Observation of an isoscalar resonance with exotic $J^{PC} = 1^{-+}$ quantum numbers in $J/\Psi \rightarrow \gamma \eta \eta'$

arXiv:2202.00621, arXiv:2202.00623

刘北江

中国科学院高能物理研究所

USTC, Oct.21, 2022

Introduction

• Hadrons, the complex building blocks of our world, emerge from interaction of quarks and gluons as described by QCD

- Quark model seems to work really well. Why? How does QCD give rise to hadrons?
	- What is the origin of confinement? (Quarks and gluons not isolated in nature)
	- How is the mass generated in QCD?
	- Role of gluons: Mass? Spin? Quantum numbers?
	- Existence of states beyond Quark Model?

Hadron spectroscopy

- Testing QCD in the confinement regime
- Revealing the fundamental degrees of freedom

Atomic Spectrum: Bohr model \rightarrow QED

Hadron spectrum: Quark model \rightarrow QCD

Key things to search for: further possible configurations beyond quark model

QCD exotics

- QCD permits additional colorsinglet mesonic configurations
- Physical mesons
	- Linear superpositions of all allowed basis states
	- "Configuration mixing"
	- Disentanglement of contributions difficult
		- Detailed information about couplings to production and decay channels required

 \rightarrow Discovery with precision measurement

So far…

• Strong evidence for QCD exotics in heavy quark sector, e.g.Tetraquark candidates $Z_c^+ \to J/\psi \pi$, Pentaquark candidates $P_c^+ \to J/\psi p$, ...

- Light quark sector is more complicated
	- but, an absolute necessity to claim that we understand hadrons

Beijing Electron Positron Collider (BEPCII)

Charmonium decays provide an ideal lab for light QCD exotics

- **Clean high statistics data samples** High cross sections of $e^+e^-\to J/\psi$, ψ' **Low background**
- **Well defined initial and final states Kinematic constraints I(JPC) filter**
- **"Gluon-rich" process** ⁶

Glueballs

- Evidence of gluon self interaction
- Provide critical information on the gluon field and the quantitative understanding of confinement

• Low-lying glueballs with ordinary J^{PC} \rightarrow mixing with $\rm q\bar{q}$ mesons

➢Observe a new peak

- \triangleright "overpopulation", e.g. $f_0(1370)$ & $f_0(1500)$ & $f_0(1710)$
	- \triangleright Solve the mixing scheme

Glueballs from Lattice simulations in the pure gauge theory without quarks

Scalar glueball candidate: production properties

- **Scalar glueball is expected to have a large production in** / **radiative decays**: $B(J/\psi \rightarrow \gamma G_{0+}) = 3.8(9) \times 10^{-3}$ by Lattice QCD
	- Observed B(J/ $\psi \rightarrow \gamma f_0(1710)$) is x10 larger than $f_0(1500)$
	- \triangleright BESIII: f₀(1710) largely overlapped with scalar glueball

Scalar glueball candidate: decay properties

- "Flavor-blindness of gluon" > SU(3)_F for a pure glueball,
	- $\Gamma(G \to \pi\pi: K\bar{K}: \eta\eta: \eta\eta'; \eta'\eta') = 3:4:1:0:1$

B(G \rightarrow ηη')/B(G \rightarrow ππ)<0.04, predicted in Phys. Rev. D 92, 121902

Using 10B of J/ψ events, J/ψ → γηη′, arXiv:2202.00621, 2202.00623 $J/\psi \to \gamma \eta' \eta'$, Phys.Rev.D 105 (2022) 7, 072002

Spin -exotic mesons

- Mesons with quantum numbers forbidden by $q\bar{q}$ configuration:
	- 0^{+-} , 1^{-+} , 2^{+-}
- Only 3 candidates so far: $\pi_1(1400)$, $\pi_1(1600)$ and $\pi_1(2015)$
	- All 1^{-+}
	- All isovectors

π $_1$ (1400) and π $_1$ (1600) can be explained as one resonance with recent coupled channel analyses

Meson spin: $\vec{J} = \vec{L} + \vec{S}$ Parity: $P = (-1)^{L+1}$ Charge conjugation: $C = (-1)^{L+S}$

1^{-+} **Hybrids**

Lattice QCD Predictions:

• Isoscalar 1^{-+} is critical to establish the hybrid nonet

- **Can be produced in the gluon-rich charmonium decays**
- Can decay to $\eta\eta'$ in P-wave

PRD 83,014021 (2011) PRD 83,014006 (2011) Eur.Phys.J.Plus 135, 945(2020)

Observation of An Exotic Isoscalar State $\eta_1(1855)$ (1^{-+}) in J/ $\psi \rightarrow \gamma \eta \eta'$

10 billion J/ψ arXiv:2202.00621, to be appeared in PRL arXiv:2202.00623 , to be appeared in PRD

- Potential backgrounds are studied using an inclusive MC sample of 10B J/ψ decays
- No significant peaking background is observed in the invariant mass distribution of the η′
- Backgrounds are estimated by the η′ sidebands in the data

Partial wave analysis

- Similar as the analyses of $J/\psi \rightarrow \gamma \eta \eta$ [Phys.Rev. D 87, 092009]and $J/\psi \rightarrow \gamma K_S K_S$ [Phys.Rev. D 98, 072003], based on the covariant tensor amplitudes [Eur. Phys. J. A 16, 537] and the GPUPWA framework [J. Phys. Conf. Ser. 219, 042031]
	- Isobars in $J/\psi \to \gamma X$, $X \to \eta \eta'$ and $J/\psi \to \eta X$, $X \to \gamma \eta'$ and $J/\psi \to \eta' X$, $X \to \eta'' X$ γ n. X: constant-width, relativistic BW
- A combined unbinned maximum likelihood fit is performed for the two decay channels of η′
	- sharing the same set of masses, widths, relative magnitudes, and phases
- Backgrounds estimated by η' sidebands are subtracted

$$
S = -(\ln \mathcal{L}_{data} - \sum_{i} \omega_i \cdot \ln \mathcal{L}_{background})
$$

13

All kinematically allowed known resonances with 0^{++} , 2^{++} , and 4^{++} (ηη') and 1^{+-} and 1^{--} (γη(')) are considered

PDG-optimized set of amplitudes

The masses and widths of the resonances near ηη′ threshold $({\sf f}_0(1500), {\sf f}_2(1525), {\sf f}_2(1565)$ and $f_2(1640)$) as well as those with small fit fractions (<3%) are always fixed to the PDG values

Components with statistical significance larger than 5σ

PWA projections for PDG-optimized set

Search for new resonances

scans of additional resonance with different J^{PC} , masses and widths

Baseline set of amplitudes by adding the η_1 state

- Contributions from the $f_0(2100)$, $h_1(1595)(\gamma \eta')$, ρ(1700)(γη′) , $\phi(2170)(\gamma\eta)$, f₂(1810), and $f_2(2340)$, in the PDGoptimized set become insignificant (< 3σ), omitted
- Comparing to the PDGoptimized set, ln L of the baseline set is improved by 32 and the number of free parameters reduced by 16

- An isoscalar 1^{−+}, η₁(1855), has been observed
- Mass is consistent with LQCD calculation for the 1^{-+} hybrid (1.7~2. 1 GeV/c^2)

Baseline set of amplitudes

PWA fit projections

Significance for additional resonances

• Assuming $\eta_1(1855)$ is an additional resonance, scans of with different masses and widths

• The most significant additional contribution (4.4σ) comes from another exotic 1^{-+} component around 2.2 GeV with a very small fit fraction

all insignificant $(3σ)$ ²⁰

Baseline set of amplitudes

No significant contributions from additional resonances

Further checks on the 1^{-+} state $\eta_1(1855)$

- Changing the J^{PC} to the $\eta_1(1855)$, and the log-likelihoods are worse by at least 235 units
- BW Phase motion of $\eta_1(1855)$

from
$$
\frac{1}{M^2 - s - iM\Gamma}
$$
 to $\sqrt{\frac{1}{(M^2 - s)^2 + M^2\Gamma^2}}$

 \rightarrow In L worsen by 43 units

Further checks on the 1^{-+} state $\eta_1(1855)$

a clear asymmetry largely due to $\eta_1(1855)$ signal

Further Checks on the 1^{-+} State $\eta_1(1855)$

• Angular distribution as a function of $M(\eta\eta')$ expressed **model-independently**

$$
\langle Y_l^0 \rangle \equiv \sum_{i=1}^{N_k} W_i Y_l^0 (cos \theta_\eta^i)
$$

- related to the spin-O(S), spin-1(P), spin-2(D) amplitudes in ηη′ by:
	- $\overline{4\pi} \langle Y_0^0 \rangle = S^2 + P^2 + D^2$ $\overline{4\pi} \langle Y_1^0 \rangle = 2 S P cos \phi_P + 4 P D cos (\phi_P - \phi_D)$ $|Y_1^0\rangle=0$ without P-wave contribution $\overline{4\pi} \langle Y_2^0 \rangle = \frac{2}{\sqrt{6}}$ $\frac{2}{5}P^2 + \frac{2\sqrt{5}}{7}$ $\frac{\sqrt{5}}{7}D^2 + 2SDcos\phi_D$ $\overline{4\pi} \langle Y_3^0 \rangle = \frac{6}{5}$ 5 15 $\frac{15}{7}$ PDcos $(\phi_P - \phi_D)$ $\overline{4\pi} \langle Y_4^0 \rangle = \frac{6}{7}$ $\frac{6}{7}D^2$
- Narrow structure in $\big\langle Y_1^0 \big\rangle$

➢**Cannot be described by resonances in** ′

• $\eta_1(1855) \rightarrow \eta \eta'$ needed

For comparison

need for the η_1 (1855) P-wave

Weight sum/(10 MeV/c²)

Weight sum/(10 MeV/c²)

 -10

 -20

 $\overline{1.5}$

100

50

 1.5

+Data - Sideband

-PWA fit projection (PDG optimized

 $\langle Y_{\alpha}^{0} \rangle$

 $\overline{2.5}$

 $\langle Y_{2}^{0} \rangle$

 2.5

 $M(\eta\eta')(GeV/c^2)$

 $M(\eta\eta')$ (GeV/c²)

3

3

 \overline{c}

 \overline{c}

Can not be described only with 1^{+-} and 1^{--} states in γη(')

Baseline set of amplitudes **PDG-optimized set of amplitudes**

Systematic uncertainties (event selection)

Combined with the weighted least squares method

Systematic uncertainties (PWA)

- BW parametrization for $f_0(1500)$
	- replace the BW with a Flatte-like form $\Gamma(s) = g \Gamma(\frac{M^2}{s}) (\frac{\rho(s)}{\rho(M^2)})^{2l+1} + (1-g) \Gamma_0 , g \sim 0.02$
- Fixed resonance parameters
	- varying within 1 σ of the PDG values
- Background uncertainty
	- different sideband regions and normalization factors
- Additional resonances
	- adding the most significant additional resonances for each possible J^{PC} into the baseline fit individually

Discussions about $f_0(1500)$ & $f_0(1710)$

• Significant $f_0(1500)$

$$
\frac{B(f_0(1500) \to \eta \eta')}{B(f_0(1500) \to \pi \pi)} = (8.96^{+2.95}_{-2.87}) \times 10^{-2}
$$

consistent with PDG

• Absence of $f_0(1710)$

 $B(f_0(1710) \rightarrow \eta \eta')$ $B(f_0(1710) \to \pi\pi)$ $< 1.61 \times 10^{-3}$ @90% C.L.

- \triangleright Supports to the hypothesis that $f_0(1710)$ overlaps with the ground state scalar glueball _
	- Scalar glueball expected to be suppressed $B(G \to \eta \eta')/B(G \to \pi \pi) < 0.04$

Summary and prospects

- An isoscalar 1^{−+} , η₁(1855), has been observed in J/ψ → γηη′ (>19σ) $M = (1855 \pm 9^{+6}_{-1}) \text{ MeV}/c^2$, $\Gamma = (188 \pm 18^{+3}_{-8}) \text{ MeV}/c^2$ $B(J/\psi → γη_1(1855) → γηη') = (2.70 ± 0.41^{+0.16}_{-0.35}) × 10^{-6}$
	- **An important step forward of light QCD exotics**
	- **Hybrid? Molecule? Tetraquark?**
	- **Investigate production/decay mechanism and search for other partners in more reactions**
- Further more, significant $J/\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta'$ has been observed, while $f_0(1710)$ is insignificant
	- B(f₀(1710) → ηη')/ B(f₀(1710) → ππ)< 1.61 × 10⁻³ @90% C.L., which further supports the f(1710) has a large overlap with glueball
- Data with unprecedented statistical accuracy from BESIII provides great opportunities to study QCD exotics. Will continue to run until ~2030

Thank you

Baseline set of amplitudes

PWA fit projections

Baseline set of amplitudes

 Δ

 \mathbf{r}

Fit fractions in the PWA fit with the baseline set of amplitudes

Amplitude analysis

- **Production Amplitude** produces a state **X** with **J PC** quantum numbers
- $\frac{2}{m^2(GeV^2/c^4)}$ **Decay Amplitude** describes the decay of **X** to final state particles
	- **Observables** are the fourmomenta of the final-state particles

Amplitude analysis

The probability to observe the event characterized by the measurement $ξ$ (i.e. the four-momenta of the final-state particles)

$$
P(\xi; \alpha) = \frac{\omega(\xi, \alpha) \epsilon(\xi)}{\int d\xi \omega(\xi, \alpha) \epsilon(\xi)}
$$

 $\omega(\xi, \alpha) = \frac{d\sigma}{d\sigma}$ $rac{a\sigma}{d\Phi}$ = $|\sum_i A_i|^2$ *Differential cross section* $\epsilon(\xi)$ *Efficiency*

Likelihood

$$
L = \prod_{i=1}^{N} P(\xi : \alpha)
$$

Several different states, all decaying to the same final particles are produced, and they interfere (complex amplitudes)

Perform an un-binned log-likelihood fit (fit the data event-wise to highdimensional distributions using complex weights) to make our model for ω agree with the experimental distribution by varying the α .

Isobar model formalism

quasi two-body decay amplitudes via intermediate resonances

D⁰ three-body decay $D^0 \rightarrow$ ABC decaying through an r=[AB] resonance

