PAUL SCHERRER INSTITUT

Martin Grossmann

Senior Technical Adviser :: Center for Proton Therapy :: Paul Scherrer Institute

Protontherapy: 30 years experience and current research at PSI

Paul Scherrer Institute

250 MeV proton cyclotron

Proton therapy

Synchrotron light source

SwissFEL

90 MeV proton cyclotron

Why Radiotherapy with Protons?

Proton therapy

Mass: ~200 tons

Diameter: ~8 m

Conventional therapy (LINAC)

Main parts of a particle treatment facility

Efforts to reduce cost / increase accesibility

For many cases full flexibility of Gantry is not required:

- Treatment chair
- Fixed beam
- CT for imaging

Efforts to reduce cost / increase accesibility

HFCIM, Hefei/China

PSI's OPTIS program

- Treating Eye Melanoma
- Collaboration with eye clinic in Lausanne
 (Hépital Ophtalmique Jules Conin

(Hôpital Ophtalmique Jules Gonin, Prof. L. Zografos)

PSI's OPTIS program

- Since 1984: treated more than 8'500 patients
- 98% cure (local tumor control)
- Conservation of vision 100% for small tumors 90% for big tumors

Protons are the standard!

Gantry 1: A compact system for spot scanning

Scanning-Technology is today's standard

Source: S. Psoroulas, D. Meer PSI

Gantry 2: next generation spot scanning

Easy access to patient at all times

- Rotation limited to 210°
- Patient table rotatable 180°
 (→ still full flexibility)
- No pit

Fast scanning in 2 dimensions

- Re-scanning possible
- Parallel Scanning
- Field size 12 x 20 cm

Fast energy change \rightarrow 3rd dimension

- Energy step < 100 ms
- Re-scanning possible in 3 dimensions

Gantry 2: next generation spot scanning

Treating small children

- Since 2004 treatments of small children
 → anesthesia team from children's hospital in Zurich
- Ca. 700 patients


```
PAUL SCHERRER INSTITUT
```


Improvements in scanning technology

Discrete spot scanning

- Switching off the beam after each spot
- Dead time per spot ~3 ms.
 - Typically field: 10'000 spots
 - \rightarrow 30 s dead time, scales with number of re-scans!
- Accurate dose delivery
- Spot scanning is actual operation mode of Gantry 2

Continuous line scanning

- Paint lines of dose with continuous beam on using
 - Beam intensity modulation
 - Beam motion speed modulation
- For efficient and effective repainting
- Operational in experimental mode, in development

Proton beam intensity modulation

- Fast electrostatic beam deflection inside cyclotron (< 50 µs)
- Switch beam on/off
- Intensity modulation
- Little activation of the cyclotron

Continuous line (18 cm) with linear increasing vertical deflector voltage

Video: Virtual Tour of PSI Protontherapy

in YouTube: search «psi protontherapy»

https://www.bilibili.com/video/BV1cQ4y1d7po

FLASH radiotherapy

- FLASH: application of therapeutic dose in very short time
- \rightarrow extremely high dose rates (1000 higher than standard)
- "FLASH-effect": for a given dose, sparing of healthy tissue is better if dose is applied in very short time

V. Favaudon et al., "Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumour tissue in mice", *Science Translational Medicine* 6, 2014

FLASH radiotherapy

Vozenin, et al, The advantage of Flash RT confirmed in mini-pig and cat-cancer patients." Clinical Cancer Research. 2018;

FLASH radiotherapy

First human patient treated with FLASH

Day 0

5 months

Electrons 166 Gy/s

Jean Bourhis et al., «Treatment of a first patient with FLASH-radiotherapy», Radiotherapy and Oncology. 2019

FLASH protontherapy

- Most (important) protontherapy vendors have demonstrated they can reach FLASH dose rates
 - IBA: Groningen, Dresden
 - Varian: Cincinatti
- Biological experiment performed in Dresden
 - Published October 2019
 - No FLASH effect observed $\ensuremath{\mathfrak{S}}$

 \rightarrow More experiments required!

E. Beyreuther et al., "Feasibility of proton FLASH effect tested by zebrafish embryo irradiation", Radiotherapy and Oncology 139, 2019

Beamline Transmission

- We CAN operate at high energies with full transmission
- Gantry 1 is designed to transport high energies (250 MeV)
- Gantry 1 can provide energy modulation
- \rightarrow bring full current from cyclotron (800 nA) to isocentre
- \rightarrow Dose rate >1000 higher as in standard operations
- Gantry 1 "resurrection": restart after 10 months shutdown
 Everything still working ⁽ⁱ⁾
- First experiments with high-transmission beam tunes Nov 2019
 - We are very close to 100% transmission

Input current from cyclotron 0.2 nA X&Y profile monitor on Gantry 1, integrated current

Demo experiment January 2020
 → reach dose rates up to 9'000 Gy/s

Nesteruk et al., Medical Physics 2021 https://doi.org/10.1002/mp.14933

Togno et al., Physica Medica 2022 https://doi.org/10.1016/j.ejmp.2022.10.019

Radiobiological experiments with CHUV

- Irradiation of zebrafish embryos
- Experiments conducted 2020 2021
 - Shoot-through only
 - Maximum dose rate (1000 Gy/s), standard dose rate (10 Gy/s)
 - 20 eggs in each 0.2 mL sample with water
 - 2-3 mm beam with a constant dose rate (within 5 %)
 - Total dose uncertainty < 5%
 - Irradiation 6h and 24h post-fertilization
 - All the samples must be irradiated within 30 min
- Endpoint development of the embryos

©Harvard University

©U of Washington

Beam structures

Proton Cyclotron CONV

Proton

FLASH

Cyclotron

ZF embryos as rapidly-responding in-vivo model (acute toxicity)

Measurements of

- 1. Survival
- radiation-induced alteration estimated with measurements 5 day post fertilization

Dose rate effect for electrons, but not so much for protons

Kacem et al., *Radiotherapy and Oncology*, in press <u>https://doi.org/10.1016/j.radonc.2022.07.011</u>

Zebrafish embryos: Morphological analysis

Protons have minimal impact on growth and survival

Kacem et al., *Radiotherapy and Oncology*, in press <u>https://doi.org/10.1016/j.radonc.2022.07.011</u>

Neurocognitive response

Novel Object Recognition (NOR)

• Novel Object Recognition (NOR)

• Novel Object Recognition (NOR)

Proton FLASH irradiations of mice

• Experiments at PSI ongoing since November 2021

Neurocognitive response

Recognition Ratio (%)

Neurocognitive response

Recognition Ratio (%)

\rightarrow PET/CT

Proton FLASH irradiations of mice

