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Introduction
• Hadrons, the complex building blocks of our 

world, emerge from interaction of quarks and 
gluons as described by QCD 

• Quark model seems to work really well. Why? 
How does QCD give rise to hadrons?

• What is the origin of confinement? (Quarks and 
gluons not isolated in nature)

• How is the mass generated in QCD? 

• Role of gluons: Mass? Spin? Quantum numbers?

• Existence of states beyond Quark Model?
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meson baryons

Quark model 



Hadron spectroscopy

3Phys.Rept. 873 (2020) 1

Atomic Spectrum: 
Bohr model → QED

Hadron spectrum:
Quark model → QCD

• Testing QCD in the confinement regime
• Revealing the fundamental degrees of 

freedom

Key things to search for:
further possible configurations beyond 
quark model 



QCD exotics

• QCD permits additional color-
singlet mesonic configurations

• Physical mesons
• Linear superpositions of all 

allowed basis states
• “Configuration mixing”
• Disentanglement of contributions 

difficult
• Detailed information about 

couplings to production and 
decay channels required
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→ Discovery with precision measurement



So far…

• Strong evidence for QCD exotics in heavy quark sector, e.g.Tetraquark
candidates Zc

+ → J/ψπ,Pentaquark candidates Pc
+ → J/ψp, …

• Light quark sector is more complicated
• but, an absolute necessity to claim that we understand hadrons
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Charmonium decays provide an ideal lab for light QCD exotics

• Clean high statistics data samples

High cross sections of 𝐞+𝐞− → 𝐉/𝛙, 𝛙′

Low background

• Well defined initial and final states

Kinematic constraints

I(JPC) filter

• “Gluon-rich” process
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Glueballs

• Evidence of gluon self interaction 

• Provide critical information on the gluon field and the 
quantitative understanding of confinement

• Low-lying glueballs with ordinary JPC→mixing with qതq

mesons

➢Observe a new peak

➢“overpopulation” , e.g. f0 1370 & f0 1500 & f0 1710

➢Solve the mixing scheme

7



Scalar glueball candidate: production properties
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• Scalar glueball is expected to have a large 

production in 𝐉/𝛙 radiative decays: 

B J/ψ → γG0+ = 3.8 9 × 10−3 by Lattice 

QCD

• Observed B(J/ψ → γf0(1710)) is x10 larger than 

f0(1500)

➢BESIII: f0(1710) largely overlapped with 

scalar glueball
Natl. Sci. Rev. 8, no.11, nwab198 (2021)

Branching fractions (10−5)

𝐽/𝜓 → 𝛾𝑓0(1500) 𝐽/𝜓 → 𝛾𝑓0(1710)

𝛾𝐾ഥ𝐾

𝛾𝜂𝜂

𝛾𝜋𝜋



Scalar glueball candidate: decay properties

• “Flavor-blindness of gluon”→SU(3)F for a pure glueball,
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B(G → ηη′)/B(G → ππ)<0.04, predicted in Phys. Rev. D 92, 121902

Using 10B of J/ψ events,
J/ψ → γηη′, arXiv:2202.00621, 2202.00623
J/ψ → γη′η′, Phys.Rev.D 105 (2022) 7, 072002



Spin-exotic mesons

• Mesons with quantum numbers 
forbidden by 𝑞ത𝑞 configuration:
• 0+−, 1−+, 2+−

• Only 3 candidates so far: π1 1400 , 
π1 1600 and π1 2015
• All 1−+

• All isovectors
π1 1400 and π1 1600 can be explained

as one resonance with recent coupled

channel analyses
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1−+ Hybrids
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• The exotic JPC = 1−+ nonet of hybrids is predicted to 

be the lightest (1.7~2.1 GeV/c2)

• Isoscalar 𝟏−+ is critical to establish the hybrid nonet

• Can be produced in the gluon-rich charmonium 

decays

• Can decay to 𝛈𝛈′ in P-wave
PRD 83,014021 (2011)
PRD 83,014006 (2011)
Eur.Phys.J.Plus 135, 945(2020)



Observation of An Exotic Isoscalar State η1(1855) (1− +) in J/ψ → γηη′
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10 billion 𝐽/𝜓
arXiv:2202.00621, to be appeared in PRL
arXiv:2202.00623 , to be appeared in PRD• J/ψ → γηη′, 𝜂 → 𝛾𝛾, 𝜂′ → 𝜂𝜋+𝜋−/ 𝛾𝜋+𝜋−, 

Background level 8.3%Background level 13.1%

• Potential backgrounds are studied 
using an inclusive MC sample of 10B 
J/ψ decays

• No significant peaking background is 
observed in the invariant mass 
distribution of the η′

• Backgrounds are estimated by the η′ 
sidebands in the data



Partial wave analysis

• Similar as the analyses of J/ψ → γηη [Phys.Rev. D 87, 092009]and 
J/ψ → γKSKS [Phys.Rev. D 98, 072003], based on the covariant 
tensor amplitudes [Eur. Phys. J. A 16, 537] and the GPUPWA 
framework [J. Phys. Conf. Ser. 219, 042031]
• Isobars in  𝐽/𝜓 → 𝛾𝑋, 𝑋 → 𝜂𝜂′ and 𝐽/𝜓 → 𝜂𝑋, 𝑋 → 𝛾𝜂′ and 𝐽/𝜓 → 𝜂′𝑋, 𝑋 →
𝛾𝜂. X: constant-width, relativistic BW

• A combined unbinned maximum likelihood fit is performed for the 
two decay channels of η′
• sharing the same set of masses, widths, relative magnitudes, and phases

• Backgrounds estimated by η′ sidebands are subtracted
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All kinematically allowed known resonances with 0++, 2++, 
and 4++(ηη′) and 1+− and 1−−(γη(′)) are considered
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[57] ҧ𝑝𝑝 reactions at Crystal Barrel and PS172, Phys. Rept. 397, 257

[58] 𝐽/𝜓 → 𝛾𝜙𝜔 at BESIII, Phys. Rev. D 87,032008 

PDG and



PDG-optimized set of amplitudes
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The masses and widths of the 
resonances near ηη′ threshold 
(f0(1500), f2(1525), f2(1565) and 
f2(1640)) as well as those with 
small fit fractions (<3%) are 
always fixed to the PDG values

Components with statistical significance larger than 5σ



PWA projections for PDG-optimized set
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Search for new resonances
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scans of additional resonance with different JPC, masses and widths



Baseline set of amplitudes by adding the η1 state
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• Contributions from the 
f0(2100), h1(1595)(γη′) , 
ρ(1700)(γη′) , 
ϕ(2170)(γη) , f2(1810), 
and f2(2340), in the PDG-
optimized set become 
insignificant (< 3σ), omitted 

• Comparing to the PDG-
optimized set, ln L of the 
baseline set is improved by 
32 and the number of free 
parameters reduced by 16

• An isoscalar 𝟏−+ , 𝛈𝟏(𝟏𝟖𝟓𝟓), has been observed

• Mass is consistent with LQCD calculation for the 𝟏− + hybrid (𝟏. 𝟕~𝟐. 𝟏 𝐆𝐞𝐕/𝐜𝟐)



Baseline set of amplitudes
PWA fit projections
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Significance for additional resonances
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all insignificant (< 3σ)

• Assuming η1(1855) is an additional 
resonance, scans of with different 
masses and widths

• The most significant additional contribution (4.4σ) 
comes from another exotic 1−+ component around 
2.2 GeV with a very small fit fraction



Baseline set of amplitudes
No significant contributions from additional resonances
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Further checks on the 1−+ state η1(1855) 

• Changing the JPC to the η1(1855), and the log-likelihoods are worse 
by at least 235 units

• BW Phase motion of η1(1855)

→ln L worsen by 43 units
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Further checks on the 1−+ state η1(1855) 
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[1.5,1.7] GeV/c2 [1.7,2.0] GeV/c2 [2.0,3.2] GeV/c2

a clear asymmetry largely due to η1(1855) signal 



• Angular distribution as a function of M(ηη′)

expressed model-independently

• related to the spin-0(S), spin-1(P), spin-2(D) 

amplitudes in ηη′ by:

• Narrow structure in 𝑌1
0

➢Cannot be described by resonances in 𝛄𝛈 𝛈′

• 𝛈𝟏 𝟏𝟖𝟓𝟓 → 𝛈𝛈′ needed

Further Checks on the 1− + State η1(1855)
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Data – Sideband
PWA fit projection (baseline fit)
Alternative fit without 𝜼𝟏𝑌𝑙

0 ≡

𝑖=1

𝑁𝑘

𝑊𝑖𝑌𝑙
0(𝑐𝑜𝑠𝜃𝜂

𝑖 )

4𝜋 𝑌0
0 = 𝑆2 + 𝑃2 + 𝐷2

4𝜋 𝑌1
0 = 2𝑆𝑃𝑐𝑜𝑠𝜙𝑃 + 4𝑃𝐷𝑐𝑜𝑠 𝜙𝑃 − 𝜙𝐷

𝑌1
0 = 0 without P-wave contribution

4𝜋 𝑌2
0 =

2

5
𝑃2 +

2 5

7
𝐷2 + 2𝑆𝐷𝑐𝑜𝑠𝜙𝐷

4𝜋 𝑌3
0 =

6

5
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7
𝑃𝐷𝑐𝑜𝑠 𝜙𝑃 − 𝜙𝐷

4𝜋 𝑌4
0 =

6

7
𝐷2



For comparison
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Baseline set of amplitudes PDG-optimized set of amplitudes

need for the 𝜼𝟏(1855)  P-wave

Can not be described only with 
1+− and 1−− states in γη(′)



Systematic uncertainties (event selection)
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Combined with the weighted least squares method



Systematic uncertainties (PWA)

• BW parametrization for f0(1500)
• replace the BW with a Flatte-like form

• Fixed resonance parameters
• varying within 1 𝜎 of the PDG values

• Background uncertainty
• different sideband regions and 

normalization factors

• Additional resonances
• adding the most significant additional 

resonances for each possible 𝐽𝑃𝐶 into 
the baseline fit individually
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, g ~0.02

The statistical significance of the 𝜂1(1855) is recalculated in every variation.  >19 𝜎



Discussions about f0(1500) & f0(1710)
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• Significant f0(1500)

B(f0 1500 → ηη′)

B(f0 1500 → ππ)
= 8.96−2.87

+2.95 × 10−2

• Absence of 𝐟𝟎(𝟏𝟕𝟏𝟎)

B(f0 1710 → ηη′)

B(f0 1710 → ππ)
< 1.61 × 10−3 @90% C. L.

➢Supports to the hypothesis that f0(1710)
overlaps with the ground state scalar glueball

• Scalar glueball expected to be suppressed
B G → ηη′ /B G → ππ < 0.04

consistent with PDG



Summary and prospects

• An isoscalar 𝟏−+ , 𝛈𝟏(𝟏𝟖𝟓𝟓), has been observed in 𝐉/𝛙 → 𝛄𝛈𝛈′ (>19𝝈)
M = 1855 ± 9−1

+6 MeV/c2, Γ = 188 ± 18−8
+3 MeV/c2

B J/ψ → γη1 1855 → γηη′ = 2.70 ± 0.41−0.35
+0.16 × 10−6

• An important step forward of light QCD exotics

• Hybrid? Molecule? Tetraquark?

• Investigate production/decay mechanism and search for other partners in more reactions

• Further more, significant J/ψ → γf0 1500 → γηη′ has been observed, while f0 1710 is 
insignificant
• B f0 1710 → ηη′ / B f0 1710 → ππ < 1.61 × 10−3 @90% C.L. , which further supports the f 0(1710) has a 

large overlap with glueball 

• Data with unprecedented statistical accuracy from BESIII provides great opportunities to study 
QCD exotics. Will continue to run until ~2030
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Thank you
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Baseline set of amplitudes
PWA fit projections
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PWA result Data Sideband



Baseline set of amplitudes
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Fit fractions in the PWA fit with the baseline set of amplitudes  



Amplitude analysis

• Production Amplitude
produces a state X with JPC

quantum numbers

• Decay Amplitude describes 
the decay of X to final state 
particles

• Observables are the four-
momenta of the final-state 
particles

???
𝐷0

𝜋+

𝐾𝑆
0

𝜋−
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Amplitude analysis

???
𝐷0

𝜋+

𝐾𝑆
0

𝜋−

Several different states, all decaying to 
the same final particles are produced, 
and they interfere (complex amplitudes)

Perform an un-binned  log-likelihood fit 
(fit the data event-wise to high-
dimensional distributions using complex 
weights) to make our model for 𝜔 agree 
with the experimental distribution by 
varying the 𝛼. 

𝑃 𝜉: 𝛼 =
𝜔 𝜉,𝛼 𝜖(𝜉)

 𝑑𝜉𝜔 𝜉,𝛼 𝜖(𝜉)

𝜔 𝜉, 𝛼 =
𝑑𝜎

𝑑Φ
= | σ𝑖 𝐴𝑖 |

2

𝐿 =ෑ

𝑖=1

𝑁

𝑃 𝜉: 𝛼

Differential cross section

Likelihood

The probability to observe the event characterized by the 
measurement ξ (i.e. the four-momenta of the final-state 
particles) 
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𝜖(𝜉)
Efficiency



Isobar model formalism
quasi two-body decay amplitudes via intermediate resonances

D0 three-body decay D0
→ABC decaying through an r=[AB] resonance

D0 three-body amplitude
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Dynamical function, e.g. Breit-Wigner (BW) propagator

Angular distribution: spin formalism

Blatt-Weisskopf centrifugal barrier
factor for the D (resonance) decay vertex with radius R,

NR term(direct 3 body decay)

a0, δ0, ar, δr : Free parameters of fit

35


