Observation of an isoscalar resonance with exotic $J^{PC} = 1^{-+}$ quantum numbers in $J/\psi \rightarrow \gamma \eta \eta'$

arXiv:2202.00621, arXiv:2202.00623

刘北江

中国科学院高能物理研究所

USTC, Oct.21, 2022

Introduction

 Hadrons, the complex building blocks of our world, emerge from interaction of quarks and gluons as described by QCD

- Quark model seems to work really well. Why? How does QCD give rise to hadrons?
 - What is the origin of confinement? (Quarks and gluons not isolated in nature)
 - How is the mass generated in QCD?
 - Role of gluons: Mass? Spin? Quantum numbers?
 - Existence of states beyond Quark Model?

Hadron spectroscopy

- Testing QCD in the confinement regime
- Revealing the fundamental degrees of freedom

Atomic Spectrum: Bohr model → QED

Hadron spectrum: Quark model → QCD

Key things to search for: further possible configurations beyond quark model

QCD exotics

- QCD permits additional colorsinglet mesonic configurations
- Physical mesons
 - Linear superpositions of all allowed basis states
 - "Configuration mixing"
 - Disentanglement of contributions difficult
 - Detailed information about couplings to production and decay channels required

 \rightarrow Discovery with precision measurement

So far...

• Strong evidence for QCD exotics in heavy quark sector, e.g.Tetraquark candidates $Z_c^+ \rightarrow J/\psi\pi$,Pentaquark candidates $P_c^+ \rightarrow J/\psi p$, ...

- Light quark sector is more complicated
 - but, an absolute necessity to claim that we understand hadrons

Beijing Electron Positron Collider (BEPCII)

Charmonium decays provide an ideal lab for light QCD exotics

- Clean high statistics data samples High cross sections of $e^+e^- \to J/\psi, \ \psi'$ Low background
- Well defined initial and final states Kinematic constraints I(J^{PC}) filter
- "Gluon-rich" process

Glueballs

- Evidence of gluon self interaction
- Provide critical information on the gluon field and the quantitative understanding of confinement

 Low-lying glueballs with ordinary J^{PC} → mixing with qq̄ mesons

➤Observe a new peak

≻ "overpopulation", e.g. $f_0(1370) \& f_0(1500) \& f_0(1710)$

➢Solve the mixing scheme

Glueballs from Lattice simulations in the pure gauge theory without quarks

Scalar glueball candidate: production properties

- Scalar glueball is expected to have a large production in J/ ψ radiative decays: B(J/ $\psi \rightarrow \gamma G_{0+}$) = 3.8(9) × 10⁻³ by Lattice QCD
 - Observed B(J/ $\psi \rightarrow \gamma f_0(1710))$ is x10 larger than $f_0(1500)$
 - ► BESIII: $f_0(1710)$ largely overlapped with scalar glueball

Scalar glueball candidate: decay properties

- "Flavor-blindness of gluon" \rightarrow SU(3)_F for a pure glueball,
 - $\Gamma(G \to \pi\pi: K\bar{K}: \eta\eta: \eta\eta': \eta'\eta') = 3:4:1:0:1$

 $B(G \rightarrow \eta \eta')/B(G \rightarrow \pi \pi) < 0.04$, predicted in Phys. Rev. D 92, 121902

Using 10B of J/ ψ events, J/ $\psi \rightarrow \gamma \eta \eta'$, arXiv:2202.00621, 2202.00623 J/ $\psi \rightarrow \gamma \eta' \eta'$, Phys.Rev.D 105 (2022) 7, 072002

Spin-exotic mesons

- Mesons with quantum numbers forbidden by $q\bar{q}$ configuration:
 - 0⁺⁻, 1⁻⁺, 2⁺⁻
- Only 3 candidates so far: $\pi_1(1400)$, $\pi_1(1600)$ and $\pi_1(2015)$
 - All 1⁻⁺
 - All isovectors

 $\pi_1(1400)$ and $\pi_1(1600)$ can be explained as one resonance with recent coupled channel analyses Meson spin: $\vec{J} = \vec{L} + \vec{S}$ Parity: $P = (-1)^{L+1}$ Charge conjugation: $C = (-1)^{L+S}$

1^{-+} Hybrids

Lattice QCD Predictions:

• Isoscalar 1^{-+} is critical to establish the hybrid nonet

- Can be produced in the gluon-rich charmonium decays
- Can decay to $\eta\eta'$ in P-wave

PRD 83,014021 (2011) PRD 83,014006 (2011) Eur.Phys.J.Plus 135, 945(2020)

Observation of An Exotic Isoscalar State $\eta_1(1855) (1^{-+})$ in $J/\psi \rightarrow \gamma \eta \eta'$

10 billion J/ψ arXiv:2202.00621, to be appeared in PRL arXiv:2202.00623 , to be appeared in PRD

- Potential backgrounds are studied using an inclusive MC sample of 10B J/ψ decays
- No significant peaking background is observed in the invariant mass distribution of the η^\prime
- Backgrounds are estimated by the η' sidebands in the data

Partial wave analysis

- Similar as the analyses of $J/\psi \rightarrow \gamma \eta \eta$ [Phys.Rev. D 87, 092009]and $J/\psi \rightarrow \gamma K_S K_S$ [Phys.Rev. D 98, 072003], based on the covariant tensor amplitudes [Eur. Phys. J. A 16, 537] and the GPUPWA framework [J. Phys. Conf. Ser. 219, 042031]
 - Isobars in $J/\psi \rightarrow \gamma X, X \rightarrow \eta \eta'$ and $J/\psi \rightarrow \eta X, X \rightarrow \gamma \eta'$ and $J/\psi \rightarrow \eta' X, X \rightarrow \gamma \eta$. X: constant-width, relativistic BW
- A combined unbinned maximum likelihood fit is performed for the two decay channels of η^\prime
 - sharing the same set of masses, widths, relative magnitudes, and phases
- Backgrounds estimated by η^\prime sidebands are subtracted

$$S = -(\ln \mathcal{L}_{data} - \sum_{i} \omega_{i} \cdot \ln \mathcal{L}_{background})$$

13

All kinematically allowed known resonances with 0^{++} , 2^{++} , and $4^{++}(\eta \eta')$ and 1^{+-} and $1^{--}(\gamma \eta(\prime))$ are considered

Decay mode	0++	2^{++}	4^{++}	
	$f_0(1500)$	$f_2(1525)$	$f_4(2050)$	
	$f_0(1710)$	$f_2(1565)$	$f_4(2300)$	
	$f_0(1810)[58]$	$f_2(1640)$	$f_4(2283)[57]$	
	$f_0(2020)$	$f_2(1810)$		
	$f_0(2100)$	$f_2(1910)$		
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2200)$	$f_2(1950)$		
	$f_0(2330)$	$f_2(2010)$		
	$f_0(2102)[57]$	$f_2(2150)$		
	$f_0(2330)[57]$	$f_2(2220)$		
		$f_2(2300)$		
		$f_2(2340)$		
		$f_2(2240)[57]$		
	1	1+-		PDG and
	$\omega(1420)$	$h_1(1415)$		
	$\omega(1650)$	$h_1(1595)$		[57] $\bar{p}p$ reactions at Crystal Barrel and PS172, Phys. Rept. 397, 257
	$\phi(1680)$			$[58] I/h \rightarrow h d_{0}$ at RECIII Drug Poy D 87 022008
$J/\psi \to \eta^{(\prime)} X \to \gamma \eta \eta^{\prime}$	$\phi(2170)$			$[30] J/\psi \rightarrow \psi \psi \omega$ at desili, flys. Nev. D 07,052000
	$\rho(1450)$			
	$\rho(1700)$			
	$\rho(1900)$			1.4

PDG-optimized set of amplitudes

Decay mode	Resonance	$M ({\rm MeV}/c^2)$	Γ (MeV)	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma_{\rm PDG}~(MeV)$	B.F. $(\times 10^{-5})$	Sig.
	$f_0(1500)$	1506	112	1506	112	$3.05 {\pm} 0.07$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	0.07 ± 0.01	7.6σ
	$f_0(2020)$	1935±5	266 ± 9	1992	442	$1.67 {\pm} 0.07$	11.0σ
	$f_0(2100)$	2109±11	253±21	2086	284	$0.33 {\pm} 0.03$	5.2σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	2327±4	44±5	2314	144	0.07 ± 0.01	8.5σ
	$f_2(1565)$	1542	122	1542	122	0.20 ± 0.03	6.2σ
	$f_2(1810)$	1815	197	1815	197	$0.37 {\pm} 0.03$	7.0σ
	$f_2(2010)$	2022±6	212±8	2011	202	1.36 ± 0.10	8.8σ
	$f_2(2340)$	2345	322	2345	322	0.25 ± 0.04	6.5σ
	$f_4(2050)$	2018	234	2018	234	0.11 ± 0.02	5.6σ
	$h_1(1415)$	1416	90	1416	90	$0.14{\pm}0.01$	10.3σ
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1595)$	1584	384	1584	384	0.41 ± 0.04	9.7σ
	$\phi(2170)$	2160	125	2160	125	0.24 ± 0.03	5.6σ
$J/\psi \to \eta X \to \gamma \eta \eta'$	$h_1(1595)$	1584	384	1584	384	$0.50 {\pm} 0.03$	11.0σ
	$ \rho(1700) $	1720	250	1720	250	0.22 ± 0.03	8.8σ

The masses and widths of the resonances near $\eta\eta'$ threshold $(f_0(1500), f_2(1525), f_2(1565))$ and $f_2(1640)$ as well as those with small fit fractions (<3%) are always fixed to the PDG values

Components with statistical significance larger than 5o

PWA projections for PDG-optimized set

Search for new resonances

scans of additional resonance with different J^{PC}, masses and widths

Baseline set of amplitudes by adding the η_1 state

Decay mode	Resonance	$M~({\rm MeV}/c^2)$	Γ (MeV)	$M_{\rm PDG}~({\rm MeV}/c^2)$.	$\Gamma_{\rm PDG}$ (MeV)	B.F. $(\times 10^{-5})$	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81{\pm}0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1σ
	$f_0(2020)$	$2010{\pm}6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312\pm7^{+7}_{-3}$	$65{\pm}10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2σ
	$\eta_1(1855)$	$1855 \pm 9^{+6}_{-1}$	$188{\pm}18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7 <i>σ</i>
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4σ
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0^{++} PHSP	-	-	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7 <i>σ</i>
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	$0.08{\pm}0.01{}^{+0.01}_{-0.02}$	10.2σ
	$h_1(1595)$	1584	384	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9 <i>σ</i>

- Contributions from the $f_0(2100)$, $h_1(1595)(\gamma \eta')$, $\rho(1700)(\gamma \eta')$, $\phi(2170)(\gamma \eta)$, $f_2(1810)$, and $f_2(2340)$, in the PDG-optimized set become insignificant (< 3σ), omitted
- Comparing to the PDGoptimized set, In L of the baseline set is improved by 32 and the number of free parameters reduced by 16

- An isoscalar 1^{-+} , $\eta_1(1855),$ has been observed
- Mass is consistent with LQCD calculation for the 1^{-+} hybrid (1.7~2.1 GeV/c²)

Baseline set of amplitudes

PWA fit projections

Significance for additional resonances

Decay mode	Resonance	J^{PC}	ΔS	$\Delta N dof$	Sig.
	$f_2(1525)$	2^{++}	6.3	6	1.9σ
	$f_2(1810)$	2^{++}	2.7	6	0.7σ
	$f_0(1710)$	0^{++}	3.4	2	2.1σ
	$f_2(1910)$	2^{++}	3.9	6	1.1σ
	$f_2(1950)$	2^{++}	2.6	6	0.6σ
	$f_0(2100)$	0^{++}	1.1	2	1.1σ
	$f_2(2150)$	2^{++}	2.3	6	0.5σ
$J/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2200)$	0^{++}	0.4	2	0.4σ
	$f_2(2220)$	2^{++}	8.6	6	2.6σ
	$f_2(2300)$	2^{++}	7.2	6	2.2σ
	$f_4(2300)$	4^{++}	2.3	6	0.5σ
	$f_0(2330)$	0^{++}	1.5	2	1.2σ
	$f_2(2340)$	2^{++}	6.3	6	1.9σ
	$f_0(2102)[57]$	0^{++}	0.1	2	0.2σ
	$f_2(2240)[57]$	2^{++}	2.9	6	0.7σ
	$f_2(2293)[57]$	2^{++}	4.1	6	1.2σ
	$f_4(2283)[57]$	4^{++}	0.9	6	0.1σ
	$\rho(1450)$	1	3.4	2	2.1σ
	$ \rho(1700) $	$1^{}$	0.8	2	0.7σ
	$ \rho(1900) $	$1^{}$	0.0	2	0σ
$J/\psi \to \eta' X \to \gamma \eta \eta'$	$\omega(1420)$	$1^{}$	5.3	2	2.8σ
	$\omega(1650)$	$1^{}$	2.6	2	1.7σ
	$\phi(1680)$	$1^{}$	4.3	2	2.5σ
	$\phi(2170)$	$1^{}$	0.4	2	0.4σ
	$h_1(1415)$	1^{+-}	1.3	4	0.5σ
	$h_1(1595)$	1^{+-}	8.1	4	2.9σ
	$ \rho(1450) $	$1^{}$	1.3	2	1.1σ
	$ \rho(1700) $	$1^{}$	3.1	2	2.0σ
$J/\psi \to \eta X \to \gamma \eta \eta'$	$\rho(1900)$	$1^{}$	6.1	2	3.0σ
	$\omega(1420)$	$1^{}$	2.5	2	1.7σ
	$\omega(1650)$	$1^{}$	0.8	2	0.7σ
	$\phi(1680)$	$1^{}$	2.1	2	1.5σ
	$\phi(2170)$	$1^{}$	0.1	2	0.1σ

• Assuming $\eta_1(1855)$ is an additional resonance, scans of with different masses and widths

The most significant additional contribution (4.4σ) comes from another exotic 1⁻⁺ component around 2.2 GeV with a very small fit fraction

all insignificant (< 3σ)

Baseline set of amplitudes

No significant contributions from additional resonances

Further checks on the 1^{-+} state $\eta_1(1855)$

- Changing the J^{PC} to the $\eta_1(1855),$ and the log-likelihoods are worse by at least 235 units
- BW Phase motion of $\eta_1(1855)$

from
$$\frac{1}{M^2 - s - iM\Gamma}$$
 to $\sqrt{\frac{1}{(M^2 - s)^2 + M^2\Gamma^2}}$

 \rightarrow In L worsen by 43 units

Further checks on the 1^{-+} state $\eta_1(1855)$

a clear asymmetry largely due to $\eta_1(1855)$ signal

Further Checks on the 1^{-+} State $\eta_1(1855)$

- Angular distribution as a function of $M(\eta\eta')$ expressed model-independently

$$\left\langle Y_l^0 \right\rangle \equiv \sum_{i=1}^{N_k} W_i Y_l^0(\cos\theta_{\eta}^i)$$

- related to the spin-0(S), spin-1(P), spin-2(D) amplitudes in ηη' by:
 - $\sqrt{4\pi} \langle Y_0^0 \rangle = S^2 + P^2 + D^2$ $\sqrt{4\pi} \langle Y_1^0 \rangle = 2SPcos\phi_P + 4PDcos(\phi_P - \phi_D)$ $\langle Y_1^0 \rangle = 0 \text{ without P-wave contribution}$ $\sqrt{4\pi} \langle Y_2^0 \rangle = \frac{2}{\sqrt{5}}P^2 + \frac{2\sqrt{5}}{7}D^2 + 2SDcos\phi_D$ $\sqrt{4\pi} \langle Y_3^0 \rangle = \frac{6}{5}\sqrt{\frac{15}{7}}PDcos(\phi_P - \phi_D)$ $\sqrt{4\pi} \langle Y_4^0 \rangle = \frac{6}{7}D^2$
- Narrow structure in $\langle Y_1^0 \rangle$

> Cannot be described by resonances in $\gamma\eta(\eta')$

• $\eta_1(1855) \rightarrow \eta\eta'$ needed

For comparison

need for the η_1 (1855) P-wave

Weight sum/(10 MeV/c²)

Weight sum/(10 MeV/c²)

-10

-20

1.5

100

50

0

1.5

+Data - Sideband

-PWA fit projection (PDG optimized

 $\langle \mathbf{Y}_{0}^{0} \rangle$

2.5

 $\langle Y_{2}^{0} \rangle$

2.5

 $M(\eta\eta')(GeV/c^2)$

 $M(\eta\eta')(GeV/c^2)$

3

3

2

2

Can not be described only with 1^{+-} and 1^{--} states in $\gamma\eta(')$

Baseline set of amplitudes

PDG-optimized set of amplitudes

Systematic uncertainties (event selection)

Common systematic uncertainties								
Sources	$\eta' \to \eta \pi^+ \pi^- \ \eta' \to \gamma \pi^+ \pi^-$							
Pion tracking	/	2						
Four photon detection	2	4						
Number of J/ψ events	0.	43						
$\mathcal{B}(\eta \to \gamma \gamma)$	0	.2						
Total	4	.5						
Independent syste	ematic uncertain	nties						
Sources	$\eta' \to \eta \pi^+ \pi^-$	$\eta' \to \gamma \pi^+ \pi^-$						
Another photon detection	1	-						
Kinematic fit	1.5	2.6						
η' mass resolution	0.3	0.2						
$\mathcal{B}(\eta' o \eta \pi^+ \pi^-)$	0.5	-						
$\mathcal{B}(\eta' \to \gamma \pi^+ \pi^-)$	-	0.4						
$\mathcal{B}(\eta \to \gamma \gamma)$ for another one	0.2	-						
Total	1.9	2.6						
Combined result	4.8							

Combined with the weighted least squares method

Systematic uncertainties (PWA)

- BW parametrization for $f_0(1500)$
 - replace the BW with a Flatte-like form $\Gamma(s) = g\Gamma(\frac{M^2}{s})(\frac{\rho(s)}{\rho(M^2)})^{2l+1} + (1-g)\Gamma_0 \quad \text{, g \sim0.02}$
- Fixed resonance parameters
 - varying within 1 σ of the PDG values
- Background uncertainty
 - different sideband regions and normalization factors
- Additional resonances
 - adding the most significant additional resonances for each possible J^{PC} into the baseline fit individually

S	$f_0(2020)$		$f_0(2330)$		$\eta_1(1855)$		$f_2(20)$	010)
Sources	ΔM	$\Delta\Gamma$	ΔM	$\Delta\Gamma$	ΔM	$\Delta\Gamma$	ΔM	$\Delta\Gamma$
Breit-Wiger formula	-1	+10	-1	+1	-1	+2	-4	+3
Resonance parameters	+1	-10	-3	+2	+2	-1	0	-2
Extra resonances	$^{+4}_{-2}$	$^{+9}_{-2}$	+7	$^{+1}_{-9}$	+4	$^{+1}_{-6}$	$^{+10}_{-5}$	+10
Backgroud uncertainty	-1	-4	+3	$^{+1}_{-7}$	+3	$^{+1}_{-5}$	-1	-5
Total	$^{+4}_{-3}$	$^{+13}_{-11}$	$^{+7}_{-3}$	$^{+3}_{-12}$	$^{+6}_{-1}$	$^{+3}_{-8}$	$+10 \\ -7$	$^{+10}_{-5}$

Sources	$f_0(1500)$	$f_0(1810)$	$f_0(2020)$	$f_0(2330)$	$\eta_1(1855)$	$f_2(1565)$	$f_2(2010)$	$f_4(2050)$	0 ⁺⁺ PHSP	$h_1(1415)(\gamma\eta)$	$h_1(1595)(\gamma\eta)$
Event selection						±	4.8				
Breit-Wigner formula	-1.7	+11.6	+6.9	+3.2	-1.1	+17.8	+0.2	+4.2	-0.6	-8.2	-4.1
Extra resonances	$^{+9.4}_{-1.0}$	$^{+30.4}_{-8.4}$	+10.0	$^{+7.8}_{-13.4}$	$^{+3.5}_{-10.4}$	$^{+31.5}_{-2.7}$	$^{+12.9}_{-6.5}$	$^{+44.4}_{-4.7}$	$^{+5.1}_{-12.2}$	$^{+11.0}_{-9.1}$	$^{+16.2}_{-2.2}$
Resonance parameters	-4.8	-25.6	-6.5	+3.6	-6.1	+5.5	+0.2	-1.4	-4.6	-11.4	-4.3
Backgroud uncertainty	$^{+0.5}_{-0.6}$	$^{+0.4}_{-7.5}$	$^{+0.8}_{-3.4}$	$^{+0.3}_{-10.4}$	$^{+0.2}_{-1.1}$	+11.0	-2.7	$^{+31.9}_{-6.5}$	-1.8	-8.8	$^{+8.4}_{-0.6}$
Total	$^{+10.6}_{-7.1}$	$^{+32.9}_{-28.4}$	$^{+13.1}_{-8.8}$	$^{+10.3}_{-17.6}$	$^{+5.9}_{-13.1}$	$^{+38.5}_{-5.5}$	$^{+13.7}_{-8.5}$	$^{+55.0}_{-9.5}$	$^{+7.0}_{-14.0}$	$^{+12.0}_{-19.5}$	$^{+18.8}_{-8.0}$

Discussions about $f_0(1500) \& f_0(1710)$

• Significant $f_0(1500)$

$$\frac{B(f_0(1500) \to \eta \eta')}{B(f_0(1500) \to \pi \pi)} = (8.96^{+2.95}_{-2.87}) \times 10^{-2}$$

consistent with PDG

• Absence of $f_0(1710)$

 $\frac{B(f_0(1710) \to \eta \eta')}{B(f_0(1710) \to \pi \pi)} < 1.61 \times 10^{-3} @90\% \text{ C. L.}$

- Supports to the hypothesis that $f_0(1710)$ overlaps with the ground state scalar glueball –
 - Scalar glueball expected to be suppressed $B(G \to \eta \eta')/B(G \to \pi \pi) < 0.04$

20

Decay mode	Resonance	$M~({\rm MeV}/c^2)$	$\Gamma ({\rm MeV})$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma_{PDG}~(MeV)$	B.F. (×10 ⁻⁵)	Sig.
	$f_0(1500)$	1506	112	1506	112	$1.81 \pm 0.11^{+0.19}_{-0.13}$	$\gg 30\sigma$
	$f_0(1810)$	1795	95	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1 <i>σ</i>
	$f_0(2020)$	$2010{\pm}6^{+6}_{-4}$	$203{\pm}9^{+13}_{-11}$	1992	442	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6 <i>σ</i>
$\psi/\psi \to \gamma X \to \gamma \eta \eta'$	$f_0(2330)$	$2312 \pm 7^{+7}_{-3}$	$65{\pm}10^{+3}_{-12}$	2314	144	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2 <i>σ</i>
	$\eta_1(1855)$	$1855 \pm 9^{+6}_{-1}$	$188{\pm}18^{+3}_{-8}$	-	-	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4 <i>σ</i>
	$f_2(1565)$	1542	122	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7 <i>σ</i>
	$f_2(2010)$	$2062{\pm}6^{+10}_{-7}$	$165{\pm}17^{+10}_{-5}$	2011	202	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4 <i>σ</i>
	$f_4(2050)$	2018	237	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0^{++} PHSP	-	-	-	-	$1.44{\pm}0.15^{+0.10}_{-0.20}$	15.7σ
$/\psi \to \eta' X \to \gamma \eta \eta'$	$h_1(1415)$	1416	90	1416	90	$0.08{\pm}0.01^{+0.01}_{-0.02}$	10.2 <i>σ</i>
	$h_1(1595)$	1584	384	1584	384	$0.16{\pm}0.02^{+0.03}_{-0.01}$	9.9 <i>σ</i>

Summary and prospects

- An isoscalar 1^{-+} , $\eta_1(1855)$, has been observed in $J/\psi \rightarrow \gamma \eta \eta'$ (>19 σ) $M = (1855 \pm 9^{+6}_{-1}) \text{ MeV/c}^2$, $\Gamma = (188 \pm 18^{+3}_{-8}) \text{ MeV/c}^2$ $B(J/\psi \rightarrow \gamma \eta_1(1855) \rightarrow \gamma \eta \eta') = (2.70 \pm 0.41^{+0.16}_{-0.35}) \times 10^{-6}$
 - An important step forward of light QCD exotics
 - Hybrid? Molecule? Tetraquark?
 - Investigate production/decay mechanism and search for other partners in more reactions
- Further more, significant $J/\psi \rightarrow \gamma f_0(1500) \rightarrow \gamma \eta \eta'$ has been observed, while $f_0(1710)$ is insignificant
 - $B(f_0(1710) \rightarrow \eta \eta') / B(f_0(1710) \rightarrow \pi \pi) < 1.61 \times 10^{-3}$ @90% C.L. , which further supports the f(1710) has a large overlap with glueball
- Data with unprecedented statistical accuracy from BESIII provides great opportunities to study QCD exotics. Will continue to run until ~2030

Thank you

Baseline set of amplitudes

PWA fit projections

Baseline set of amplitudes

.

-

Fit fractions in the PWA fit with the baseline set of amplitudes

Resonance	$f_0(1500)$	$f_0(1810)$	$f_0(2020)$	$f_0(2330)$	$h_1(1415)(\gamma\eta)$	$h_1(1595)$	$\eta_1(1855)$	$f_2(1565)$	$f_2(2010)$	$f_4(2050)$	0^{++} PHSP
$f_0(1500)$	21.9±1.4	-4.3 ± 0.4	16.2 ± 0.5	-1.0 ± 0.1	1.6 ± 0.2	-1.6 ± 0.9	0.2 ± 0.0	0.2 ± 0.1	0.6 ± 0.1	0.0 ± 0.0	13.4±1.1
$f_0(1810)$		1.4 ± 0.1	-5.6 ± 0.6	0.4 ± 0.0	-0.1 ± 0.0	0.6 ± 0.1	0.0 ± 0.0	-0.2 ± 0.0	0.1 ± 0.0	0.0 ± 0.0	2.0 ± 0.3
$f_0(2020)$			29.5±1.6	-3.7 ± 0.5	0.0 ± 0.2	-3.6 ± 0.4	0.2 ± 0.0	1.1 ± 0.1	0.1 ± 0.1	0.1 ± 0.0	$-15.9{\pm}1.8$
$f_0(2330)$				1.4 ± 0.2	0.1 ± 0.0	0.3 ± 0.1	0.0 ± 0.0	-0.1 ± 0.0	-0.2 ± 0.0	0.0 ± 0.0	2.6 ± 0.3
$h_1(1415)$					1.1 ± 0.2	-1.1 ± 0.3	-0.2 ± 0.1	0.1 ± 0.1	0.2 ± 0.1	0.0 ± 0.0	2.3 ± 0.3
$h_1(1595)$						2.1 ± 0.3	0.5 ± 0.1	-0.3 ± 0.3	0.0 ± 0.2	0.1 ± 0.0	2.3 ± 1.0
$\eta_1(1855)$							3.5 ± 0.5	0.0 ± 0.0	-0.1 ± 0.0	0.0 ± 0.0	0.1 ± 0.0
$f_2(1565)$								4.6 ± 0.7	-0.6 ± 0.8	0.0 ± 0.0	-0.9 ± 0.1
$f_2(2010)$									10.2 ± 0.8	-0.1 ± 0.1	0.2 ± 0.1
$f_4(2050)$										0.8 ± 0.2	0.0 ± 0.0
0^{++} PHSP											18.5 ± 1.9

Amplitude analysis

- Production Amplitude produces a state X with J^{PC} quantum numbers
 - Decay Amplitude describes
 the decay of X to final state
 particles
- **Observables** are the fourmomenta of the final-state particles

Amplitude analysis

The probability to observe the event characterized by the measurement ξ (i.e. the four-momenta of the final-state particles)

$$P(\xi;\alpha) = \frac{\omega(\xi,\alpha)\epsilon(\xi)}{\int d\xi\omega(\xi,\alpha)\epsilon(\xi)}$$

Differential cross section Efficiency $\omega(\xi, \alpha) = \frac{d\sigma}{d\Phi} = |\sum_{i} A_{i}|^{2} \qquad \epsilon(\xi)$

Likelihood

$$L = \prod_{i=1}^{N} P(\xi; \alpha)$$

Several different states, all decaying to the same final particles are produced, and they interfere (complex amplitudes) Perform an un-binned log-likelihood fit (fit the data event-wise to highdimensional distributions using complex weights) to make our model for ω agree with the experimental distribution by varying the α .

Isobar model formalism

quasi two-body decay amplitudes via intermediate resonances

 D^0 three-body decay $D^0 \rightarrow ABC$ decaying through an r=[AB] resonance

