FARICH option for the PID system of the Super C-Tau Factory project.

Alexander Barnyakov

on behalf of BINP group of SCT-collaboration

Budker Institute of Nuclear Physics & Novosibirsk State Technical University , Novosibirsk, Russia

- **SCTF project overview**
- **R&Ds status in BINP**
- **PID system**
	- **FARICH technique progress**
	- **FARICH with dual aerogel radiator concept**
- **Summary**

19 August 2023

University of Science and Technology of China (USTC), Hefei, China

The SCT experiment

- Ø Super charm-tau factory is +− collider, dedicated to precision study of properties of charm-quark, τ lepton, study of strong interactions, search of BSM physics
	- o Beam energy from 1.5 (1.0) to 3.5 GeV
	- Luminosity $\mathcal{L} = 10^{35}$ cm⁻²s⁻¹ @ 2 GeV
	- \circ Longitudinal polarization of the e^- beams
- Experiments will be conducted using state-of- the-art general purpose detector
	- \circ Tracking (including low p_t)
	- \circ Calorimetry (high resolution, fast, π^0/γ sep.)
	- o PID system:
		- \circ $\pi /_{K}$ separation up to 3.5 GeV/c
		- \circ $\frac{\mu}{\pi}$ separation up to 1.5 GeV/c

1.

The SCT energy range

$$
R \equiv \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma_0(e^+e^- \to \mu^+\mu^-)}
$$

Threshold production of nonrelativistic particles provides best conditions for their comprehensive study

SCT Physics in a nutshell

On some accelerator R&Ds progress

"Reliable" parameters of the collider

2022: – Reliable structure of the collider

was developed

– Touschek lifetime ~300 s

$$
-L = 0.3 \div 1.0 \cdot 10^{35} \text{cm}^{-2} \text{s}^{-1}
$$

–It is necessary to check IBS and beam-beam effects with help of simulation

– Possibility of prototyping is considered now

Final Focus lens prototyping

Concept design of SC FF lens Direct Double Helical (DDH) technology *2 concentric coil at 2 cylinders*

2022:

- Cryogenic system for FF lens is designed
- Project of SC FF lenses:
	- Compensated coil
	- Screen coil
	- SC coils production technology
	- Thermal loads calculation
	- Safety system
	- Coil holders calculation
	- Magnetic fields of FF lens calculation
	- First prototype of FF lens is under production
	- Testbench for magnetic measurements with FF lens is prepared
- Procedure of mechanical uncertainties measurements with high accuracy (~50 мкм) for FF lens assemblage is considered

Production and magnetic tests are expected until the end of 2023

USTC, 19 Aug. 2023, Hefei 9

Electron RF gun

Transverse Emittance

On some detector R&Ds progress

Detector concept

TPC with readout based on GEM

• Full simulation package for IT based on TPC-GEM

- IT prototype based on TPC-GEM project:
	- Investigate different gas mixtures
	- Test various MPGD options for readout (GEM + muRWELL or GEM + Thick RWELL),
	- To compare different options of RO electronics
- Some nodes of prototype still are under production
- Dependence of spatial resolution on RO structure pixel size is investigated with help of calculations. Optimal pixel size for several gas mixtures is $0.7 \div 1.0$ mm.

Drift Chamber with hexogonal cells

DC prototypes

Small prototype:

- Diameter 70 mm
- Length 300 mm
- 7 hexagonal cells
- Launched in operation in 2022

Large prototype:

- Diameter 278 mm
- Length 2 000 mm
- 3 superlayers: A-UV-A
- 156 hexagonal clls
- Design is developed
- Production in 2023-2024.

Spatial resolution measurements with small prototype

Full spatial resolution for He/C3H8 mixture

Contribution of each component to resolution

The spatial resolution comparison for He/C_3H_8 and He/C_2H_6 at $7 \cdot 10^4$

 He/C_3H_8 and He/C_2H_6 at the different gas gains

$$
\sigma(r)=\sqrt{\sigma_{cl}+\sigma_{dif}+\sigma_{edge}+\sigma_{0}}
$$

 σ_{cl} - cluster effect, σ_{dif} - diffusion component, $\sigma_{ed,oe}$ - edge effects, σ_0 - constant (contributions from electronics, wire arrangements, pressure, temperature)

For He/C_3H_8 : $\bar{\sigma} = 109 \pm 12 \ \mu$ m at $2 \cdot 10^4$ $\bar{\sigma} = 100 \pm 8$ µm at $3 \cdot 10^4$ $\bar{\sigma} = 95 \pm 9$ µm at $5 \cdot 10^4$ $\bar{\sigma} = 89 \pm 8$ µm at $7 \cdot 10^4$ $\bar{\sigma} = 87 \pm 7$ µm at 10^5

For $He/C₂H₆$: $\bar{\sigma} = 99 \pm 6$ µm at $5 \cdot 10^4$ $\bar{\sigma} = 95 \pm 8$ µm at $7 \cdot 10^4$ $\bar{\sigma} = 90 \pm 7$ µm at 10^5

Target spatial resolution is achivable in our DC design!!!

Magnetron sputtering setup

2022:

- Stable procedure of sputtering for Ni, Ag (or Au) 40 и 50 um at wires (Al) was found:
	- thickness up to 70 нм

• speed -4 m/min.

- Au spends $-10\div 15$ g/km for 10 nm thick layer, but recycling of some amount of Au is possible
- There are no overheating and mechanical properties changes effects after sputtering process
- The cover provide easy soldering process and suppress SEE from cathode wire surface
- About 600 m Aluminum wires with ø4 um and ø50 um were covered and delivered to Italy to be tested by MEG2 experiment group

Leakage current of cathode wire irradiated by γ from ⁵⁵Fe (E_{cath}=const; $E_{\rm an}$ =var)

Prototype of pureCsI-calorimeter

PMMA with NOL-9

Hamamatsu APD S8664-55

pCsI calorimeter concept

TBeam June 2023 at the BINP:

CBS gammas were used for energy resolution calibration:

- Two laser modes: 527 nm & 1064 nm
- Five beam energies: 1.9, 2.5, 4.5, 4.75 GeV

• Eight CBS edges for calibration: 64, 111, 225, 361, 402, 441, 730, 812 MeV

pureCsI-calorimeter protype: beam test results

Muon system: scintillator with WLS fibers and SiPMs

Magnetic system

SC cables designed for PANDA

- Several meters were produced and tested
- Technology of long strands (>1 km) production are under development
- We have enough high purity Al for SCTF magnet production (2x3.5 km & 1x1.5 km of cables)
- The similar cables will be used in SPD (NICA) project.

USTC, 19 Aug. 2023, Hefei 21

2022 • Design is well done:

• Three coils made solenoid

 \mathcal{N}

 0.5

- Supports, hangs, holder подвесы, cryotubes, …
- Main calculations are performed
	- Magnetic fields
	- Mechanical loads

Soft Ware for the project

SW is available now for users of BINP clusters and as an image of virtual PC

Aurora Framefork

Release 2.1.0 (December 2022):

- Blocks interaction, system of configuration and linking
- Event generators
- Geometry description (DD4Hep)
- Digitization
- Reconstruction
- Parametric simulation
- Instrumentation (visualization, tests,..)

FARICH – 19 years of R&Ds (since 2004) and only 12 for SCTF project (since 2011)

FARICH technique

2022÷2023

Single photon Cherenkov angle resolution is investigated with relativistic electrons at BINP beam test facilities "Extracted beams of VEPP-4M complex".

25
Thickness of aerogel block, mm

n.≡1.040

20

 $\rho_{cp} = 0.199 \frac{\Gamma}{cm} \gamma_{CM}^3$

10

15

5

 1.04

1.038 $^{\circ}_{0}$

Beam test results

Cherenkov angle Single Photo-Electron (*SPE*) resolution

The excellent single photon Cherenkov angle resolution γ : 8 $mrad$ was achieved with the 4-layer focusing aerogel tiles with dimensions 23x23x3.5 cm for the first time in 2022!!!

This circumstance allows us to consider the FARICH detector design based on 4-layer focusing aerogel tiles with large dimensions (23x23x3.5 cm).

FARICH system for the SCTF

- Proximity focusing RICH
- 4-layer focusing aerogel
	- n_{max} = 1.05 (1.07?), total thickness 35 mm
	- $S_{aer} = 15 m^2$
- 21 m^2 total area of photon detectors
	- SiPMs barrel part (16 m^2)
	- MCP-PMT endcap parts (4 m^2)
- \sim 10⁶ pixels 3x3 mm² with pitch 4 mm

USTC, 19 Aug. 2023, Hefei

FARICH edge effects: simulation & experiment

Photon detector options

Due to axial magnetic field the SiPM is only one possible candidate for the cylindrical part of the FARICH system!!!

For the endacp regions there are three options of photon detectors.

SiPM arrays

- There are several manufacturer in the world including China.
- There is no comercially available SiPM arrays produced in Russia for the moment, but some R&Ds are going now.
- Estimated cost of such detector option is about 100\$/cm2
- It is required to develop and produce special R/O electronics and cooling system to operate with SiPMs in SPD detector conditions

KETEK PA3325-WB-0808 (BroadCom, USA)

MCP-PMT

- There are several manufacturer in the world including China.
- There is no comercially available position-sensitive MCP-PMTs produced in Russia for the moment, but R&Ds are going now in (Baspik&Ekran FEP).
- There is a very large spread of prices for rectangular position-sensitive MCP-PMT. The best price is about $200\frac{5}{cm^2}$
- PDE is not so high, it is limited by photoelectron collection efficiency (~60%) and geometrical efficiency is worse than for SiPM option.
- Specialised R/O elctronics is already developed for other experiments and could be adopted for the SPD experiment requirements
- There is no such a big problem with intrinsic noise rejecion in comparison with SiPM option

Planacon XP85112 8x8 pixels with 6x6 mm Cost: $15 k$ \$ USTC, 19 Aug. 2023, Hefei 2008 | 2009 | 2009 | 2009 | 2009 | 2009 | 2009 | 2009 | 2009 | 2009 | 2009 | 2009 | 20

HAPD

- Only Hamamtsu produced such devices for the Belle II experiment and now it doesn't produced anymore!
- There is no comercially available HAPDs in Russia for the moment, but R&Ds are going now in ISP SB RAS.
- Price $-$???
- Expected PDE of such devices will less than for SiPM option but signficantly (1.5 times) higher than for MCP-PMT option.
- Expected gain is about $1 \div 2 \cdot 10^5$
- Development of specialised R/O elctronics is needed. It is possible to adopt some Belle II ARICH system expirience.

SiPM array option

もまえまま

JARY-TP3050-8X8C DIMENSIONAL OUTLINES

Joinbon Tech., China

Side view

PA3325-WB-0808 Dimensions

 C_2 $C.1$ \mathbf{u} 12.8 2x SAMTEC ST4-40-1.00-L-D-P-TR KETEK-BroadCom, USA

4.35 Index Marker $1-2$ $1-3$ $1-4$ $1-5$ $1-6$ $1-7$ Joinbon 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 $3-1$ $3-2$ $3-3$ $3-4$ $3-5$ $3-6$ $3-7$ $3-8$ $4-1$ $4-2$ $4-3$ $4-4$ $4-5$ $4-6$ $4-7$ $4-8$ 5-2 5-3 5-4 5-5 5-6 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 JARY-TP3050-8×8C $8-1$ $8-2$ $8-3$ $8-4$ $8-5$ $8-6$ $8-7$ DF12B(3.0)-40DP-0.5V(86) Top view Bottom view

The connector might be changed without notice, please contact our sales before ordering.

- $-$ Endcaps: 2x2490 SiPM arrays 2.7x2.7 cm²
- $-$ Barrel: 18 000 SiPM arrays 2.7x2.7 cm²
- -1 470.7k pixels with 3x3 mm²
- Geometrical Efficiency $\frac{S_{detect}}{S}$ S_{total} $\approx 76 \div 80\%$
- Highly effective cooling sysytem is required!

Position-sensitive MCP-PMT

HRPPD (Income) 10x10 cm; pixel 2.5x2.5 mm

4x4 pixels with 5x5 mm

Planacon XP85112 8x8 pixels with 6x6 mm

Round vs Square MCP-PMT for the RICH

Round vs Square MCP-PMT for the RICH (2) expected FARICH performance

To evaluate expected performance we can use recent FARICH beam test data:

- $N_{pe}^{H12700} \approx 16$
- $CE^{H12700} \approx 0.8$ photoelectron collection efficiency ($CE^{MCP} \approx 0.6$)
- $GE^{TB} \approx 0.8$ Geometrical Efficiency of Test Beam setup (GE^{exp} is determined by fill factor of photon detectors for the experimental setup)

$$
N_{pe}^{expect} = \frac{N_{pe}^{upect} - E^{H12700} \cdot CE^{MCP} \cdot GE^{exp}}{CE^{H12700} \cdot GE^{TPB}}
$$
\n• $GE^{exp} \approx 0.59$
\n• $N_{pe}^{expect} = \frac{16 \cdot 0.6 \cdot 0.59}{0.8 \cdot 0.8} \approx 8.8pe$ (for $\beta = 1$)
\n• $\sigma_{tr}^{\theta} = \frac{\sigma_{SPE}^{\theta}}{\sqrt{N_{pe}}} = \frac{7 \div 8 \text{ mrad}}{\sqrt{8.8}} = 2.3 \div 2.7 \text{ mrad}$
\n• $\sigma_{tr}^{\theta} = \frac{\sigma_{SPE}^{\theta}}{\sqrt{N_{pe}}} = \frac{7 \div 8 \text{ mrad}}{\sqrt{8.8}} = 2.3 \div 2.7 \text{ mrad}$
\n• $\sigma_{tr}^{\theta} = \frac{\sigma_{SPE}^{\theta}}{\sqrt{N_{pe}}} = \frac{7 \div 8 \text{ mrad}}{\sqrt{8.5}} = 2.4 \div 2.7 \text{ mrad}$
\n
$$
\mu/\pi \text{ } @ 1 \text{ GeV/c:}
$$
\n
$$
\frac{\theta_{c}^{\mu} - \theta_{c}^{\pi}}{\theta_{tr}^{\theta}} = \frac{292 - 278}{2.5} = 5.6\sigma
$$
\n
$$
\pi/K \text{ } @ 6 \text{ GeV/c:}
$$
\n
$$
\frac{\theta_{c}^{\pi} - \theta_{c}^{\pi}}{\theta_{tr}^{\theta}} = \frac{309 - 299}{2.5} = 3.9\sigma
$$

R/O electronics cost estimation

There are two modern approaches in development of specialised R/O electronics:

- ASIC (Application Specialised Integrated Circuits)
- FPGA (Field Programable Gate Arrays)

The differences in performance, power consumption and costs are not sufficient today!!!

It was designed and produced by GSI group inspired by experience with DiRICH board. One module readouts 6 SiPM arrays with 8x8 pixels (3x3 mm). Dimensions: 81x54x50 mm. It worked in Germany until the 2022. It doesn't work in Russia.

Power consumption: ~55mW/chan

Both options are not available for us, we are looking for new solution!

Ready to use solution

One ROM readout 2 SiPM; One DAQ board combine info from 8 ROMs Dimensions: 54х26х52 мм

FARICH with dual aerogel radiator

A.Yu.Barnyakov et al., NIMA 1039 (2022) 167044

RICH with dual radiators is not very new idea!

- Liquid + Gas:
	- RICH DELPHI
	- CRID SLD
		- $C_6F_{12}(n=1.278@190nm) + C_5F_{10}(n=1.00174@190nm)$
- Aerogel + Gas:
	- HERMES
	- $RICH1 HCh$
		- Aer.(n=1.03@400nm) + $C_4F_{10}(n=1.00137@400nm)$
- Aerogel + Crystal:
	- RICH+ToF SuperB:
		- Aer.(n=1.05@400nm) + Quartz (n=1.47@400nm)
	- FARICH SuperB:
		- 3-layer aer. $n_{max} = 1.07@400$ nm + NaF (n=1.33@400nm)
- Aerogel + Aerogel:
	- FARICH SCTF:
		- 4-layer aer. $n_{max} = 1.05@400$ nm + aer (n=1.12@400nm)

Aerogel is material with easy tunnable refractive index!

Aerogels with high optical density

Refractive index

The addition of small amount $(0.03 \div 0.06$ mol) of ZrO₂ in SiO₂ based aerogel alow us to produce highly transperant aerogels with high optical density:

- Refractive index up to $n=1.12$
- Rayleigh light scattering length $L_{sc}(400nm)$ up to 30 mm

Beam tests results of FARICH with dual radiator

G4 simulation vs beam test results

X, mm

µ/π-separation via G4 simulation

Summary

- R&Ds on some detector and collider subsystems of the SCTF project are carried out at the BINP and several other Russian institutions as well
- Some fundings for the R&Ds on the project in 2023-2025 are provided by Russian government
- PID system based on FARICH technique is the main option for the SCTF project
	- In 2022-2023 the possibility to produce 15 m2 of "focusing" aerogel Cherenkov radiators with target parameters was demonstrated
	- Recent progress in high opticaly dense aerogel production with help of ZrO2 dope allows us to consider new design of FARICH detector with dual aerogel radiator which able to provide exccelent μ/π – separation from 0.2 up to 1.5 GeV/c
	- For further progress of the FARICH technique it is necessary to develop photon detector options and compatible R/O electronics
- In modern conditions we faced with some issues which are able to delay realization of the SCTF project

Back up slides

Advantages of the SCT factory

- 1. Threshold production of τ leptons and charmed hadrons
	- o Well-defined initial state
	- o Low multiplicity of particles
	- o Kinematic constraints
- 2. Longitudinal polarization of the electron beam
	- \circ Boosted sensitivity to \mathcal{CP} violation in baryons and τ leptons o Measuring the Weinberg angle

3. Coherent $D^0\overline{D}{}^0$ pairs

- \circ Measuring charm mixing and \mathcal{CP} violation with unique techniques
- o Measuring phases of the decay amplitudes

4. Full event reconstruction

o Superior background suppression o Measuring absolute branching fraction of charmed hadrons

LFV and CPV with tau

- \triangleright Allowed in several BSM scenario, including SUSY, leptoquarks, technicolor, and extended Higgs models
- $\geq \mathcal{O}(10^{-9})$ reachable upper limit at SCT for the branching of $\tau \to \mu \gamma$
- \triangleright Requires excellent π / μ separation

$\cal CP$ symmetry breaking

 \triangleright CPV in tau production

$$
J_{EM} \propto F_1 \gamma^{\mu} + \left(\frac{i}{2m_{\tau}} F_2 + \gamma^5 F_3\right) \sigma^{\mu \nu} q_{\nu}
$$

- o Current limit: $|d_τ|$ ≤ 10⁻¹⁷ *e* ⋅ cm
- o Tau EDM with polarized electrons: $\sigma(d_{\tau}) \sim 10^{-20} e \cdot \text{cm}$
- \triangleright CPV in tau decays (e.g., $\tau \to K \pi \nu_{\tau}$)

Beam pola for thes $[PRD]$

History of aerogel radiators in Novosibirsk

- Ø **KEDR ASHIPH** system (VEPP-4М BINP):
	- π /K-separation in the momentum range 0,6÷1,5 GeV/c.
	- Aerogel $n = 1.05$ (V \approx 1000 L).
- Ø **SND ASHIPH** system (VEPP-2000 BINP):
	- π /K-separation in the momentum range 300÷870 MeV/c.
	- Aerogel $n=1,13$ (V~9 L).
- \triangleright **DIRAC-II** (PS CERN):
	- π /K-separation in the momentum range 5,5÷8,0 GeV/c.
	- Aerogel $n = 1,008$ (V~9 L).
- Ø **AMS-02** aerogel RICH (ISS):
	- Search for antimatter, study of cosmic rays.
	- Aerogel $n = 1.05$ (S \approx 1 m²).
- Ø **LHCb** aerogel RICH (LHC CERN):
	- π /K-separation in the momentum range 5,5÷8,0 GeV/c.
	- Aerogel $n = 1.03$ (S \sim 0.5 m²), aerogel tile 20x20x5 cm³.
- Ø **CLAS-12** aerogel RICH (J-Lab):
	- π /K- & K/p-separation at level 4 σ with several momentum GeV/c.
	- Aerogel $n = 1.05$ (S \approx 6 m²), aerogel tile 20x20x2-3 cm³.

Beam tests with FARICH in 2021-2022 at BINP

- Electrons with E=2 GeV are used
- 4 MaPMTs (H12700 from Hamamatsu with pixel 6x6 mm) were used with different masks to reduce effective pixel size:
	- Ø1 mm to investigate contribution from aerogel itself
	- 3x3 mm to measure realistic Single Photon Resoulution (SPR)
- Three GEMs are used at beamline:

 $\left(3\right)$

GEM-detectors

- \checkmark Two before aerogel sample and one behind
- \checkmark It alows us to restore Chernekov angle for each detected photon and mitigate multiple scattering affects at beam-line.

RICH with Fresnel lens

EIC project

Key EIC Characteristics (parameters) $-$ **High particle collision rate** $L = 10^{34}$ cm^{-2} s⁻¹ $\left(\int L dt = 100fb^{-1}/year\right)$ $-$ Large center-of-mass energy range E_{CM} $= 20 \div 140 \; GeV$ $-$ **electrons** 2.5 \div 18 GeV **– protons** $40 \div 275$ GeV (ions: $Z/A \times E_n$) $-$ **Polarized beams** of electrons and ions (up to 70%) $-$ **Large range of ion species** $(p \rightarrow U)$ – At least one **large-acceptance detector** $-$ **Projected budget:** \approx \$2.4 billion $-$ **Start date:** \approx 2031

EIC detector proposals

- **backward** proximity-focus RICH
- **central** high-performance DIRC AC-LGAD TOF
- **forward** dual-radiator RICH

- **backward** AC-LGAD TOF
- **central** high-performance DIRC
- forward dual-radiator RICH

- **backward** modular RICH AC-LGAD TOF
- central high-performance DIRC AC-LGAD TOF forward dual-radiator RICH

AC-LGAD TOF

ပ္ပ

ECCE-PID & mRICH system concepts

ECCE = EIC Comprehensive Chromodynamics Experiment

- **Physics requirements**
	- pion, kaon and proton ID
	- over a wide range $|\eta| \leq 3.5$
	- with better than 3σ separation
	- significant pion/electron suppression

• **Momentum-rapidity coverage**

- forward: up to 50 GeV/c
- central: up to 6 GeV/c
- backward: up to 10 GeV/c

• **Demands different technologies**

• **Cherenkov detectors:**

- \bullet dRICH = dual RICH (aerogel + gas)
- hpDIRC = high-performance DIRC (synthetic fused silica)
- mRICH = modular RICH (aerogel + Fresnel lens)

68 modular counters oriented to IP:

- $-$ aerogel n=1.03 100x100x40 mm³
- acrylic Fresnel lens with focal distance 6"
- position sensitive photon detector HRRPD (MCP-PMT) or SiPM arrays

Aerogel RICH with Fresnel lens

Such approach allows us to improve Cherenkov angle resolution and optimize photo detectors area!

The thick aerogel for mRICH – EIC project

BINP 2022: single block 23x23x4 cm with n=1.027 from BIC

FermiLAB 2021: stack of three 1 cm thickness blocks with n=1.03 from Chiba University

• In both cases there is no reason to make the aerogel thickness more than $(1 \div 2) \cdot L_{sc}$:

$$
N_{out} = N_0 \frac{L_{sc}}{h} \left(1 - e^{-\frac{\bar{h}}{L_{sc}}} \right), \qquad L_{sc} \sim \lambda^4
$$

- In case of approach "stack" the additional Cherenkov photons loss is occurred due to reflectance and scattering on the additional surfaces
- There are two not cut off surfaces in aerogel
	- "Optical surface" $-$ it contacts only with air during the production
	- "Bottom" it contacts with metallic frame during the production processes
- Several configuration of the aerogel Cherenkov radiators were tested with relativistic electron beams at BINP beam test facilities in 2022. ⁵⁴ USTC, 19 Aug. 2023, Hefei

Cherenkov angle single photon resolution (SPR)

USTC, 19 Aug. 2023, Hefei

FARICH system concept for SCTF project Focusing Aerogel RICH approach FORD RESOLUTE PROJECT FARICH system for SCTF project

Variable *n* allows to increase N_{pe} using thicker radiator without compromising σ_{Θ_c}

> T.Iijima et al., NIM A548 (2005) 383 A.Yu.Barnyakov et al., NIM A553 (2005) 70

Main requirements for PID system:

- π/K separation $> 4\sigma$ up to 3.5 GeV/c
- μ/π suppression \sim 1/40 for 0.5 \div 1.2 GeV/c
- Below 0.2 GeV/c μ/π separation could be performed with help of tracking system by means dE/dx technique (cluster counting mode) or with ToF technique using Cherenkov light from entrance window of fast photon detectors ($TTS \leq 100 ps$)
- FARICH with dual radiator was considered to provide π/K separation in momentum range $0.2 \div 0.5 \frac{GeV}{c}$

- Proximity focusing RICH
- 4-layer or gradient aerogel radiator n_{max} = 1.05 (1.07?), 35 mm thickness
- 21 m² total photon detector area
	- SiPMs in barrel (16 m^2)
	- MCP PMTs in endcaps (5 m^2)
- \sim 10⁶ pixels with 4 mm pitch & 3x3 mm² sensitive area

2012 test beam: μ/π separation >3σ at

A.Yu. Barnyakov, et al., NIM A 732 (2013) 35

P=1 GeV/c was demonstrated

Expected $e/\mu/\pi$ – separation with FARICH up to 1.5 GeV/c

[−]²⁰⁰ [−]¹⁰⁰ ⁰ ¹⁰⁰ ²⁰⁰ X, mm

0.255 0.26 0.265 0.27 0.275 0.28 0.285 0.29 0.295
Θ_{ετ}rad

0

−100