First WIMP search results from XENONnT

XENON

VIDEBIMYS S. REA

UMINE TVO

Jingqiang Ye Physics department, Columbia University

School of Physical Sciences University of Science and Technology of China May 5, 2023

Evidence of dark matter

Rotation curve **Bullet cluster** Bullet cluster

CMB background

Dark matter particle candidates

"Standard" assumptions for WIMPs:

- Mass range: GeV~TeV
- Standard channels: elastic SI and SD scattering
- local WIMP density: 0.3 GeV/cm³
- Isothermal velocity distribution: v_0 ~220 km/s
- WIMP escape velocity ~544 km/s

Three ways to detect dark matter

experiment using two-phase time projection chamber with a xenon target

XENONnT is a direction detection

Direct Detection

Collider Search

Why xenon?

Facts about xenon:

- Large atomic mass ($A \approx 131$ u), $\sigma \propto A^2$
- Scalability and demonstrated stable operation
- Ultrapure (noble gas) and no stable 'radioactive' isotopes
- O(keV) threshold

Why two-phase time projection chamber (TPC)?

- Signal detection Light signal (S1) Charge signal (S2)
- Energy reconstruction
- 3D position reconstruction

Particle interaction identification

• S2/S1 ratio: ER/NR discrimination

XENON Collaboration: ~200 scientists

XENON10 2005—2007

XENON100 2008—2016

XENON1T 2012—2018

XENONnT 2019—2026

XENONnT first science run (SR0)

• Exposure: (1.09 ± 0.03) tonne · year

- Active mass: 5.9 tonne
- Fiducial mass: (4.18 ± 0.13) tonne
- 494 3-inch PMTs

Calibrations

• AmBe

• 220Rn

 $\cdot \frac{37}{\text{Ar}}$

AmBe: calibrate neutron veto

- 241 Am *(* α *, n)* 9 Be emits neutrons with coincident 4.4 MeV gammas
- Neutron veto can tag neutrons via the neutron capture on hydrogen that releases a 2.22 MeV gamma ray
- Half-life for neutron capture in water is (180 \pm 8) μ s

AmBe calibration: NR response

220Rn calibration: ER response

- Naked low-energy ^{212}Pb betas from the ^{220}Rn chain
- Energy spectrum is almost flat at low energies

37 Ar calibration: ER response

37Ar

- Internal source
- Mono-energetic line @2.8 keV
- Half-life: 35 days
- Removed by krypton distillation column

Backgrounds

- ER backgrounds
- NR backgrounds
- Accidental coincidence

Radon distillation column

Krypton distillation column

85_{Kr}

- Decrease krypton concentration by cryogenic distillation
- $^{nat}Kr: (56 ± 36) ppq$ (XENON1T SR1: $(660 ± 110) ppq$)</sup>
- It can also reduce argon concentration, which enables the usage of $\rm{^{37}Ar}$ calibration source

ER backgrounds

- \cdot 214 Pb is still the dominant background below 10 keV
- ²²²Rn: ∼ 1.8 *μ*Bq/kg, decreased by radon distillation column (XENON1T SR1: ∼ 13 *μ*Bq/kg)
- $^{nat}Kr: (56 ± 36) ppq$, decreased by krypton distillation column (XENON1T SR1: $(660 ± 110) ppq$)</sup>
- Spectral shape dominated by two double-weak decays:
	- 136Xe 2*νββ*
	- 124Xe 2*ν*ECEC

ER backgrounds

- The total ER rate below 30 keV is $(15.8 \pm 1.3_{stat})$ events/(t \cdot y \cdot keV), the lowest background ever achieved in a dark matter detector, a factor of ~5 lower than XENON1T ER background.
- No ER excess is found in XENONnT, which rejects new physics interpretations of the XENON1T excess.

New physics results with ER data

NR backgrounds

Two NR backgrounds:

- Coherent Elastic Neutrino Nucleus Scattering (CEvNS) from solar ${}^{8}{\rm B}$ neutrinos
	- Relatively small, see more later
- Neutrons from spontaneous fission and (α, n) reactions

Neutron suppression methods

- Fiducialization
- multiple scatter rejection
- Neutron veto
	- (53 ± 3) % tagging efficiency @ 250 µs window
	- Lifetime loss: 1.6%

Accidental coincidence (AC)

lone S2

- Single electron pile up
- \bullet …

AC background suppression: reduce lone S1/S2 rate

Lone S1:

• Time correlation with big previous S2s

Lone S2:

• Time and position correlation with big previous S2s

AC background suppression: check s1/s2 pairing

Boosted decision tree (BDT) features: s2 width (diffusion), z, rise time, s2 size 1.00

WIMP results

- 152 events in ROI, 16 in blinded region
- P-value indicates no significant excess

Spatial distribution

WIMP results

- Use power-constraint limit (PCL), currently set at median (50%)
- Minimum upper limit for spin-independent (SI) WIMP-nucleon cross sections is 2.58×10^{-47} cm² for a mass of 28 GeV/ c^2

What's next?

Continue WIMP search

- Data taking is ongoing
- 222 Rn is further reduced by a factor of ~2 due to GXe + LXe mode -> reduced ER background
- Optimize neutron veto tagging window and FV -> reduce NR background

Solar pp neutrinos

- Solar neutrinos can scatter elastically with electrons and produce ER events
- This interaction is dominated by Solar pp neutrinos (>99%)

Search for solar pp neutrinos with XENONnT

Best-fit values in SR0

- This is the 2nd largest ER component below 10 keV in SR0 and at comparable with ^{214}Pb in SR1 as radon backgrounds have been reduced by a factor of ~2
- It is very possible to make the first solar pp neutrino detection in a dark matter detector and give more precise measurement in the future that is meaningful to the Standard Solar Model and neutrino oscillation
- Constraining the $214\mathrm{Pb}$ rate will further improve the sensitivity to solar pp neutrinos

Coherent Elastic Neutrino Nucleus Scattering (CEvNS)

Neutrino fog (floor) PRL 127, 251802 (2021) Gradient of discovery limit, $n = -(d \ln \sigma / d \ln N)^{-1}$ 3 5 10 8 11 $10[°]$ **CDMS** 10^{-44} $10[°]$ -4 SI WIMP-nucleon cross section [cm²] **DarkSide** Neutrino "floor" 10^{-45} 9 10^{-42} Neutrino fog $[\mathrm{cm}^2]$ 10^{-46} -43 $10[°]$ 10^{-47} 10^{-48} 10^{-45} 12 10^{-46} 10 10^{-47} и 10^{-48} $^{-4}$ $10[°]$ **Xenon** $10[°]$ $10⁰$ $10¹$ $10²$ 10^{3} $10⁴$ $10²$ $10⁵$ 10^{8} 10^{-1} Number of ⁸B events WIMP mass [GeV/ c^2]

- Neutrinos can coherently scatter with nuclei when its wavelength is similar to the size of nuclei
- CEvNS is a process predicted by the Standard Model, therefore a good probe for new physics
- CEvNS from solar ${}^{8}B$ neutrinos is a "known" background for WIMPs, better to be measured beforehand!

How to detect CEvNS?

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†]

National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering. We will discuss these problems at the end of this note, but first we wish to present the theoretical ideas relevant to the experiments.

- Theory prediction made in 1974 while the first experimental observation is 43 years later by the COHERENT **Collaboration**
- So far only observed in CsI and argon
- The keys for CEvNS detection are
	- low threshold
	- low backgrounds
- Main Background: AC background
- Suppress lone S1/S2 rate
- Check event (S1S2) pairing

34

Why lower detection threshold?

Nuclear recoil spectrum of solar B-8 neutrinos,
2 Nuclear recoil spectrum of 30 GeV/ c^2 WIMPs similar to that of 6 GeV/ c^2 WIMPs

How to lower threshold?

Lower S1 detection threshold:

Tight coincidence requirement for S1: 3 fold -> 2 fold \Rightarrow Signal rate increases by a factor of \sim 20

Increase electron lifetime:

Increase S2 detection efficiency by increasing electron lifetime (effectively lower S2 detection threshold)

Liquid xenon purification system

Summary

- XENONnT has achieved an unprecedented ER background rate of (15.8 ± 1.3) events/(t y keV) below 30 keV, the lowest in a dark matter detector
- The first WIMP result from XENONnT has placed stringent limits for WIMPs with the minimum of $2.58\times10^{-47}\,\mathrm{cm}^2$ for a mass of 28 GeV/ $c^{\rm 2}$
- (15.8 \pm keV, the
The firs
has pla
with th
for a m
XENON
extend
8 B neu
neutrin
tuned! • XENONnT is currently taking data and extending its science potential to solar ${}^{8}B$ neutrinos via CEvNS and solar pp neutrinos via electron scattering. Stay tuned!

