HARPO: A TPC as high performance gamma ray telescope and polarimeter Shaobo Wang (王少博) On behalf of HARPO Collaboration 2022-08-19 **@USTC**

Science Case : Gamma astronomy

Galactic targets

Pulsar

Supernova Remnants

• Extragalactic targets

Pulsar wind nebulae

Micro-quasars

Galactic center

Active Galactic Nuclei

Dark Matter annihilation

HARPO expe

Universe transparency

Merging Galaxies

Gamma-ray Bursts

Gamma telescopes performance

COS-B (1975-1982) 70MeV - 5GeV

HARPO experiment

Shaobo Wang, SJTU

3

Gamma telescopes performance

- There is important progress in gamma ray telescope at high energy (>100MeV)
- Still a big performance gap at lower energy

Polarimetry

 Blazars: decipher leptonic synchrotron self-Compton (SSC) against hadronic (proton-synchrotron) models

- Polarization can give the answer
 - no difference in X
 - visible in gamma

H. Zhang and M. Bottcher, A.P. J. 774, 18 (2013)

Astrophysics at MeV energies

- In the 1-100 MeV range, the Compton cross-section becomes small.
- The pair creation keeps the memory of the photon direction and the decay plane gives the polarization direction.

Differential sensitivity

- The angular resolution is an important factor for sensitivity
- Compute the sensitivity to the detection of a faint high-latitude point-like source
- Gaussian statistics, the significance: $S = n \sqrt{B}$
 - Signal counts:

$$S = T \times \eta \times A_{\text{eff}}(E) \times I_0(E) \times \epsilon \times \Delta E$$

• Background counts:

$$B = T \times \eta \times A_{\text{eff}}(E) \times \pi \sigma_{\theta}^2 \int F_B(E) dE$$

• The sensitivity s expressed as the minimum detectable signal intensity, multiplied by E²

$$s \approx \frac{n \ \sigma_{\theta} \ E^2}{\Delta E} \sqrt{\frac{\pi \int B(E) \ \mathrm{d}E}{T \ \eta \ A_{\mathrm{eff}}}}$$

Sensitivity E² dN/dE (MeV / (cm² s)) 10 -4 COSB Comptel OSSE/ /SPI 10 -5 EGRET gal=0 IBIS gal=30 10 gal=90 Argon TPC 10 kg Fermi/LAT P7V6 10 10⁻¹ 10⁴ E (MeV) 10² 10³ 10 1

T: observation time η : exposure fraction I_0 : signal intensity F_B : background fluxE: energy A_{eff} : effective area per unit mass

Time Projection Chamber (TPC)

- photons are converted in the gas
- produced electrons ionize the gas
- ionization electrons drift along E field
- electrons are amplified and measured on the x&y readout plane
- time gives a measure of the z coordinate
 - t0 from external trigger
 - drift velocity

TPC Characteristics

- A gaseous 3D tracking detector
 - Often used in particle physics
 - High spatial resolution (<1mm), excellent tracking
 - Low multiple scattering => tracking even for low momentum tracks
- "Thin" active target
 - Sensitivity proportional to mass, not surface
 - Polarization information accessible

Expected Performance

• Angular resolution

- limited by multiple scattering above 100MeV
- limited by the unknown recoil nucleus momentum below 100MeV
- only multiple scattering for triplet conversion, but very low efficiency
- Up to 1 order of magnitude better than Fermi!

D.B., NIM A 701 (2013) 225

Polarimetry

• Polarimetry capabilities depend on many param eters:

energy, exposure, detector size, gas pressure...

- Multiple scattering dilutes the polarization modulation
- In converters, it is very quickly lost
- In Argon at 5 bar: (resolution 1mm, 1m³, Crab-like, 1 year exposure, efficiency=1)
- Polarization asymmetry A~15%
- Polarization resolution ~ 1%

Differential conversion interaction rate in detector:

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\phi} \propto (1 + \mathcal{A}P \cos\left[2(\phi - \phi_0)\right]),$$

A: polarization asymmetryP: polarization fraction

NIM A 701 (2013) 225

The HARPO Project

- HARPO (Hermetic ARgon POlarimeter)
- Instrument in France

Denis Bernard, Philippe Bruel, Mickael Frotin, Yannick Geerebaert, Berrie Giebels, Philippe Gros, Deirdre Horan, Marc Louzir, Frédéric Magniette, Patrick Poilleux, Igor Semeniouk, Shaobo Wang ^a ^aLLR, Ecole Polytechnique and CNRS/IN2P3, France

David Attié, Pascal Baron, David Baudin, Denis Calvet, Paul Colas, Alain Delbart, Ryo Yonamine ^b ^bIRFU, CEA Saclay, France

Diego Götz ^{b,c} ^cAIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/SAp, CEA Saclay, France

• Beam test in Japan

S. Amano, T. Kotaka, S. Hashimoto, Y. Minamiyama, A. Takemoto, M. Yamaguchi, S. Miyamoto^e ^e LASTI, University of Hyôgo, Japan

S. Daté, H. Ohkuma f JASRI/SPring8, Japan

The HARPO Project

- High angle resolution and sensitivity telescope
- Polarimeter for studying cosmic gamma ray sources above MeV

The HARPO Demonstrator

- Purpose: Assess challenges and demonstrate performance in test beam
- (30cm)³ cubic TPC
- Up to 5 bar.
- Micromegas + GEM gas amplification
- Collection on x, y strips, pitch 1 mm.
- AFTER chip digitization, up to 100 MHz.
- Scintillator / WLS / PMT based trigger

The HARPO Demonstrator

Readout electronics

- Based on T2K front end (AFTER chip) and ML507:
 - 2 directions x, y, 288 strips (channels) / direction
 - 72 channels /chip
 - 4 chips / direction
 - 511 time bins, "circular" SCA (Switched Capacitor Array)
 - Input: 120 fC to 600 fC
 - Up to 100 MHz sampling
 - Shaping time 100 ns to 2 µs
 - 12 bit ADC.

Signal readout

Yannick Geerebaert LLR, École Polytechnique, CNRS, IN2P3 Palaiseau France

Gas amplification: micromegas + 2 GEM

- Decision was made to add a GEM stage on top of the Micromegas, to obtain a comfortable gain (x7) while keeping good stability
- ⁵⁵Fe (dedicated test bench) and cosmic-rays (in TPC)

PoS(TIPP2014)133

Cosmic Ray Test

- Simple scintillator coincidence trigger
 - top/bottom coincidence
- Pressure from 0.5 to 2 bar Ar-5%lso
- Two planes readout
 - X and Time (Z)
 - Y and Time (Z)
- Track reconstruction and matching

Data taking and Track Reconstruction

1.2

0.8

0.6

0.4

Track reconstruction: Clustering

Shaobo Wang, SJTU

Track reconstruction 1 Clustering

Hough track finding in 2D

Hough track finding in 2D

Hough track finding in 2D

2

1.8

1.6

1.4

1.2

0.8

0.6 0.4

0.2

Ů

400 500 t[time bins]

XZ&YZ track marching

Track reconstruction

4000 DO

3000 🗢

4000 DOV 3500 V

3000 🗢

Diagnostics: Q vs T_{drift} with muon track

- The charge is normalized with regard to the track angle
- Normalized charge as a function of the drift time for a 6000 s cosmic-ray run
- V_{drift} is also easily extracted from this plot

Characterization with traversing cosmic rays

- Electric field distortion in the TPC
- Diffusion effect study

Cosmic runs @LLR

- Relative measurements First run as reference ("clean gas")
- HV on all the time, data taking at regular interval, weekly data taking of ~1.5h, for 6 months
- Clear degradation of gain and e- capture

Gas stability

- Recovery of full performance after 6 month sealed
- Detector not optimized for outgassing

Sample #		1	2	3	
Compound		July 08	Aug. 27	Sept. 17	
iC_4H_{10}	%	5.10	4.42	4.49	
O_2	ppm	180	<20	<20	
CO	ppm	190	250	130	
CO_2	ppm	120	160	130	
N_2	ppm	620	890	850	

Photon beam test in NewSUBARU

- Polarized gamma ray beam
 - Inverse Compton
 - electron beam 0.6, 1., 1.2 or 1.5
 GeV
 - laser Nd (1ω or 2ω), Er or CO₂
 →polarized photons 1.71 to 74
 MeV
- Pulsed mode
 - Nd: 20kHz, Er:200kHz, CO₂: not

Measurement in polarized photon beam

- 13 Energy points, 1.7 to 74MeV, ~60Mevents
- Monochromaticity by collimation on axis
- Fully polarized or random polarization beams (P = 0, P = 1)
- 2.1 bar Ar:isoC4H10 95:5 (1-4 bar scan)

Beam trigger system

- S_{up} upstream scintillator
- O one of the 5 other scintillators
- M_{slow} : a delayed (> 1µs) signal on the µM mesh
- L laser trigger pulse

"Main line": $T_{\gamma,laser} = S_{up} \cap O \cap M_{slow} \cap L$

Beam trigger system

500

- signal efficiency 51 %
- background rejection 99.3 %
- incident rate 2 kHz
- signal on disk 50 Hz

Shaobc

1×

LUS ...

"Nuclear" and "triplet" pair conversion

• 74 MeV γ-rays from NewSUBARU conversions in 2.1 bar Ar: Isobutane 95:5

Pair conversion events

Event selection

- Hough track finding for track reconstruction
- Keep only straight lines to cut off the delta electron
- Vertex Matching

Measurement method

- 5 necessary variables to descript this interation: $\theta_+, \theta_-, \phi_+, \phi_-, E_+/E$
- Event generator: G4BetheHeitler5DModel
 - Samples the full five-dimensional, 1^{rst} order Born, "Bethe-Heitler" differential cross section
 - Generates recoil momentum out of photon-pair plane

• Azimuthal angle:

$$\phi := \frac{\phi_+ + \phi_-}{2} - \phi_0$$

• Opening angle:

$$\theta_{\pm} := \arccos(\hat{p}_{e^+} \cdot \hat{p}_{e^-})$$

• Pesudo Gamma direction:

$$\hat{p}_{\gamma} \sim \frac{\hat{p}_{e^+} + \hat{p}_{e^-}}{|\hat{p}_{e^+} + \hat{p}_{e^-}|}$$

• Differential cross section

bo Wang, SJTU

Polarization asymmetry

•

P. Gros et al. Astroparticle Physics 97 (2018) 10

Polarimetry: (P = 1)/(P = 0) ratios

P. Gros et al. Astroparticle Physics 97 (2018) 10

Polarimetry with High-Angular Resolution

A. De Angelis et al., Exp. Astr. 44 (2017) 25

Emulsions GRAINE 1°@ 100 MeV S. Takahashi *et al.*, PTEP **2015** (2015) 043H01

D. Bernard, NIM A 701 (2013) 225

P. Gros et al., Astroparticle Physics 97 (2018) 10

11.8 MeV

"Simulation of e-ASTROGAM", V. Fioretti, eASTROGAM Workshop: the extreme Universe, 28/02 - 02/03/2017 Padova

粒子径迹重建上可能的优化

- 卡尔曼滤波:是一种利用<u>线性系统</u>状态方程,通过系统输入输出观测数据,对<u>系统状态</u>进行最优估 计的算法。
- •现在卡尔曼滤波被广泛应用于粒子物理径迹重建和顶点重建,卫星导航,工业降噪,心电监测.....

Kalman Filter in PandaX-III

Shaobo Wang, SJTU

Kalman Filter in PandaX-III

• Kalman Filter in Bayssian Formalism (KFBF)

Radiat. Detect. Technol. Methods 4 (2019) 1, 70-77

Nucl. Instrum. Meth. A 867 (2017)

JHEP 06 (2021) 106

Track reconstruction with KFBF

• KFBF parameters reconstructed : (x,y,z, ux, uy, uz)

JHEP 06 (2021) 106

Balloon borne TPC: ST3G

- Self Triggered Tpc Gamma-ray Telescope
- Validation of a trigger using TPC signal only AGET/ASTRE self-trigger readout
- Stratospheric balloon
- $4x4x4=64xHARPO = (1.2m)^3$

Max trigger rate ~600 Hz γ conversion rate 400 Hz Compton scatt : 7 kHz Charged tracks 33 kHz/m²

- A C++ version of our event generator has been deployed as the G4BetheHeitler5DModel physics model with Geant4 (*Nucl. Instrum. Meth. A* **899** (2018) 85)
- An analytical analysis of the single-track angular resolution with an optimal tracking
 - an optimal method to measure the momentum of a track in a non-magnetic tracker from the analysis of the deflections due to multiple scattering (Bayes and Kalman giving hand to Molière)
 - It is of particular interest to silicon-detector based telescopes (Fermi-LAT, AGILE, e-ASTROGAM, AMEGO) and for large liquid argon TPC active targets that are developed for long-base neutrino studies
- A 3rd generation "ASTRE" (Asic with SCA and Trigger for detector Readout Electronics) readout chip for TPC
 - a modified version of the self-triggerable AGET chip (Nucl. Instrum. Meth. A 2017.10.043),
 - in particular for its ionizing-radiation hardness (characterization on beam has shown a LET threshold extended from 3 to 20 MeV / (mg · cm²))

Single track angular resolution

• multiple scattering angle:

$$\theta_0 = \frac{p_0}{\beta c p} \sqrt{\frac{x}{X_0}}$$

• At high momentum, multiple scattering can be neglected and the detector resolution dominates:

$$\sigma_{\theta tH} \approx \frac{8\sigma}{L} \sqrt{3/(N+5)}$$

• At low momentum, multiple scattering dominates:

$$\sigma_{\theta tL} \approx (2\sigma)^{1/4} l^{1/8} X_0^{-3/8} (p/p_0)^{-3/4}$$

From tracks to photon:

$$\vec{p_{\gamma}} = \vec{p_{e^+}} + \vec{p_{e^-}} + \vec{q}$$

 A_{eff} / M (cm² / ton)

Dependence on energy of the effective area per unit mass

Compute the sensitivity to the detection of a faint high-latitude point-like source

$$S = T \times \eta \times A_{eff}(E) \times I_{0}(E) \times \epsilon \times \Delta E$$

$$B = T \times \eta \times A_{eff}(E) \times \pi \sigma_{\theta}^{2} \int F_{B}(E) dE$$

$$S = n \sqrt{B} \qquad s \approx \frac{n \sigma_{\theta} E^{2}}{\Delta E} \sqrt{\frac{\pi \int B(E) dE}{T \eta A_{eff}}}$$

$$s \approx \frac{n \sigma_{\theta} E^{2}}{\Delta E} \sqrt{\frac{\pi \int B(E) dE}{T \eta A_{eff}}}$$

$$\int_{10^{4}} \frac{10^{4}}{10^{4}} \sqrt{\frac{10^{4}}{10^{4}}} \sqrt{\frac{10^{4}}{10^{4}}}$$

Instrument	FOV	Energy	Effective	Technology	Angular Resolution	Туре	Science	Status	
SPR-N	Full Sun disk	20 – 100 keV	50 cm ²	Be scatterer and scintillators	Non imaging	Satellite	Solar flares	2001-2005	
MEGA	2π sr	$300-5 \times 10^4 \text{ keV}$	324 cm ²	Silicon strips and CsI	Some degree	Balloon 3D	GRB Point sources	Prototype	
PHENEX	4.8°	40 – 200 keV	44 cm ²	Plastic scintillator and CsI	Non imaging	Balloon Collimated	Point source	2006 and 2009	
TIGRE	45° × 45°	400 – 10 ⁵ keV	80 cm ² at1 MeV	Silicon strips and CsI	2° ARM at 1 MeV	Balloon 3D	GRB Point sources	2010	
PENGUIN-M	45° × 45°	20 – 150 keV	78 cm ²	Plastic scintillator and NaI	Non imaging	Satellite	Solar flares	2009-2010	
GAP	30° × 30°	50 – 300 keV	176 cm ²	Plastic scintillator and CsI	Non imaging	Satellite Wide-field	GRB	2010-2011	
GRAPE	2π sr	50 – 500 keV	144 cm ²	Plastic scintillator and CsI	Non imaging	Balloon Wide-field	GRB	2011 and 2014	
POGO+	2°	20 – 180 keV	1400 cm ²	Plastic scintillator and CsI	2°	Balloon Collimated	Point sources	2016	
COSI (Balloon)	π sr	200 – 2000 keV	256 cm ²	Segmented Ge	3.2°	Balloon 3D	GRB Point sources	2016	
SGD	$0.6^{\circ} \times 0.6^{\circ}$	50 – 200 keV	210 cm ²	Si pixels and CdTe	30°	Satellite Collimated	Point sources	2016	
X-Calibur / XL-Calibur	6'	20 – 60 keV 20 – 80 keV	10 cm ² at 50 keV 100 cm ² at 50 keV	Be scatterer and CZT	Non imaging	Balloon Focal plane	Point sources	2016, 2019, 2022	
INTEGRAL IBIS	9° × 9°	15 – 10 ⁴ keV	2600 cm ²	CdTe, CsI	12"	Satellite Coded mask	Point sources GRB	Flying since Oct 2002	
INTEGRAL SPI	9° × 9°	15 – 10 ⁴ keV	500 cm ²	Ge	1°	Satellite Coded mask	Point source	Flying since Oct 2002	
AstroSat	$4.6^\circ \times 4.6^\circ$	100 – 350 keV	924 cm ² above 100 keV	CZT	Non imaging	Satellite Coded mask	GRB, Point sources	Flying since 2015	
POLAR	2π sr	50 – 500 keV	300 cm ² at 300 keV	Plastic scintillator	10° bright GRB	Space station Wide-field	GRB	2016-2107	
POLAR-2	2π sr	10 – 500 keV	1250 cm ² at 300 keV	Plastic scintillator	5° bright GRB	Space station Wide-field	GRB	Manifested 2024	
PING-P	45° × 45°	20 – 150 keV	30 cm ²	Plastic scintillator and CsI	Non imaging	Satellite	Solar flares	2025	
PolariS	$10^{\prime\prime} \times 10^{\prime\prime}$	10 – 80 keV	3.2 cm ²	Plastic scintillator and GSO	1°	Satellite Focal plane	Point sources	Under development Launch TBD	
COSI (SMEX)	π sr	200 – 2000 keV	256 cm ²	Segmented Ge	3.2°	Satellite 3D	GRB, Galactic sources	Selected 2025	
LEAP	1.5π sr	50 – 500 keV	1000 cm ²	Plastic scintillator and CsI	15°	ISS Wide-field	GRB	Proposed	
AMEGO	2.5 sr	200 – 10 ⁶ keV	608 cm ²	Silicon strips CZT and CsI	2.5° at 1 MeV	Satellite 3D	Point sources GRB	Proposed	
e-ASTROGAM ASTROMEV	2.5 sr	$300 - 3 \times 10^{6} \text{ keV}$	10000cm ²	Silicon strips and CsI	0.15° at 1 GeV	Satellite 3D	Point sources GRB	Proposed	
eferences: SPR-N (Bogomolov et al., 2003), MEGA (Bloser et al., 2006), PHENEX (Gunii et al., 2008), TIGRE									

(Bhattacharya et al., 2004; O'Neill et al., 1996), PENGUÌN-M (Dergachev et al., 2009), GAP (Yonetoku et al., 2006), GRAPE (Bloser et al., 2009), POGO+ (Friis et al., 2018), COSI (Balloon) (Yang et al., 2018), SGD (Aharonian et al., 2018), X-Calibur (Kislat et al., 2018), XL-Calibur (Abarr et al., 2021), IBIS (Ubertini et al., 2003), SPI (Vedrenne et al., 2003), AstroSat (Vadawale et al., 2015), POLAR (Produit et al., 2018), POLAR-2 (Kole, 2019), PING-P (Kotov et al., 2016), PolariS (Hayashida et al., 2014), COSI (SMEX) (Tomsick et al., 2019), LEAP (McConnell et al., 2021),

AMEGO (McEnery et al., 2019), e-ASTROGAM (De Angelis et al., 2018)

HARPO experiment