* f_{r} *<i>c* f_{r} ParT $A = \begin{bmatrix} 0.964 & 0.964 & 0.94 \pm 9 & 1042 \pm 9 & 0.964 \end{bmatrix}$

ParT $A = \begin{bmatrix} 0.940 & 0.0858 & 413 + 16 & 1609 + 81 \end{bmatrix}$ **ParT-f.t.** 0.944 0.9877 691 \pm 15 2766 \pm 130 nation from background jets. This open background jets. This open background jets. This open background is new Accuracy AUC Rej $_{50\%}$ Rej $_{30\%}$ 0.550 0.560 201 ± 4 109 ± 24
 $-$ 0.9819 $247 + 3$ $888 + 17$ $-$ 0.9819 247 ± 3 888 ± 17
0.940 0.9858 397 ± 7 1615 ± 93 $f(0.940 \quad 0.9855 \quad 392 \pm 7 \quad 1533 \pm 101$
0.929 0.964 – 435 + 95 $\begin{array}{cccc} 0.929 & 0.904 & - & 430 \pm 30 \\ - & 0.9845 & 364 + 0 & 1649 + 03 \end{array}$ $\begin{tabular}{lllllllll} $\begin{array}{l} - & 0.9845 & 364 \pm 9 & 1642 \pm 93 \\ 0.940 & 0.9858 & 413 \pm 16 & 1602 \pm 81 \\ \end{array} \end{tabular}$ P-CNN 0.930 0.9803 201 ± 4 759 ± 24 PFN $-$ 0.9819 247 ± 3 888 ± 17 ParticleNet 0.940 0.9858 397 ± 7 1615 ± 9
JEDI-net (w/ ∑ O) 0.930 0.9807 − 774.6 LGN 0.929 0.964 $-$ 435 ± 95 rPCN $-$ 0.9845 364 ± 9 1642 ± 93 $\begin{array}{cccc} \text{ParT} & 0.940 & 0.9858 & 413 \pm 16 & 1602 \pm 81 \end{array}$

Table 2. Number of trainable mplexity

Similar computational d 5.2. Fine-Tuning for Other Datasets *Similar computational cost.* PFNfull — 0.9052 37*.*4 *±* 0*.*7 — S *ignificant performance improveme* ABCNetfull 0.840 0.9126 42*.*6 *±* 0*.*4 118*.*4 *±* 1*.*5

Summary & Outlook

A charming journey

From $O(1000)$ *to* $O(100)$ *to* $O(10)$ *in ~5 years. A combined effort and creativity from instrumentation, physics objects and analysis techniques!*

A charming journey ahead!

Backups

\overline{H} \rightarrow cc searches at the LHC

Q ATLAS:

- [Phys. Rev. Lett. 120 (2018) 211802] (36 fb⁻¹)
- [arXiv:2201.11428] (139 fb⁻¹)
- [ATL-PHYS-PUB-2021-039] (HL-LHC projection, 3000 fb-1)

q CMS:

- [JHEP 03 (2020) 131] (36 fb⁻¹)
- [CMS-PAS-HIG-21-008] (138 fb-1; HL-LHC projection, 3000 fb-1)

q LHCb:

- [LHCb-CONF-2016-006] (1.98 fb⁻¹)
- [LHCb-PUB-2018-009] (HL-LHC projection, 300 fb⁻¹)

Higgs -charm coupling at HL -LHC

□ Expected sensitivity at HL-LHC [CERN-2019-007]

ATLAS HL-LHC projection for $H \rightarrow cc$

Baseline event selections

Merged-jet topology with "—" indicate that the values listed in the values listed for used in the given channel. The values listed for

Merged-jet topology | | Resolved-jet topology | with \sim indicate that the values listed in the values listed for used in the given channel. The values listed for used f

34

*D*ncertainties *p*T(j ²) *>*35 *>*25 *>*20 *>*20 *CvsL*(j ¹) *>*0.225 *>*0.225 *>*0.225 *>*0.225

*N*aj

Q Breakdown of the uncertainties in each topology

^T , j) *>*0.5 — — — ^T , `) — *<*2.0 — —

small-*^R* — *<*2— —

Resolved-jet topology

Table 4: The relative contributions to the total uncertainty on $\mu_{VH(H\to c\bar{c})}$ in the resolved-jet analysis, with a best fit value $\mu_{VH(H\rightarrow c\bar{c})} = -9.5 \pm 9.6$.

Uncertainty source	$\Delta \mu / (\Delta \mu)_{tot}$
Statistical	66%
Background normalizations	28%
Experimental	72%
Sizes of the simulated samples	59%
Charm identification efficiencies	27%
Jet energy scale and resolution	17%
Simulation modeling	20%
Luminosity	13%
Lepton identification efficiencies	10%
Theory	22%
Backgrounds	21%
Signal	7%

BDT input variables: Merged-jet topology D*f*(~*p*miss ^T , j) *>*0.5 — — — Traples: Merged-let topolo

BDT input variables: Resolved-jet topology

Merged-jet topology: signal regions

Huilin Qu (CERN) *– May 13, 2022 - Huilin Qu (CERN)* 2022 coupling in CMS - May 13, *Constraining Higgs-charm coupling in CMS* Higgs-cham \approx

Merged-jet topology: control regions

Comparison of mass decorrelation methods

Large-R jet mass regression

Calibration of the cc -tagger

C-tagger ROC curves

• ATLAS c-tagging WP [arXiv:2201.11428]: 27% (c), 8% (b), 1.6% (light)

Transformer 101 EXAMPLE: TRANSFORMER

Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin, arXiv:1706.03762

X *https://jalammar.github.io/illustrated-transformer/*