Search for Light Dark Matter in the PandaX-4T Experiment

Yue Meng Shanghai Jiao Tong University mengyue@sjtu.edu.cn

- Dark matter introduction and detection technologies
- PandaX-4T dark matter experiment
- Light dark matter search method with PandaX-4T
- Summary and outlook

Dark matter evidence

Rotation curve of spiral galaxy M33

Gravitational evidences suggest dark matter is the dominant form of matter in Universe!

The dark matter landscape

Samuel Velasco/Quanta Magazine

WIMP: hide and seek

Worldwide underground laboratories

From Hao Ma's slides in China-LRT 2019

PandaX

China Jinping Underground Laboratory

CJPL

- Deepest (6800 m.w.e)
- Horizontal access
- Muon rate: ~1 count/week/m²

CJPL Phase-II

PandaX Collaboration

Particle and Astrophysical Xenon Experiments

PandaX experiment

Dual-phase xenon TPC

- Dual-phase xenon time projection chamber
- High purity Xe target
- Self-shielding
- S1: prompt scintillation signal
 - High light yield
- S2: delayed ionization signal
 - Electroluminescence in vapor phase
 - Sensitive to single ionization electrons

4/7/23

Dual-phase xenon TPC

- S1 + S2 event by event
 - Electron recoil background rejection by ratio of charge(S2)/light(S1)
- 3D event reconstructions
 - Z position from S1-S2 drift time
 - X-Y positions from S2 light pattern
 - reject external background

PandaX-4T experiment layout

Infrastructure

Infrastructure

Gas, cryogenics and distillation systems

system

TPC installation

Electronics hut

Instrumented clean room

Ultrapure water filling

TPC operation conditions

During the run, HV set at a few different values to avoid excessive discharges.

Data Taking History – 5 Subsets

- Electron lifetime: *in situ* S2 vertical uniformity calibration
- \square Ref: the maximum drift time ~ 840 μs

(field dependent)

- □ Two gas loops for purification
- Stable data running period: 95.0 calendar days

PANDA

WIMP: hide and seek

Light DM search

Light DM and shell electron interaction

DM and shell electrons interaction

Recoil energy for different targets

РалраХ

Conventional DM search

•S1 + S2 paired event analysis

- -Electron recoil background rejection
 - by ratio of charge(S2)/light(S1)
- -Z position from S1-S2 drift time
- –X-Y positions from S2 light pattern

Light DM search

• Un-paired S2 (US2) analysis

- -Lower energy threshold ~ 70 eV,
 - comparing energy threshold ~1 keV
 - with S1 + S2 paired analysis
- -Sensitive to light DM (sub-GeV)

interaction

Theoretical input

Data sets:

- 1. Double scattering events from neutron calibration data from AmBe and DD
- 2. Waveform simulation data

Quality cut

4/7/23

Quality cut

Data selection efficiency

Analysis flow

Theoretical input

Background model

Micro-discharging background •

MD S2 shape

Background model

• Cathode background

The ratio of cathode background in the control region is used to extrapolate the ratio in the ROI.

Background model

• Background contribution

Theoretical input

Theoretical energy spectrum of electron recoil

• Ionization in atoms scenario: DM may scatter with an electron bound in energy level i, ionizing it to an un-bounded state with positive energy

Theoretical input

Ionization model and detector response

- Two models (P4-NEST model and constant) to describe produced ionized electrons are compared.
- Constant model is selected to conservative estimate the number of primary ionized electrons.
- Detector responses

Theoretical input

Expected spectrum of ionization signal

- For different DM masses and cross sections, the rates of electron-DM scatterings are generated.
- Compare the measured and expected number of candidates in ROI to constrain the cross section of interaction.

Theoretical input

DM-electron scattering constrain

- The most stringent constraints for the DM- electron interactions with mass in range of 40 MeV/c² to 10 GeV/c² with $F_{DM} = 1$, and 100 MeV/c² to 10 GeV/c² with $F_{DM} \sim 1/q^2$
- Our results challenge the freeze-out mechanism for DM mass range from 0.04 to 0.25 GeV/c² with F_{DM} =1, and are closing in on the freeze-in prediction with $F_{DM} \sim 1/q^2$, assuming such light DM provides the entire DM abundance.

Summary and Outlook

- PandaX-4T has completed its commissioning run
- The unpaired S2 analysis method lowers the PandaX-4T energy threshold to 0.07 keV to probe light DM.
- The most stringent constraints for the DM- electron interactions with mass in range of 40 MeV/c² to 10 GeV/c² with F_{DM} =1, and 100 MeV/c² to 10 GeV/c² with $F_{DM} \sim 1/q^2$
- The PandaX-4T may provide more chances to detect light dark matterelectron scatterings with lower background and higher exposure.

Thank you

Welcome to use our PandaX data to test your novel models.