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Since I will be talking about Machine Learning and now is 2023…
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Since I will be talking about Machine Learning and now is 2023…
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A few seconds later…
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A few seconds later…
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That’s all for today.  
Thank you!



G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r H
ig

h 
En

er
gy

 P
hy

sic
s 

- D
ec

em
be

r 8
, 2

02
3 

- H
ui

lin
 Q

u 
(C

ER
N

)

THE EVOLUTION OF ARTIFICIAL INTELLIGENCE
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Siri (Apple, 2011) ChatGPT (OpenAI, 2022)
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THE EVOLUTION OF ARTIFICIAL INTELLIGENCE
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LLM DATASET SIZE INCREASES 2018-2022

LifeArchitect.ai/viz

Raw dataset sizes. Linear scale, with cut-out near 10TB. Sources: https://lifearchitect.ai/papers/ Alan D. Thompson. December 2021. https://lifearchitect.ai/
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10,500

Ever-increasing dataset

Larger and larger models

Exponential growth of compute
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THE EVOLUTION OF AI FOR SCIENCE
AlphaFold2: reaching atomic accuracy on protein structure prediction 

based on Transformer models — the ML technology behind ChatGPT

9
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representation—for a pairwise description of amino acids to be represent-
able as a single 3D structure, many constraints must be satisfied including 
the triangle inequality on distances. On the basis of this intuition, we 
arrange the update operations on the pair representation in terms of 
triangles of edges involving three different nodes (Fig. 3c). In particular, 
we add an extra logit bias to axial attention31 to include the ‘missing edge’ 
of the triangle and we define a non-attention update operation ‘triangle 
multiplicative update’ that uses two edges to update the missing third 
edge (see Supplementary Methods 1.6.5 for details). The triangle multipli-
cative update was developed originally as a more symmetric and cheaper 
replacement for the attention, and networks that use only the attention or 
multiplicative update are both able to produce high-accuracy structures. 
However, the combination of the two updates is more accurate.

We also use a variant of axial attention within the MSA representation. 
During the per-sequence attention in the MSA, we project additional 
logits from the pair stack to bias the MSA attention. This closes the loop 
by providing information flow from the pair representation back into 
the MSA representation, ensuring that the overall Evoformer block is 
able to fully mix information between the pair and MSA representations 
and prepare for structure generation within the structure module.

 
End-to-end structure prediction
The structure module (Fig. 3d) operates on a concrete 3D backbone 
structure using the pair representation and the original sequence row 
(single representation) of the MSA representation from the trunk. The 
3D backbone structure is represented as Nres independent rotations 
and translations, each with respect to the global frame (residue gas) 
(Fig. 3e). These rotations and translations—representing the geometry 
of the N-Cα-C atoms—prioritize the orientation of the protein back-
bone so that the location of the side chain of each residue is highly 
constrained within that frame. Conversely, the peptide bond geometry 
is completely unconstrained and the network is observed to frequently 
violate the chain constraint during the application of the structure mod-
ule as breaking this constraint enables the local refinement of all parts 
of the chain without solving complex loop closure problems. Satisfac-
tion of the peptide bond geometry is encouraged during fine-tuning 
by a violation loss term. Exact enforcement of peptide bond geometry 
is only achieved in the post-prediction relaxation of the structure by 
gradient descent in the Amber32 force field. Empirically, this final relaxa-
tion does not improve the accuracy of the model as measured by the 
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Fig. 3 | Architectural details. a, Evoformer block. Arrows show the information 
flow. The shape of the arrays is shown in parentheses. b, The pair representation 
interpreted as directed edges in a graph. c, Triangle multiplicative update and 
triangle self-attention. The circles represent residues. Entries in the pair 
representation are illustrated as directed edges and in each diagram, the edge 
being updated is ij. d, Structure module including Invariant point attention (IPA) 

module. The single representation is a copy of the first row of the MSA 
representation. e, Residue gas: a representation of each residue as one 
free-floating rigid body for the backbone (blue triangles) and χ angles for the 
side chains (green circles). The corresponding atomic structure is shown below. 
f, Frame aligned point error (FAPE). Green, predicted structure; grey, true 
structure; (Rk, tk), frames; xi, atom positions.
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for the participating methods, and has long served as the gold-standard 
assessment for the accuracy of structure prediction25,26.

In CASP14, AlphaFold structures were vastly more accurate than 
competing methods. AlphaFold structures had a median backbone 
accuracy of 0.96 Å r.m.s.d.95 (Cα root-mean-square deviation at 95% 
residue coverage) (95% confidence interval = 0.85–1.16 Å) whereas 
the next best performing method had a median backbone accuracy 
of 2.8 Å r.m.s.d.95 (95% confidence interval = 2.7–4.0 Å) (measured on 
CASP domains; see Fig. 1a for backbone accuracy and Supplementary 
Fig. 14 for all-atom accuracy). As a comparison point for this accuracy, 
the width of a carbon atom is approximately 1.4 Å. In addition to very 
accurate domain structures (Fig. 1b), AlphaFold is able to produce 
highly accurate side chains (Fig. 1c) when the backbone is highly accu-
rate and considerably improves over template-based methods even 
when strong templates are available. The all-atom accuracy of Alpha-
Fold was 1.5 Å r.m.s.d.95 (95% confidence interval = 1.2–1.6 Å) compared 
with the 3.5 Å r.m.s.d.95 (95% confidence interval = 3.1–4.2 Å) of the best 
alternative method. Our methods are scalable to very long proteins with 
accurate domains and domain-packing (see Fig. 1d for the prediction 
of a 2,180-residue protein with no structural homologues). Finally, the 
model is able to provide precise, per-residue estimates of its reliability 
that should enable the confident use of these predictions.

We demonstrate in Fig. 2a that the high accuracy that AlphaFold dem-
onstrated in CASP14 extends to a large sample of recently released PDB 

structures; in this dataset, all structures were deposited in the PDB after 
our training data cut-off and are analysed as full chains (see Methods, 
Supplementary Fig. 15 and Supplementary Table 6 for more details). 
Furthermore, we observe high side-chain accuracy when the back-
bone prediction is accurate (Fig. 2b) and we show that our confidence 
measure, the predicted local-distance difference test (pLDDT), reliably 
predicts the Cα local-distance difference test (lDDT-Cα) accuracy of the 
corresponding prediction (Fig. 2c). We also find that the global super-
position metric template modelling score (TM-score)27 can be accu-
rately estimated (Fig. 2d). Overall, these analyses validate that the high 
accuracy and reliability of AlphaFold on CASP14 proteins also transfers 
to an uncurated collection of recent PDB submissions, as would be 
expected (see Supplementary Methods 1.15 and Supplementary Fig. 11 
for confirmation that this high accuracy extends to new folds).

The AlphaFold network
AlphaFold greatly improves the accuracy of structure prediction by 
incorporating novel neural network architectures and training proce-
dures based on the evolutionary, physical and geometric constraints 
of protein structures. In particular, we demonstrate a new architecture 
to jointly embed multiple sequence alignments (MSAs) and pairwise 
features, a new output representation and associated loss that enable 
accurate end-to-end structure prediction, a new equivariant attention 

a

G
42

7
A

lp
ha

Fo
ld

G
00

9
G

47
3

G
12

9
G

40
3

G
03

2
G

42
0

G
48

0
G

49
8

G
48

8
G

36
8

G
32

4
G

36
2

G
25

3
G

21
6

0

1

2

3

4

M
ed

ia
n 

C
α 

r.m
.s

.d
. 95

 (Å
)

b

C terminus

N terminus

AlphaFold Experiment
r.m.s.d.95 = 0.8 Å; TM-score = 0.93

c

AlphaFold Experiment
r.m.s.d. = 0.59 Å within 8 Å of Zn

d

AlphaFold Experiment
r.m.s.d.95 = 2.2 Å; TM-score = 0.96

MSA

3D structure

Low 
confidence

High 
confidence

Templates

Input sequence

MSA 
representation

(s,r,c)

Evoformer 
(48 blocks)

Structure 
module

 (8 blocks)

+

+

← Recycling (three times)

Pairing
Pair 

representation
(r,r,c)

Pair 
representation

(r,r,c)

Genetic 
database

search

Structure 
database

search

e

Single repr. (r,c)

Fig. 1 | AlphaFold produces highly accurate structures. a, The performance 
of AlphaFold on the CASP14 dataset (n = 87 protein domains) relative to the top-
15 entries (out of 146 entries), group numbers correspond to the numbers 
assigned to entrants by CASP. Data are median and the 95% confidence interval 
of the median, estimated from 10,000 bootstrap samples. b, Our prediction of 
CASP14 target T1049 (PDB 6Y4F, blue) compared with the true (experimental) 
structure (green). Four residues in the C terminus of the crystal structure are 
B-factor outliers and are not depicted. c, CASP14 target T1056 (PDB 6YJ1).  

An example of a well-predicted zinc-binding site (AlphaFold has accurate side 
chains even though it does not explicitly predict the zinc ion). d, CASP target 
T1044 (PDB 6VR4)—a 2,180-residue single chain—was predicted with correct 
domain packing (the prediction was made after CASP using AlphaFold without 
intervention). e, Model architecture. Arrows show the information flow among 
the various components described in this paper. Array shapes are shown in 
parentheses with s, number of sequences (Nseq in the main text); r, number of 
residues (Nres in the main text); c, number of channels.
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for the participating methods, and has long served as the gold-standard 
assessment for the accuracy of structure prediction25,26.

In CASP14, AlphaFold structures were vastly more accurate than 
competing methods. AlphaFold structures had a median backbone 
accuracy of 0.96 Å r.m.s.d.95 (Cα root-mean-square deviation at 95% 
residue coverage) (95% confidence interval = 0.85–1.16 Å) whereas 
the next best performing method had a median backbone accuracy 
of 2.8 Å r.m.s.d.95 (95% confidence interval = 2.7–4.0 Å) (measured on 
CASP domains; see Fig. 1a for backbone accuracy and Supplementary 
Fig. 14 for all-atom accuracy). As a comparison point for this accuracy, 
the width of a carbon atom is approximately 1.4 Å. In addition to very 
accurate domain structures (Fig. 1b), AlphaFold is able to produce 
highly accurate side chains (Fig. 1c) when the backbone is highly accu-
rate and considerably improves over template-based methods even 
when strong templates are available. The all-atom accuracy of Alpha-
Fold was 1.5 Å r.m.s.d.95 (95% confidence interval = 1.2–1.6 Å) compared 
with the 3.5 Å r.m.s.d.95 (95% confidence interval = 3.1–4.2 Å) of the best 
alternative method. Our methods are scalable to very long proteins with 
accurate domains and domain-packing (see Fig. 1d for the prediction 
of a 2,180-residue protein with no structural homologues). Finally, the 
model is able to provide precise, per-residue estimates of its reliability 
that should enable the confident use of these predictions.

We demonstrate in Fig. 2a that the high accuracy that AlphaFold dem-
onstrated in CASP14 extends to a large sample of recently released PDB 

structures; in this dataset, all structures were deposited in the PDB after 
our training data cut-off and are analysed as full chains (see Methods, 
Supplementary Fig. 15 and Supplementary Table 6 for more details). 
Furthermore, we observe high side-chain accuracy when the back-
bone prediction is accurate (Fig. 2b) and we show that our confidence 
measure, the predicted local-distance difference test (pLDDT), reliably 
predicts the Cα local-distance difference test (lDDT-Cα) accuracy of the 
corresponding prediction (Fig. 2c). We also find that the global super-
position metric template modelling score (TM-score)27 can be accu-
rately estimated (Fig. 2d). Overall, these analyses validate that the high 
accuracy and reliability of AlphaFold on CASP14 proteins also transfers 
to an uncurated collection of recent PDB submissions, as would be 
expected (see Supplementary Methods 1.15 and Supplementary Fig. 11 
for confirmation that this high accuracy extends to new folds).

The AlphaFold network
AlphaFold greatly improves the accuracy of structure prediction by 
incorporating novel neural network architectures and training proce-
dures based on the evolutionary, physical and geometric constraints 
of protein structures. In particular, we demonstrate a new architecture 
to jointly embed multiple sequence alignments (MSAs) and pairwise 
features, a new output representation and associated loss that enable 
accurate end-to-end structure prediction, a new equivariant attention 
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Fig. 1 | AlphaFold produces highly accurate structures. a, The performance 
of AlphaFold on the CASP14 dataset (n = 87 protein domains) relative to the top-
15 entries (out of 146 entries), group numbers correspond to the numbers 
assigned to entrants by CASP. Data are median and the 95% confidence interval 
of the median, estimated from 10,000 bootstrap samples. b, Our prediction of 
CASP14 target T1049 (PDB 6Y4F, blue) compared with the true (experimental) 
structure (green). Four residues in the C terminus of the crystal structure are 
B-factor outliers and are not depicted. c, CASP14 target T1056 (PDB 6YJ1).  

An example of a well-predicted zinc-binding site (AlphaFold has accurate side 
chains even though it does not explicitly predict the zinc ion). d, CASP target 
T1044 (PDB 6VR4)—a 2,180-residue single chain—was predicted with correct 
domain packing (the prediction was made after CASP using AlphaFold without 
intervention). e, Model architecture. Arrows show the information flow among 
the various components described in this paper. Array shapes are shown in 
parentheses with s, number of sequences (Nseq in the main text); r, number of 
residues (Nres in the main text); c, number of channels.
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THE DATA CHALLENGE IN HIGH ENERGY PHYSICS

10
Large volume of data, complex topology, …

HEP
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AI + HEP:  AT THE COLLISION POINT

11
Large volume of data, complex topology, …

Collimate HEP and AI to 
make them collide!

?

AI

HEP



A JOURNEY THROUGH GRAPH NEURAL NETWORKS
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MACHINE LEARNING 101
“Machine learning is just curve fitting” 

but…

13

Curve fitting Machine learning

Input data: {xi} Low dimensional (1D/2D) 
Few points O(10-100)

High dimensional (≫100) 
Huge data sample (≫1M)

Model: fθ(x) Simple functions with few 
parameters

Complex functions with highly special 
structures (CNNs, RNNs, Transformers, etc.) 

and a large number of parameters  
(103 to 109)

Optimization  
algorithm

Minimization of chi square / 
likelihood / etc.

Minimization of task-specific loss functions 
(e.g., cross entropy for classification,  

MSE/MAE for regression, etc.) 

(esp. Deep Neural Networks)
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DATA REPRESENTATION

14

×

MLHEP

First and foremost: 
How to represent the data?

Collision events, detector hits, sensor arrays, …



G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r H
ig

h 
En

er
gy

 P
hy

sic
s 

- D
ec

em
be

r 8
, 2

02
3 

- H
ui

lin
 Q

u 
(C

ER
N

)

DATA REPRESENTATION: IMAGE

15

Image

Image-Based Jet Analysis 3

the detector measurements directly, rather than relying on jet features de-
veloped using physics domain knowledge, additional discrimination power
could be extracted. Deep learning approaches surpass such linear meth-
ods, but build on this notion of learning discriminating information from
detector observables rather than engineered features.

Fig. 1.: An example jet image of a Lorentz boosted top quark jet after
preprocessing has been applied [10].

While designed to take advantage of advances in computer vision, jet im-
ages have notable di↵erences with respect to typical natural images in CV.
Jet images are sparse, with most pixels in the image having zero content.
This is markedly di↵erent from natural images that tend to have all pixels
containing content. Moreover, jet images tend to have multiple localized
regions of high density in addition to di↵usely located pixels throughout
the image, as opposed to the smooth structures typically found in natural
images. An example top quark jet image illustrating these features can
be seen in Figure 1. These di↵erences can lead to notable challenges, for
instance the number of parameters used in jet image models (and conse-
quently the training time) tend to be large to account for the size of the
image, even though most pixels carry no information. Some techniques
exist for sparse-image computer vision approaches [11], but have not been
explored in depth within the jet image community.

This text will first discuss jets and typical jet physics in Section 2. The

Convert to 2D/3D image => Computer vision  

then use convolutional neural networks (CNNs) 

but:  

inhomogeneous geometry, high sparsity, …

e.g., review in Kagan, arXiv:2012.09719

HEP

Collision events, detector hits, sensor arrays, …
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DATA REPRESENTATION: SEQUENCE
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Sequence

S1 S2 Sn. . .

I1 I2 In. . .
Input

Sequence

LSTM

States

MLP

Output

e.g., Guest, Collado, Baldi, Hsu, Urban, Whiteson
arXiv: 1607.08633

Convert to a sequence => Natural language processing (NLP) 

recurrent neural network (RNN), e.g., GRU/LSTM; 1D CNNs; etc.

HEP

Collision events, detector hits, sensor arrays, …
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DATA REPRESENTATION: SEQUENCE?
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1

2

3

1 2 3

3

1

2

31 2

=

How are you

1 2 3

≠

Howare you

1 2 3

SequenceHEP

Convert to a sequence => Natural language processing (NLP) 

recurrent neural network (RNN), e.g., GRU/LSTM; 1D CNNs; etc. 

but: 

must impose an ordering on the particles/hits, which can limit the learning performance

Permutation symmetry
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POINT CLOUD

18

An unordered set of points in space  
(e.g., produced by a LiDAR on self-driving cars)
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DATA REPRESENTATION: POINT CLOUD

19

Point cloud

HEP data as a point cloud 

each particle / detector cell is a point in the cloud 

for each point: (spatial) coordinates + any additional properties (energy/momentum, detector response, …) 

key feature: permutation symmetry

HEP

Collision events, detector hits, sensor arrays, … η
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Point cloud

Desired algorithms for learning on point cloud data 

symmetry-preserving: the outputs should be invariant under permutation of the points 

high expressiveness: capable of fully exploiting the correlations between points 

low computational cost: scalable from O(10) to O(1000) points, and even up to O(1M) points in some cases

HEP

Collision events, detector hits, sensor arrays, … η
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Point cloud

Desired algorithms for learning on point cloud data 

symmetry-preserving: the outputs should be invariant under permutation of the points 

high expressiveness: capable of fully exploiting the correlations between points 

low computational cost: scalable from O(10) to O(1000) points, and even up to O(1M) points in some cases

HEP

Collision events, detector hits, sensor arrays, … η

ϕ

Graph Neural Networks in Particle Physics 8

In practice the �e, �v, and �u are often implemented as a simple trainable neural

network, e.g. a fully connected network. The ⇢e!v, ⇢e!u, and ⇢v!u functions are

typically implemented as permutation invariant reduction operators, such as element-

wise sums, means, or maximums. The ⇢ functions must be permutation invariant if the

GN block is to maintain permutation equivariance.

(a)

GM
<latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit>

GN1
<latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit><latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit><latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit><latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit>

GN2
<latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit>

GNM
<latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit>

. . .
<latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit>G1

<latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit>

G0
<latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit>

GM
<latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit>

G0
<latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit>

GNcore
<latexit sha1_base64="sfcetjjriA53KVhP8LRkSGs9KNA=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUQEXbgouNCVVLAPaEOYTCft0HmEmYlYQn7FjQtF3Poj7vwbJ20W2npg4HDOvdwzJ0oY1cbzvp2V1bX1jc3KVnV7Z3dv3z2odbRMFSZtLJlUvQhpwqggbUMNI71EEcQjRrrR5Lrwu49EaSrFg5kmJOBoJGhMMTJWCt3agCMzVjy7ucvDDEtF8tCtew1vBrhM/JLUQYlW6H4NhhKnnAiDGdK673uJCTKkDMWM5NVBqkmC8ASNSN9SgTjRQTbLnsMTqwxhLJV9wsCZ+nsjQ1zrKY/sZJFUL3qF+J/XT018GWRUJKkhAs8PxSmDRsKiCDikimDDppYgrKjNCvEYKYSNratqS/AXv7xMOmcN32v49+f15lVZRwUcgWNwCnxwAZrgFrRAG2DwBJ7BK3hzcufFeXc+5qMrTrlzCP7A+fwBopiUyw==</latexit><latexit sha1_base64="sfcetjjriA53KVhP8LRkSGs9KNA=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUQEXbgouNCVVLAPaEOYTCft0HmEmYlYQn7FjQtF3Poj7vwbJ20W2npg4HDOvdwzJ0oY1cbzvp2V1bX1jc3KVnV7Z3dv3z2odbRMFSZtLJlUvQhpwqggbUMNI71EEcQjRrrR5Lrwu49EaSrFg5kmJOBoJGhMMTJWCt3agCMzVjy7ucvDDEtF8tCtew1vBrhM/JLUQYlW6H4NhhKnnAiDGdK673uJCTKkDMWM5NVBqkmC8ASNSN9SgTjRQTbLnsMTqwxhLJV9wsCZ+nsjQ1zrKY/sZJFUL3qF+J/XT018GWRUJKkhAs8PxSmDRsKiCDikimDDppYgrKjNCvEYKYSNratqS/AXv7xMOmcN32v49+f15lVZRwUcgWNwCnxwAZrgFrRAG2DwBJ7BK3hzcufFeXc+5qMrTrlzCP7A+fwBopiUyw==</latexit><latexit sha1_base64="sfcetjjriA53KVhP8LRkSGs9KNA=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUQEXbgouNCVVLAPaEOYTCft0HmEmYlYQn7FjQtF3Poj7vwbJ20W2npg4HDOvdwzJ0oY1cbzvp2V1bX1jc3KVnV7Z3dv3z2odbRMFSZtLJlUvQhpwqggbUMNI71EEcQjRrrR5Lrwu49EaSrFg5kmJOBoJGhMMTJWCt3agCMzVjy7ucvDDEtF8tCtew1vBrhM/JLUQYlW6H4NhhKnnAiDGdK673uJCTKkDMWM5NVBqkmC8ASNSN9SgTjRQTbLnsMTqwxhLJV9wsCZ+nsjQ1zrKY/sZJFUL3qF+J/XT018GWRUJKkhAs8PxSmDRsKiCDikimDDppYgrKjNCvEYKYSNratqS/AXv7xMOmcN32v49+f15lVZRwUcgWNwCnxwAZrgFrRAG2DwBJ7BK3hzcufFeXc+5qMrTrlzCP7A+fwBopiUyw==</latexit><latexit sha1_base64="sfcetjjriA53KVhP8LRkSGs9KNA=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUQEXbgouNCVVLAPaEOYTCft0HmEmYlYQn7FjQtF3Poj7vwbJ20W2npg4HDOvdwzJ0oY1cbzvp2V1bX1jc3KVnV7Z3dv3z2odbRMFSZtLJlUvQhpwqggbUMNI71EEcQjRrrR5Lrwu49EaSrFg5kmJOBoJGhMMTJWCt3agCMzVjy7ucvDDEtF8tCtew1vBrhM/JLUQYlW6H4NhhKnnAiDGdK673uJCTKkDMWM5NVBqkmC8ASNSN9SgTjRQTbLnsMTqwxhLJV9wsCZ+nsjQ1zrKY/sZJFUL3qF+J/XT018GWRUJKkhAs8PxSmDRsKiCDikimDDppYgrKjNCvEYKYSNratqS/AXv7xMOmcN32v49+f15lVZRwUcgWNwCnxwAZrgFrRAG2DwBJ7BK3hzcufFeXc+5qMrTrlzCP7A+fwBopiUyw==</latexit>

�M
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Unshared, deep GN stack

Shared, recurrent GN stack

(b)

Figure 4. (a) A GN block (from [13]). An input graph, G = (u, V, E), is processed
and a graph with the same edge structure but di↵erent attributes, G

0 = (u0
, V

0
, E

0),
is returned as output. The component functions are described in Equation 1. (b) GN
blocks can be composed into more complex computational architectures. The top row
shows a sequence of di↵erent GN blocks arranged in series, or depth-wise, fashion. The
bottom row replaces the distinct GN blocks with a shared, recurrent, configuration.

Some key benefits of GNs are that they are generic: if a problem can be expressed

as requiring a graph to be mapped to another graph or some summary output, GNs

are often suitable. They also tend to generalize well to graphs not experienced during

training, because the learning is focused on the edge- and node-level—in fact if the global

block is omitted, the GN is not even aware of the full graph in any of its computations,

as the edge and node blocks take only their respective localities as input. Yet when

multiple GN blocks are arranged in deep or recurrent configurations, as in Figure 4b,

information can be processed and propagated across the graph’s structure, to allow more

Graph neural network - A unified framework

Review in Shlomi, Battaglia, Vlimant, arXiv:2007.13681
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Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.
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Therefore a decision needs to be made about how to construct a graph from the set of

inputs. Di↵erent graph construction methods are illustrated in figure 6. Depending on

the task, one might even want to avoid creating any pairwise relationships between

nodes. If the objects have no pairwise conditional dependence — a DeepSet [53]

architecture with only node and global properties might be more suitable. Edges in

the graph serve 3 roles:

(i) The edges are communication channels among the nodes.

(ii) Input edge features can indicate a relationship between objects, and can encode

physics motivated variables about that relationship (such as �R between objects).

(iii) Latent edges store relational information computed during message-passing,

allowing the network to encode such variables it sees relevant for the task.

In cases where the input sets are small (Nv ⇠ O(10) ) the typical and easiest

choice is to form a fully connected graph, allowing the network to learn which object

relationships are important. In larger sets, as the number of edges between all nodes

increases as Ne / (Nv)2, the computational load of using a neural network to create

an edge representation or compute attention weights becomes prohibitive. One possible

(a) (b)

(c)

Figure 6. Di↵erent methods for constructing the graph. (a) Connecting every node
to every other node (b) Connecting neighboring nodes in some predefined feature space
(c) Connecting neighboring nodes in a learned feature space.

Fully connected graph
- i.e., connect each node 

to all other nodes

Locally connected graph
- i.e., connect each node 

only to neighbor nodes
- k-nearest neighbors
- fixed radius
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Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).
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Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),
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of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.
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A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.
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A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.
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graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)
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GRAPH NETWORKS*
▸ One framework for describing GNNs is “Graph Networks” [arXiv:1806.01261] 

▸ Graph is a triplet of global features, node features, and edge features:  
with “receivers”  and “senders”  (graph connectivity) 

▸ GN is a graph-to-graph function approximator 
▸ Inference divided into three parts: edge block, node block, global block

(u, V, E)
r s

7

e′ k = ϕe(ek, vrk
, vsk

, u) ē′ i = ρe→v(E′ i)
v′ i = ϕv (ē′ i, vi, u) ē′ = ρe→u(E′ )
u′ = ϕu(ē′ , v̄′ , u) v̄′ = ρv→u(V′ )

: message computed for edge  connecting nodes , e′ k k rk sk

*One type of GNN
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functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is
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their corresponding receiving node, ē0i, where E 0
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GRAPH NETWORKS*
▸ One framework for describing GNNs is “Graph Networks” [arXiv:1806.01261] 

▸ Graph is a triplet of global features, node features, and edge features:  
with “receivers”  and “senders”  (graph connectivity) 

▸ GN is a graph-to-graph function approximator 
▸ Inference divided into three parts: edge block, node block, global block
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v′ i = ϕv (ē′ i, vi, u) ē′ = ρe→u(E′ )
u′ = ϕu(ē′ , v̄′ , u) v̄′ = ρv→u(V′ )

: message computed for edge  connecting nodes , e′ k k rk sk

*One type of GNNGRAPH NETWORKS*
▸ One framework for describing GNNs is “Graph Networks” [arXiv:1806.01261] 

▸ Graph is a triplet of global features, node features, and edge features:  
with “receivers”  and “senders”  (graph connectivity) 

▸ GN is a graph-to-graph function approximator 
▸ Inference divided into three parts: edge block, node block, global block
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u′ = ϕu(ē′ , v̄′ , u) v̄′ = ρv→u(V′ )

: message computed for edge  connecting nodes , e′ k k rk sk

: node feature update based on aggregated messages and  
previous features
v′ i

*One type of GNN
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Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.
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ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
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A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.
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ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
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2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.
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A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.
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GRAPH NETWORKS*
▸ One framework for describing GNNs is “Graph Networks” [arXiv:1806.01261] 

▸ Graph is a triplet of global features, node features, and edge features:  
with “receivers”  and “senders”  (graph connectivity) 
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Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).
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Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are
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ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.
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, u) ē′ i = ρe→v(E′ i)
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model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
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ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
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a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.
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(a) (b)

Figure 3. The internal components of a GN block are update functions and
aggregation functions. (a) The update functions take a set of objects with a fixed
size representation, and apply the same function to each of the elements in the set,
resulting in an updated representation (also with a fixed size). (b) The aggregation
functions take a set of objects and create one fixed size representation for the entire
set, by using some order invariant function to group together the representations of
the objects (such as an element-wise sum).

2.2. The Graph Network Formalism

Here we focus on the graph network (GN) formalism [13], which generalizes various

GNNs, as well as other methods (e.g., Transformer-style self-attention [48]). GNs are

graph-to-graph functions, whose output graphs have the same node and edge structure

as the input. Adopting [13]’s formalism, a graph can be represented by, G = (u, V, E),

with Nv vertices and Ne edges. The u represents graph-level attributes. The set of nodes

(or vertices) are V = {vi}i=1:Nv , where vi represents the i-th node’s attributes. The set

of edges are E = {(ek, rk, sk)}k=1:Ne , where ek represents the k-th edge’s attributes, and

rk and sk are the indices of the two (receiver and sender, respectively) nodes connected

by the k-th edge.

A GN’s stages of processing are as follows.

e
0
k = �e (ek,vrk ,vsk ,u)

v
0
i = �v (ē0i,vi,u)

u
0 = �u (ē0, v̄0,u)

ē
0
i = ⇢e!v (E 0

i) . Edge block

ē
0 = ⇢e!u (E 0) . Vertex block

v̄
0 = ⇢v!u (V 0) . Global block

(1)

A GN block contains 6 internal functions: 3 update functions (�e, �v, and �u) and

3 aggregation functions (⇢e!v, ⇢e!u, and ⇢v!u). The GN formalism is not a specific

model architecture, it does not determine what exactly those functions are. The update

functions are functions of fixed size input and fixed size output, and the aggregation

functions take in a variable-sized set of inputs (such as a set of edges connected to

a particular node) and output a fixed size representation of the input set. This is

illustrated in figure 3.

The edge block computes one output for each edge, e0k, and aggregates them by

their corresponding receiving node, ē0i, where E 0
i is the set of edges incident on the i-th

node. The vertex block computes one output for each node, v0
i. The edge- and node-level

outputs are all aggregated in order to compute the global block. The output of the GN

is the set of all edge-, node-, and graph-level outputs, G0 = (u0, V 0, E 0). See Figure 4a.
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GRAPH NETWORK FORMALISM
Typical graph neural networks (GNNs) can be described in the “Message Passing” framework

29
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In practice the �e, �v, and �u are often implemented as a simple trainable neural

network, e.g. a fully connected network. The ⇢e!v, ⇢e!u, and ⇢v!u functions are

typically implemented as permutation invariant reduction operators, such as element-

wise sums, means, or maximums. The ⇢ functions must be permutation invariant if the

GN block is to maintain permutation equivariance.

(a)

GM
<latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit>

GN1
<latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit><latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit><latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit><latexit sha1_base64="oAmr7/S238q10w2wEvXkfEGmAr8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIUBcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72d9r1+uuFV3DrRKvJxUIEejX/7qDSKSCCoN4VjrrufGxk+xMoxwOiv1Ek1jTMZ4SLuWSiyo9tN56Bk6s8oAhZGyTxo0V39vpFhoPRWBncxC6mUvE//zuokJr/yUyTgxVJLFoTDhyEQoawANmKLE8KklmChmsyIywgoTY3sq2RK85S+vktZF1XOr3sNlpX6d11GEEziFc/CgBnW4gwY0gcATPMMrvDkT58V5dz4WowUn3zmGP3A+fwCg3ZH4</latexit>

GN2
<latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit><latexit sha1_base64="pet508CCa1uIZM8cv8xqNGylB9w=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswUQRcuCi50JRXsA9qhZNJMG5pkxiRTKEO/w40LRdz6Me78GzPtLLT1QOBwzr3ckxPEnGnjut9OYW19Y3OruF3a2d3bPygfHrV0lChCmyTikeoEWFPOJG0aZjjtxIpiEXDaDsY3md+eUKVZJB/NNKa+wEPJQkawsZLfE9iMlEhv72f9Wr9ccavuHGiVeDmpQI5Gv/zVG0QkEVQawrHWXc+NjZ9iZRjhdFbqJZrGmIzxkHYtlVhQ7afz0DN0ZpUBCiNlnzRorv7eSLHQeioCO5mF1MteJv7ndRMTXvkpk3FiqCSLQ2HCkYlQ1gAaMEWJ4VNLMFHMZkVkhBUmxvZUsiV4y19eJa1a1XOr3sNFpX6d11GEEziFc/DgEupwBw1oAoEneIZXeHMmzovz7nwsRgtOvnMMf+B8/gCiYZH5</latexit>

GNM
<latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit><latexit sha1_base64="1uUQuLnXmq2FrQq5fvsHBbzm7v8=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoAsXBRe6USrYB7RDyaSZNjTJjEmmUIZ+hxsXirj1Y9z5N2baWWjrgcDhnHu5JyeIOdPGdb+dwsrq2vpGcbO0tb2zu1feP2jqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyuM781pkqzSD6aSUx9gQeShYxgYyW/K7AZKpHe3E97d71yxa26M6Bl4uWkAjnqvfJXtx+RRFBpCMdadzw3Nn6KlWGE02mpm2gaYzLCA9qxVGJBtZ/OQk/RiVX6KIyUfdKgmfp7I8VC64kI7GQWUi96mfif10lMeOmnTMaJoZLMD4UJRyZCWQOozxQlhk8swUQxmxWRIVaYGNtTyZbgLX55mTTPqp5b9R7OK7WrvI4iHMExnIIHF1CDW6hDAwg8wTO8wpszdl6cd+djPlpw8p1D+APn8wfLTZIU</latexit>

. . .
<latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit><latexit sha1_base64="Gj7yv98SlyD93Ghofp+NnyXvd2c=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIUA8eCl48VjBtoQ1ls920SzebsPsilNDf4MWDIl79Qd78N27bHLR1YGGYecO+N2EqhUHX/XZKG5tb2zvl3cre/sHhUfX4pG2STDPus0QmuhtSw6VQ3EeBkndTzWkcSt4JJ3dzv/PEtRGJesRpyoOYjpSIBKNoJb8/TNAMqjW37i5A1olXkBoUaA2qXzbHspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfLDsjF1YZkijR9ikkC/V3IqexMdM4tJMxxbFZ9ebif14vw+gmyIVKM+SKLT+KMkkwIfPLyVBozlBOLaFMC7srYWOqKUPbT8WW4K2evE7aV3XPrXsP17XmbVFHGc7gHC7BgwY04R5a4AMDAc/wCm+Ocl6cd+djOVpyiswp/IHz+QPvmo68</latexit>G1

<latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit><latexit sha1_base64="YNShseMoKm2HdChKvcjMRmoBu5o=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9r1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvy2NaQ==</latexit>

G0
<latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit>

GM
<latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit><latexit sha1_base64="vjTCpRgsPEJfhljVzwQb7AFhV5c=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E0MIiYKGNENF8QHKEvc1csmRv79jdE8KRn2BjoYitv8jOf+MmuUITHww83pthZl6QCK6N6347hZXVtfWN4mZpa3tnd6+8f9DUcaoYNlgsYtUOqEbBJTYMNwLbiUIaBQJbweh66reeUGkey0czTtCP6EDykDNqrPRw07vrlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzU6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCSz/jMkkNSjZfFKaCmJhM/yZ9rpAZMbaEMsXtrYQNqaLM2HRKNgRv8eVl0jyrem7Vuz+v1K7yOIpwBMdwCh5cQA1uoQ4NYDCAZ3iFN0c4L8678zFvLTj5zCH8gfP5A+mdjYU=</latexit>

G0
<latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit><latexit sha1_base64="vj48jMMQe2f55rU6zb6RZp+K9y4=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EiIVFwELLiOYDkiPsbfaSJXt7x+6cEI78BBsLRWz9RXb+GzfJFZr4YODx3gwz84JECoOu++0U1tY3NreK26Wd3b39g/LhUcvEqWa8yWIZ605ADZdC8SYKlLyTaE6jQPJ2ML6Z+e0nro2I1SNOEu5HdKhEKBhFKz3c9t1+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn81On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphhe+ZlQSYpcscWiMJUEYzL7mwyE5gzlxBLKtLC3EjaimjK06ZRsCN7yy6ukdVH13Kp3f1mpX+dxFOEETuEcPKhBHe6gAU1gMIRneIU3RzovzrvzsWgtOPnMMfyB8/kDvamNaA==</latexit>

GNcore
<latexit sha1_base64="sfcetjjriA53KVhP8LRkSGs9KNA=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUQEXbgouNCVVLAPaEOYTCft0HmEmYlYQn7FjQtF3Poj7vwbJ20W2npg4HDOvdwzJ0oY1cbzvp2V1bX1jc3KVnV7Z3dv3z2odbRMFSZtLJlUvQhpwqggbUMNI71EEcQjRrrR5Lrwu49EaSrFg5kmJOBoJGhMMTJWCt3agCMzVjy7ucvDDEtF8tCtew1vBrhM/JLUQYlW6H4NhhKnnAiDGdK673uJCTKkDMWM5NVBqkmC8ASNSN9SgTjRQTbLnsMTqwxhLJV9wsCZ+nsjQ1zrKY/sZJFUL3qF+J/XT018GWRUJKkhAs8PxSmDRsKiCDikimDDppYgrKjNCvEYKYSNratqS/AXv7xMOmcN32v49+f15lVZRwUcgWNwCnxwAZrgFrRAG2DwBJ7BK3hzcufFeXc+5qMrTrlzCP7A+fwBopiUyw==</latexit><latexit sha1_base64="sfcetjjriA53KVhP8LRkSGs9KNA=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUQEXbgouNCVVLAPaEOYTCft0HmEmYlYQn7FjQtF3Poj7vwbJ20W2npg4HDOvdwzJ0oY1cbzvp2V1bX1jc3KVnV7Z3dv3z2odbRMFSZtLJlUvQhpwqggbUMNI71EEcQjRrrR5Lrwu49EaSrFg5kmJOBoJGhMMTJWCt3agCMzVjy7ucvDDEtF8tCtew1vBrhM/JLUQYlW6H4NhhKnnAiDGdK673uJCTKkDMWM5NVBqkmC8ASNSN9SgTjRQTbLnsMTqwxhLJV9wsCZ+nsjQ1zrKY/sZJFUL3qF+J/XT018GWRUJKkhAs8PxSmDRsKiCDikimDDppYgrKjNCvEYKYSNratqS/AXv7xMOmcN32v49+f15lVZRwUcgWNwCnxwAZrgFrRAG2DwBJ7BK3hzcufFeXc+5qMrTrlzCP7A+fwBopiUyw==</latexit><latexit sha1_base64="sfcetjjriA53KVhP8LRkSGs9KNA=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUQEXbgouNCVVLAPaEOYTCft0HmEmYlYQn7FjQtF3Poj7vwbJ20W2npg4HDOvdwzJ0oY1cbzvp2V1bX1jc3KVnV7Z3dv3z2odbRMFSZtLJlUvQhpwqggbUMNI71EEcQjRrrR5Lrwu49EaSrFg5kmJOBoJGhMMTJWCt3agCMzVjy7ucvDDEtF8tCtew1vBrhM/JLUQYlW6H4NhhKnnAiDGdK673uJCTKkDMWM5NVBqkmC8ASNSN9SgTjRQTbLnsMTqwxhLJV9wsCZ+nsjQ1zrKY/sZJFUL3qF+J/XT018GWRUJKkhAs8PxSmDRsKiCDikimDDppYgrKjNCvEYKYSNratqS/AXv7xMOmcN32v49+f15lVZRwUcgWNwCnxwAZrgFrRAG2DwBJ7BK3hzcufFeXc+5qMrTrlzCP7A+fwBopiUyw==</latexit><latexit sha1_base64="sfcetjjriA53KVhP8LRkSGs9KNA=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUQEXbgouNCVVLAPaEOYTCft0HmEmYlYQn7FjQtF3Poj7vwbJ20W2npg4HDOvdwzJ0oY1cbzvp2V1bX1jc3KVnV7Z3dv3z2odbRMFSZtLJlUvQhpwqggbUMNI71EEcQjRrrR5Lrwu49EaSrFg5kmJOBoJGhMMTJWCt3agCMzVjy7ucvDDEtF8tCtew1vBrhM/JLUQYlW6H4NhhKnnAiDGdK673uJCTKkDMWM5NVBqkmC8ASNSN9SgTjRQTbLnsMTqwxhLJV9wsCZ+nsjQ1zrKY/sZJFUL3qF+J/XT018GWRUJKkhAs8PxSmDRsKiCDikimDDppYgrKjNCvEYKYSNratqS/AXv7xMOmcN32v49+f15lVZRwUcgWNwCnxwAZrgFrRAG2DwBJ7BK3hzcufFeXc+5qMrTrlzCP7A+fwBopiUyw==</latexit>
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Unshared, deep GN stack

Shared, recurrent GN stack

(b)

Figure 4. (a) A GN block (from [13]). An input graph, G = (u, V, E), is processed
and a graph with the same edge structure but di↵erent attributes, G

0 = (u0
, V

0
, E

0),
is returned as output. The component functions are described in Equation 1. (b) GN
blocks can be composed into more complex computational architectures. The top row
shows a sequence of di↵erent GN blocks arranged in series, or depth-wise, fashion. The
bottom row replaces the distinct GN blocks with a shared, recurrent, configuration.

Some key benefits of GNs are that they are generic: if a problem can be expressed

as requiring a graph to be mapped to another graph or some summary output, GNs

are often suitable. They also tend to generalize well to graphs not experienced during

training, because the learning is focused on the edge- and node-level—in fact if the global

block is omitted, the GN is not even aware of the full graph in any of its computations,

as the edge and node blocks take only their respective localities as input. Yet when

multiple GN blocks are arranged in deep or recurrent configurations, as in Figure 4b,

information can be processed and propagated across the graph’s structure, to allow more

GN layer

Full GNN



GRAPH NEURAL NETWORKS IN ACTION
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GRAPH ML TASKS
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https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f

(Graph clustering)

(and regression)

https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f
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GRAPH ML TASKS
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https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f

(Graph clustering)

(and regression)

https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f
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JET TAGGING
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The answer — Jet tagging!

H

W

Z

t

?

?

?

?

……

?

Key question: 
      What type of particle initiates the jet?

Jet: a collimated spray of particles
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PARTICLENET
ParticleNet: jet tagging via particle clouds 

treating a jet as an unordered set of particles, distributed in the η — φ space 

graph neural network architecture, adapted from Dynamic Graph CNN [arXiv:1801.07829] 

treating a point cloud as a graph: each point is a vertex 

for each point, a local patch is defined by finding its k-nearest neighbors 

designing a permutation-invariant “convolution” function 

define “edge feature” for each center-neighbor pair: eij = MLP(xi, xj) 

aggregate the edge features in a symmetric way: xi’ =  eijmeanj

34

coordinates features

EdgeConv Block
k = 16, C = (64, 64, 64)

EdgeConv Block
k = 16, C = (128, 128, 128)

EdgeConv Block
k = 16, C = (256, 256, 256)

Global Average Pooling

Fully Connected
256, ReLU, Dropout = 0.1

Fully Connected
2

Softmax

Linear

BatchNorm

ReLU

Linear

BatchNorm

ReLU

coordinates features

k-NN

k-NN indices

ReLU

edge features

Linear

BatchNorm

ReLU

Aggregation

ParticleNet architecture

HQ and L. Gouskos
Phys.Rev.D 101 (2020) 5, 056019

cf. P. T. Komiske, E. M. Metodiev and J. Thaler, JHEP 01 (2019) 121;  
V. Mikuni and F. Canelli, Eur. Phys. J. Plus 135, 463 (2020); Mach.Learn.Sci.Tech. 2 (2021) 3, 035027.

https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1140/epjp/s13360-020-00497-3
https://doi.org/10.1088/2632-2153/ac07f6
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PARTICLENET IN ACTION: H→CC SEARCH
Higgs-charm coupling: next milestone in Higgs physics 

a crucial test of fermion mass generation mechanism in SM 

H→cc: extremely challenging search at the LHC 

small branching fraction (~3%) vs enormous backgrounds — charm tagging is the key 

Innovative approach: search for VH(H→cc) in the “merged-jet” topology 

reconstructs H→cc decay with one large-R jet (R=1.5) 

then: exploits advanced ML for H→cc identification

35
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“Resolved-jet”
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“Merged-jet”

ΔR(c, c) ~ 2m(H)/pT(H)

Why merged-jet topology?
better signal purity at higher pT

higher reconstruction efficiency with large-R jets
better exploiting correlations between the two 
charm quarks — especially with deep learning
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PARTICLENET IN ACTION: H→CC SEARCH
ParticleNet for H→cc jet tagging and mass reconstruction: substantial improvements

36

ParticleNet tagger for H→cc tagging 
>2x improvement in final sensitivity

ParticleNet-based jet mass regression
~20-25% improvement in final sensitivity
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Jet mass response:  
H→cc jets

~50% better 
resolution

CMS DP-2021/017

Reduced tails 
=> higher efficiency
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DeepAK15
ParticleNet

bb→ vs. Hcc→H
 vs. V+jetscc→H

~5x better  
V+jet rejection

~5x better  
H→bb rejection

H→cc tagging

PRL 131 (2023) 061801 

https://cds.cern.ch/record/2777006/
http://dx.doi.org/10.1103/PhysRevLett.131.061801
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PARTICLENET IN ACTION: H→CC SEARCH
ParticleNet for H→cc jet tagging and mass reconstruction: substantial improvements
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PRL 131 (2023) 061801

First observation of 
Z→cc  

at a hadron collider!

Most stringent limit on H→cc to date.
• ~4x higher sensitivity than the ATLAS search
• Comparable to previous HL-LHC projection,  

but with only 5% of the data.

http://dx.doi.org/10.1103/PhysRevLett.131.061801
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PARTICLENET IN ACTION: ONLINE EVENT SELECTION
ParticleNet also deployed at the CMS High-Level Trigger (HLT) system for online event selection since Run3 

substantial improvement in trigger efficiency for e.g., di-Higgs searches
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Trigger efficiency for HH→4b

August 29th, 2021Luca Cadamuro (UF) Non-resonant HH at the LHC

HH production modes
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FIG. 1: Cartoon of the region in the plane (g⇤, /g⇤), defined by Eqs. (13),(14), that can be probed
by an analysis including only dimension-6 operators (in white). No sensible e↵ective field theory
description is possible in the gray area ( < gmin), while exploration of the light blue region
(gmin < <

p
g⇤gmin) requires including the dimension-8 operators.
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FIG. 2: Feyman diagrams contributing to double Higgs production via gluon fusion (an additional
contribution comes from the crossing of the box diagram). The last diagram on the first line
contains the t̄thh coupling, while those in the second line involve contact interactions between the
Higgs and the gluons denoted with a cross.

derivative terms (which correspond to dimension-8 operators in the limit of linearly-realized

EW symmetry). The e↵ect of the neglected derivative operators will be then studied by

analyzing their impact on angular di↵erential distributions and shown to be small in our

case due to the limited sensitivity on the high mhh region.

The Feynman diagrams that contribute to the gg ! hh process are shown in Fig. 2. Each

diagram is characterized by a di↵erent scaling at large energies
p
ŝ = mhh � mt, mh. We
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ŝ = mhh � mt, mh. We

10

H

H

H

H
H g

g

g

g
t t

HH production ⟹ direct determination 
of Higgs trilinear coupling λHHH

■ Gluon fusion: dominant production mode
□ about 4500 HH events in the Run 2 datasets
□ large destructive interference ⟹ tiny xs

□ self-coupling information both total and
differential cross section (strong mHH 
dependence on λHHH)


■ VBF: second production mode

Phys. Lett. B 732 (2014) 142
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Figure 3: Total cross sections at the LO and NLO in QCD for HH production channels, at the
√

s =14 TeV LHC as a function of the
self-interaction coupling λ. The dashed (solid) lines and light- (dark-)colour bands correspond to the LO (NLO) results and to the scale and
PDF uncertainties added linearly. The SM values of the cross sections are obtained at λ/λSM = 1.
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NNLO FT-approx 
JHEP 1805 (2018) 059

σSM
ggF = 31.05 fb+6.7%

−23.2% (13 TeV)

6

Trigger efficiency as a function of the invariant mass mHH for the simulated Standard Model HH→4b process 
with 𝛋𝜆 = 1 shown for Run 2 (black), Run 3 2022  (blue) and Run 3 2023 trigger (orange). The two Higgs 
boson candidates are reconstructed from four central jets with the highest b-tagging scores. The trigger 
efficiency achieved by the new strategy is 82%, improved by 57% with respect to Run 2 and 20% with respect 
to 2022. The better performance of ParticleNet tagging on small-radius jets with respect to Run 2 taggers and 
the lowered HT requirement from 360 GeV to 280 GeV at the L1 trigger result in a higher trigger efficiency on 
the full spectrum of the mHH distribution. 
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Muon bundle reconstruction
JINST 16 (2021) 10, C10011,  
PoS ICRC2021 (2021) 1048

PoS(ICRC2021)1048

Muon bundle reconstruction with KM3NeT/ORCA using GNNs Stefan Reck

(a) all events (b) events with two or more muons

Figure 1: Absolute di�erence between reconstructed and true zenith angle plotted over the true zenith angle
for selected atmospheric muons in ORCA4. Shown are the median and the 68% band for the classical
reco (orange) and the deep learning reco (blue). Since it was trained on the expected distribution, the deep
learning reconstruction is biased for true cosine zeniths below 0.5, leading to an increase in the error. Most
atmospheric muons are not in that region. Deep learning provides a slight improvement in the median for all
events (left), which is mostly due to events with two or more muons (right).

Figure 2: Data-MC comparison of the reconstructed zenith angle for the classical approach (orange) and
deep learning (blue). A cut is used on the classical reconstruction quality in order to remove noise and
multi-muon events. Each curve is normalized to have an integral of 1, so only the shapes are compared in
this plot.
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Λ+
c → ne+ν Cosmic ray pattern identification

Astropart.Phys. 126 (2021) 102527

with index a applied to pixel i of a single channel
image reads:

fa
i =

knX

j=1

✓aj xij (5)

with the result fa
i stored in a feature map, which in

turn is scanned by further filters after adding a bias
and applying an activation function. In addition
to Cartesian grids, spherical grids have also been
used in convolutional networks [63, 39] based on
the healpix pixelization [55].

Usually, filters for deeper layers receive informa-
tion from more distant pixels due to the increas-
ing receptive field of view, so that in a figurative
sense short-range correlations can be examined in
the first layers and long-range correlations in the
deeper layers. All K filters indexed a with their
respective parameters are trained on the basis of a
task formulated in the objective function.

3.2. Graph convolutional networks

A problem for applications of CNNs in astropar-
ticle physics is that the arrival directions of cosmic
rays are continuously distributed. If one wants to
position them artificially on a grid corresponding
to the experimental directional resolution, the pixel
occupancy is extremely sparse on the one hand and,
on the other hand, in a few pixels several particles
may be found which requires an algorithm to ag-
gregate the information. Both aspects are rather
unfavorable for the actual application as this leads
to loss of information or major computational costs.
Furthermore, most convolution algorithms are de-
signed for Euclidean manifolds and therefore cannot
handle the symmetry of spherical data.

The concept of graph convolutional networks

(GCN) [64, 65] solves the unnatural requirement
of particles placed on a regular grid. In GCNs,
each particle can be treated individually with its ar-
rival direction. All particles together form a point
cloud and, when using a specific neighborhood as-
signment, a graph. Here, the exact alignment and
position of the particles has to be considered in the
convolutional operation and in the structure of the
graph. In this astroparticle-physics application, the
graph is constructed in a spherical shape as the cos-
mic rays arrive almost uniformly from all directions
onto Earth. The particles in immediate proximity
to each other in the coordinate space are then re-
garded as the environment for a convolution. In
contrast to standard convolutional networks, the

explicit cosmic ray can still be identified in the
deeper network layer allowing for node classifica-
tion and high interpretability.

3.3. Dynamic graph convolutional neural networks

The special feature of dynamic graph convolu-
tional neural networks (DGCNNs) is that in each
layer the original graph is projected onto another
graph with arbitrary dimension in coordinate space
as illustrated in Fig. 3. Each particle can still be
followed through the network, however, its nearest
neighbors have changed. The high-dimensional co-
ordinates which for each transition define the near-
est neighbors and thus the graph are derived from
the properties (features) ~xc of the particles, e.g. ar-
rival direction, energy, shower depth, etc.
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Figure 3: Principle of a dynamic graph convolutional neu-
ral network with the example of 8 cosmic rays with arrival
coordinates (x, y) and properties ~xc (features). The convo-
lution operation is performed by a neural network on the
coordinates and features, using the 2 nearest neighbors of
each particle. The result of the operation is placed in a
new high-dimensional space, thereby changing the neighbor-
hood of the cosmic rays. In this way, the arrival patterns
of the cosmic rays, even if they are distributed over the en-
tire sphere, can be jointly characterized immediately in the
following network layer.

For the convolution using the kernel, the kn near-
est neighbors of a particle i are considered. Particle
i has M -dimensional properties ~xi,c which will be
related to the properties of the kn neighboring par-
ticles. The convolutional operation is implemented
following [42] using a neural network which depends
on all values of ~xi,c, and the di↵erences ~xi,c � ~xij ,c

between the M properties of the particle i and those

5

90� 0� -90�

-60�

-30�

0�

30�

60�

Source pattern

Isotropic background

0 1 2 3 4 5 6 7 8 9 10
Median of the first 27 feature dimensions

Figure 7: Classified arrival directions: the color scale in-
dicates the median of the first 27 feature dimensions. A
cosmic ray is identified as signal with a median of the 27
feature values greater than 3 and is otherwise attributed to
isotropy. The signal pattern (denoted by filled circles) is
correctly identified.

e�ciency and purity as a function of the number of
signal particles of a source separately for the sce-
nario with pure helium and for the mixed composi-
tion.

For the helium scenario, 18 signal particles from
one source were required to achieve a significance
of 5 standard deviations (cf. Fig. 5). If the pat-
tern is detected, in median all 18 cosmic rays are
identified correctly with an e�ciency of 100 percent
as shown in Fig. 8a. Nevertheless there are cases
where fewer or even no cosmic rays with median
feature dimension values above 3 are detected re-
sulting in cases with a low e�ciency. This is shown
by the shaded region representing the 68% inter-
val in Fig. 8a. The median purity of 60% shown in
Fig. 8b is still rather low at NS = 18 and exhibits
a large spread. This means that, in addition to the
(in median) 18 correctly identified source particles,
(in median) 12 of the isotropically arriving particles
are incorrectly identified as signals. In the mixed
composition case, 31 identified source particles for
5 standard deviations have an e�ciency and purity
of around 60% � 70%.

4.3. Search for multiple cosmic-ray sources

In the third challenge, we again aim to identify
signal patterns in the arrival directions and ener-
gies of cosmic rays. Due to the general astrophys-
ical scenario used (see section 2.2), there may be
signal patterns from several di↵erent sources, each
contributing di↵erent numbers of cosmic rays.

(a)

(b)

Figure 8: Median e�ciency (a) and purity (b) of 500 simu-
lated sets as a function of the number of signal cosmic rays
NS coming from a single source. The remaining (1000�NS)
cosmic rays are distributed isotropically. Both the pure he-
lium (solid red) and the mixed composition (blue) are shown.
Transparent bands represent the 68% quantile.

For this analysis we use the dynamic graph con-
volutional network (DGCNN) with the extension
of the coordinate space from the second network
layer onward by considering the arrival directions of
the particles as well as the features resulting from
both the particles and their neighborhoods. Thus,
the network has the possibility to change neighbor-
hoods in deeper layers in such a way that neighbor-
hood properties can be exploited for the respective
challenge. Here, we find that the dynamic graph
network performs better than the graph network

10

Particle identification
Eur.Phys.J.Plus 137 (2022) 1, 39
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BEYOND PARTICLENET
Transformers: the new state-of-the-art architecture in ML — foundation of LLM like BERT/GPT 

core concept: self-attention mechanism 

Particle Transformer (ParT): Transformer model tailored for particle physics
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PARTICLE TRANSFORMER: ARCHITECTURE
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Particle Transformer for Jet Tagging

second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an
augmented version that can also exploit the pairwise particle
interactions directly. The P-MHA is computed as

P-MHA(Q, K, V ) = SoftMax(QKT /
p

dk + U)V, (4)

where Q, K and V are linear projections of the particle
embedding xl. Essentially, we add the interaction matrix
U to the pre-softmax attention weights. This allows P-
MHA to incorporate particle interaction features designed
from physics principles and modify the dot-product attention
weights, thus increasing the expressiveness of the attention
mechanism.

Class attention block. As illustrated in Figure 3(c), the
class attention block has a similar structure as the particle
attention block. However, unlike in the particle attention
block where we compute the self attention between parti-
cles, here we compute the attention between a global class
token xclass and all the particles using the standard MHA.
Specifically, the inputs to the MHA are

Q = Wqxclass + bq,

K = Wkz + bk,

V = Wvz + bv,

(5)

where z = [xclass,xL] is the concatenation of the class token
and the particle embedding after the last particle attention
block, xL.

Implementation. We implement the ParT model in Py-
Torch (Paszke et al., 2019). Specifically, the P-MHA is im-
plemented using the PyTorch’s MultiheadAttention
by providing the interaction matrix U as the attn mask

input. The baseline ParT model has a total of L = 8 particle
attention blocks and 2 class attention blocks. It uses a parti-
cle embedding of a dimension d = 128, encoded from the
input particle features using a 3-layer MLP with (128, 512,
128) nodes each layer with GELU nonlinearity, and LN is
used in between for normalization. The interaction input
features are encoded using a 4-layer pointwise 1D convolu-
tion with (64, 64, 64, 16) channels with GELU nonlinearity
and batch normalization in between to yield a d0 = 16 di-
mensional interaction matrix. The P-MHA (MHA) in the
particle (class) attention blocks all have 8 heads, with a
query dimension d0 = 16 for each head, and an expansion
factor of 4 for the MLP. We use a dropout of 0.1 for all par-
ticle attention blocks, and no dropout for the class attention
block. The choice of hyperparameters provides a reasonable
baseline but is not extensively optimized.

5. Experiments
We conduct experiments on the new JETCLASS dataset and
show the results in Section 5.1. The pre-trained ParT models
are also applied to two existing datasets with fine-tuning,
and the performance is compared to previous state-of-the-
arts in Section 5.2.

5.1. Experiments on JETCLASS Dataset

Setup. For experiments on the JETCLASS dataset, we use
the full set of particle features, including kinematics, particle
identification, and trajectory displacement, as inputs. The
full list of 17 features for each particle is summarized in
Table 2. In addition, the 4 interaction features introduced
in Equation (3) are also used for the ParT model. The
training is performed on the full training set of 100 M jets.
We employ the Lookahead optimizer (Zhang et al., 2019)
with k = 6 and ↵ = 0.5 to minimize the cross-entropy
loss, and the inner optimizer is RAdam (Liu et al., 2020)
with �1 = 0.95, �2 = 0.999, and ✏ = 10�5. A batch
size of 512 and an initial learning rate (LR) of 0.001 are
used. No weight decay is applied. We train for a total of
1 M iterations, amounting to around 5 epochs over the full
training set. The LR remains constant for the first 70% of
the iterations, and then decays exponentially, at an interval
of every 20 k iterations, down to 1% of the initial value
at the end of the training. Performance of the model is
evaluated every 20 k iterations on the validation set and a
model checkpoint is saved. The checkpoint with the highest
accuracy on the validation set is used to evaluate the final
performance on the test set.

Baselines. We compare the performance of ParT with 3
baseline models: the PFN (Komiske et al., 2019b) architec-
ture based on Deep Sets (Zaheer et al., 2017), the P-CNN
architecture used by the DeepAK8 algorithm of the CMS ex-
periment (CMS Collaboration, 2020b), and the state-of-the-
art ParticleNet architecture (Qu & Gouskos, 2020) adapted
from DGCNN (Wang et al., 2019). All the models are
trained end-to-end on the JETCLASS dataset for the same
number of effective epochs for a direct comparison. For
ParticleNet, we directly use the existing PyTorch imple-
mentation. For PFN and P-CNN, we re-implement them
in PyTorch and verify that the published results are repro-
duced. The optimizer and LR schedule remain the same as
in the training of ParT. The (batch size, LR) combination is
re-optimized and chosen to be (512, 0.01) for ParticleNet
and (4096, 0.02) for PFN and P-CNN.

Results. Performance on the JETCLASS dataset is evaluated
using the metrics described in Section 2, and the results are
summarized in Table 1. The proposed ParT architecture
achieves the best performance on every metric, and outper-
forms the existing state-of-the-art, ParticleNet, by a large
margin. The overall accuracy is increased by 1.7% com-
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Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix Y is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same Y is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-
teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging

task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The
second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an

and many other possible 
pairwise features…

Injection of (physics-inspired) pairwise features to  
“bias” the dot-product self-attention
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second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an
augmented version that can also exploit the pairwise particle
interactions directly. The P-MHA is computed as

P-MHA(Q, K, V ) = SoftMax(QKT /
p

dk + U)V, (4)

where Q, K and V are linear projections of the particle
embedding xl. Essentially, we add the interaction matrix
U to the pre-softmax attention weights. This allows P-
MHA to incorporate particle interaction features designed
from physics principles and modify the dot-product attention
weights, thus increasing the expressiveness of the attention
mechanism.

Class attention block. As illustrated in Figure 3(c), the
class attention block has a similar structure as the particle
attention block. However, unlike in the particle attention
block where we compute the self attention between parti-
cles, here we compute the attention between a global class
token xclass and all the particles using the standard MHA.
Specifically, the inputs to the MHA are

Q = Wqxclass + bq,

K = Wkz + bk,

V = Wvz + bv,

(5)

where z = [xclass,xL] is the concatenation of the class token
and the particle embedding after the last particle attention
block, xL.

Implementation. We implement the ParT model in Py-
Torch (Paszke et al., 2019). Specifically, the P-MHA is im-
plemented using the PyTorch’s MultiheadAttention
by providing the interaction matrix U as the attn mask

input. The baseline ParT model has a total of L = 8 particle
attention blocks and 2 class attention blocks. It uses a parti-
cle embedding of a dimension d = 128, encoded from the
input particle features using a 3-layer MLP with (128, 512,
128) nodes each layer with GELU nonlinearity, and LN is
used in between for normalization. The interaction input
features are encoded using a 4-layer pointwise 1D convolu-
tion with (64, 64, 64, 16) channels with GELU nonlinearity
and batch normalization in between to yield a d0 = 16 di-
mensional interaction matrix. The P-MHA (MHA) in the
particle (class) attention blocks all have 8 heads, with a
query dimension d0 = 16 for each head, and an expansion
factor of 4 for the MLP. We use a dropout of 0.1 for all par-
ticle attention blocks, and no dropout for the class attention
block. The choice of hyperparameters provides a reasonable
baseline but is not extensively optimized.

5. Experiments
We conduct experiments on the new JETCLASS dataset and
show the results in Section 5.1. The pre-trained ParT models
are also applied to two existing datasets with fine-tuning,
and the performance is compared to previous state-of-the-
arts in Section 5.2.

5.1. Experiments on JETCLASS Dataset

Setup. For experiments on the JETCLASS dataset, we use
the full set of particle features, including kinematics, particle
identification, and trajectory displacement, as inputs. The
full list of 17 features for each particle is summarized in
Table 2. In addition, the 4 interaction features introduced
in Equation (3) are also used for the ParT model. The
training is performed on the full training set of 100 M jets.
We employ the Lookahead optimizer (Zhang et al., 2019)
with k = 6 and ↵ = 0.5 to minimize the cross-entropy
loss, and the inner optimizer is RAdam (Liu et al., 2020)
with �1 = 0.95, �2 = 0.999, and ✏ = 10�5. A batch
size of 512 and an initial learning rate (LR) of 0.001 are
used. No weight decay is applied. We train for a total of
1 M iterations, amounting to around 5 epochs over the full
training set. The LR remains constant for the first 70% of
the iterations, and then decays exponentially, at an interval
of every 20 k iterations, down to 1% of the initial value
at the end of the training. Performance of the model is
evaluated every 20 k iterations on the validation set and a
model checkpoint is saved. The checkpoint with the highest
accuracy on the validation set is used to evaluate the final
performance on the test set.

Baselines. We compare the performance of ParT with 3
baseline models: the PFN (Komiske et al., 2019b) architec-
ture based on Deep Sets (Zaheer et al., 2017), the P-CNN
architecture used by the DeepAK8 algorithm of the CMS ex-
periment (CMS Collaboration, 2020b), and the state-of-the-
art ParticleNet architecture (Qu & Gouskos, 2020) adapted
from DGCNN (Wang et al., 2019). All the models are
trained end-to-end on the JETCLASS dataset for the same
number of effective epochs for a direct comparison. For
ParticleNet, we directly use the existing PyTorch imple-
mentation. For PFN and P-CNN, we re-implement them
in PyTorch and verify that the published results are repro-
duced. The optimizer and LR schedule remain the same as
in the training of ParT. The (batch size, LR) combination is
re-optimized and chosen to be (512, 0.01) for ParticleNet
and (4096, 0.02) for PFN and P-CNN.

Results. Performance on the JETCLASS dataset is evaluated
using the metrics described in Section 2, and the results are
summarized in Table 1. The proposed ParT architecture
achieves the best performance on every metric, and outper-
forms the existing state-of-the-art, ParticleNet, by a large
margin. The overall accuracy is increased by 1.7% com-
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Therefore a decision needs to be made about how to construct a graph from the set of

inputs. Di↵erent graph construction methods are illustrated in figure 6. Depending on

the task, one might even want to avoid creating any pairwise relationships between

nodes. If the objects have no pairwise conditional dependence — a DeepSet [53]

architecture with only node and global properties might be more suitable. Edges in

the graph serve 3 roles:

(i) The edges are communication channels among the nodes.

(ii) Input edge features can indicate a relationship between objects, and can encode

physics motivated variables about that relationship (such as �R between objects).

(iii) Latent edges store relational information computed during message-passing,

allowing the network to encode such variables it sees relevant for the task.

In cases where the input sets are small (Nv ⇠ O(10) ) the typical and easiest

choice is to form a fully connected graph, allowing the network to learn which object

relationships are important. In larger sets, as the number of edges between all nodes

increases as Ne / (Nv)2, the computational load of using a neural network to create

an edge representation or compute attention weights becomes prohibitive. One possible

(a) (b)

(c)

Figure 6. Di↵erent methods for constructing the graph. (a) Connecting every node
to every other node (b) Connecting neighboring nodes in some predefined feature space
(c) Connecting neighboring nodes in a learned feature space.

https://arxiv.org/abs/2202.03772


G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r H
ig

h 
En

er
gy

 P
hy

sic
s 

- D
ec

em
be

r 8
, 2

02
3 

- H
ui

lin
 Q

u 
(C

ER
N

)

PARTICLE TRANSFORMER: PERFORMANCE

Particle Transformer (ParT): significant performance improvement! 

compared to the existing state-of-the-art, ParticleNet 

1.7% increase in accuracy 

up to 3x increase in background rejection (RejX%)

42

Particle Transformer for Jet Tagging

Table 1. Jet tagging performance on the JETCLASS dataset. ParT is compared to PFN (Komiske et al., 2019b), P-CNN (Sirunyan et al.,
2020b) and the state-of-the-art ParticleNet (Qu & Gouskos, 2020). For all the metrics, a higher value indicates better performance. The
ParT architecture using plain MHAs instead of P-MHAs, labelled as ParT (plain), is also shown for comparison.

All classes H ! bb̄ H ! cc̄ H ! gg H ! 4q H ! `⌫qq0 t ! bqq0 t ! b`⌫ W ! qq0 Z ! qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

PFN 0.772 0.9714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2911 112 1185 3868 17699 12987 384 311

The large improvement of ParT is likely to lead to a sig-
nificant jump in the discovery potential for related physics
searches at the LHC.

Another observation is that there is a large variation in tag-
ging performance between signals of different types. The
best separation against the background q/g jets is achieved
for t ! b`⌫ and H ! `⌫qq0 signals – with the powerful
ParT model, these two can be selected almost perfectly, i.e.,
at an efficiency of more than 99% with nearly no contami-
nation from background jets. This opens up new territory
for jet tagging at the LHC, as these types of jets have not
been exploited for tagging so far.

Ablation study. To quantify the effectiveness of the P-
MHA introduced in ParT, we carried out an ablation study
by replacing the P-MHA with a standard MHA, the result-
ing architecture is then a plain Transformer and therefore
denoted as ParT (plain). We train ParT (plain) with the same
procedure as the full ParT and the performance is shown in
Table 1. An accuracy drops of 1.2% is observed compared
to the full ParT, and the background rejection is reduced
by 20–30% for most signals. Note that, replacing P-MHA
with plain MHA implies that the particle interaction input is
discarded completely, but this does not imply a reduction of
information content, as the interaction features defined in
Equation (3) are derived purely from the energy-momentum
4-vectors, which are already used as particle features via
the 7 kinematic variables presented in Table 5. Therefore,
the improvement of ParT over a plain Transformer indeed
arise from an efficient exploitation of the particle kinematic
information using the P-MHA.

Model complexity. Table 2 compares the model complexity
of ParT with the baselines. While the number of trainable
parameters is increased by more than 5⇥ compared to Par-
ticleNet, the number of floating point operations (FLOPs)
is actually 40% lower. We also observe that the FLOPs
of ParT are 30% higher than ParT (plain), which mostly
comes from the encoding of the pairwise features, because
the computational cost there scales quadratically with the
number of particles in a jet.

Table 2. Number of trainable parameters and FLOPs.

Accuracy # params FLOPs

PFN 0.772 86.1 k 4.62 M
P-CNN 0.809 354 k 15.5 M
ParticleNet 0.844 370 k 540 M
ParT 0.861 2.14 M 340 M

ParT (plain) 0.849 2.13 M 260 M

5.2. Fine-Tuning for Other Datasets

Top quark tagging dataset. The top quark tagging bench-
mark (Butter et al., 2019) provides a dataset of 2 M
(1.2/0.4/0.4 M for train/validation/test) jets in two classes,
t ! bqq0 (signal) and q/g (background). Only kinematic
features, i.e., the energy-momentum 4-vectors, are provided.
Therefore, we pre-train a ParT model on the JETCLASS
dataset also using only the kinematic features, and then fine-
tune it on the top quark tagging dataset. The particle input
features are the 7 kinematic features listed in Table 5, the
same as used by ParticleNet. The JETCLASS pre-training
follows the same setup as described in Section 5.1. For the
fine-tuning, we replace the last MLP with a new randomly-
initialized MLP with 2 output nodes, and then fine-tune all
the weights on the top tagging dataset for 20 epochs. A
smaller LR of 0.0001 is used for the pre-trained weights,
while a larger LR of 0.005 is used to update the randomly-
initialized weights of the MLP. The LR remains constant
across the full training, with a weight decay of 0.01. We run
a total of 9 experiments, starting from the same pre-trained
model but different random initializations of the replaced
MLP, and report the performance of the model with median
accuracy and the spread, following the procedure used by
ParticleNet. For comparison, we also trained ParT from
scratch on this dataset for 20 epochs, using a start LR of
0.001, a schedule that decays the LR to 1% in the last 30%
of the epochs, and a weight decay of 0.01. Both results are
presented in Table 3. The pre-trained ParT achieves a sig-
nificant improvement over the existing baselines, increasing
Rej30% by 70% compared to the previous state-of-the-art,
ParticleNet. On the other hand, the ParT model trained from
scratch only reaches similar performance as ParticleNet.

Particle Transformer for Jet Tagging

up new possible territories for jet tagging at the LHC.

Simulation setup. Jets in this dataset are simulated with
standard Monte Carlo event generators used by LHC ex-
periments. The production and decay of the top quarks
and the W , Z and Higgs bosons are generated with MAD-
GRAPH5 aMC@NLO (Alwall et al., 2014). We use PYTHIA
(Sjöstrand et al., 2015) to evolve the produced particles, i.e.,
performing parton showering and hadronization, and pro-
duce the final outgoing particles1. To be close to realistic
jets reconstructed at the ATLAS or CMS experiment, detec-
tor effects are simulated with DELPHES (de Favereau et al.,
2014) using the CMS detector configuration provided in
DELPHES. In addition, the impact parameters of electrically
charged particles are smeared to match the resolution of the
CMS tracking detector (CMS Collaboration, 2014). Jets
are clustered from DELPHES E-Flow objects with the anti-
kT algorithm (Cacciari et al., 2008; 2012) using a distance
parameter R = 0.8. Only jets with transverse momentum
in 500–1000 GeV and pseudorapidity |⌘| < 2 are consid-
ered. For signal jets, only the “high-quality” ones that fully
contain the decay products of initial particles are included2.

Input features. The dataset provides all constituent par-
ticles of each jet as inputs for jet tagging. Note that the
number of particles varies from jet to jet, typically between
10 and 100, with an average of 30–50 depending on the jet
type. For each particle of a jet, three categories of features
are provided:

• Kinematics. This includes the energy and momen-
tum, described by the 4-vector (E, px, py, pz) in units
of GeV, which are the most fundamental quantities
measured by a particle detector. All other kinematic
variables can be computed from the 4-vectors.

• Particle identification. This includes the electric
charge, with values of ±1 (positively/negatively
charged particles) and 0 (neural particles), and the
particle identity determined by the detector systems.
For the latter, a 5-class one-hot encoding is used to
be consistent with current LHC experiments: charged
hadron (±211, ±321, ±2212), neutral hadron (0), elec-
tron (±11), muon (±13), and photon (22). The par-
ticle identification information is especially impor-
tant for tagging jets involving a charged lepton, e.g.,
H ! `⌫qq0 and t ! b`⌫, as leptons can be almost
unambiguously identified at the LHC.

• Trajectory displacement. This includes the measured
1We include multiple parton interactions but omit pileup inter-

actions in the simulation.
2We require all the quarks (q) and charged leptons (electrons

or muons, denoted `) from the decay of the top quark or the W ,
Z or Higgs boson satisfy �R(jet, q/`) < 0.8, where �R(a, b) ⌘p

(⌘a � ⌘b)2 + (�a � �b)2, in which ⌘ (�) is the pseudorapidity
(azimuthal angle) of the momentum of the jet or the particle.

values and errors of the transverse and longitudinal im-
pact parameters of the particle trajectories in units of
mm, in total 4 variables. These measurements are
only available for electrically charged particles, and
a value of 0 is used for neutral particles. The trajec-
tory displacement information is critical for tagging
jets involving a bottom (b) or charm (c) quark (CMS
Collaboration, 2020b), such as H ! bb̄, H ! cc̄,
t ! bqq0, etc., but is missing from most of the existing
datasets.

Training, validation and test sets. The training set con-
sists of 100 M jets in total, equally distributed in the 10
classes. An additional set of 500 k jets per class (in total
5 M) is intended for model validation. For the evaluation of
performance, a separate test set with 2 M jets in each class
(in total 20 M) is provided.

Evaluation metrics. To thoroughly evaluate the perfor-
mance of deep learning models on this dataset, we advocate
for a series of metrics. Since jet tagging on this dataset is
naturally framed as a multi-class classification task, two
common metrics, i.e., the accuracy and the area under the
ROC curve (AUC)3 are adopted to quantify the overall per-
formance. In addition, we propose the background rejection

(i.e., the inverse of the false positive rate) at a certain signal
efficiency (i.e., the true positive rate, TPR) of X%, i.e.,

RejX% ⌘ 1/FPR at TPR = X%, (1)

for each type of signal jets. By default, the q/g jets are
considered as the background, as is the case in most LHC
data analyses, and each of the other 9 types of jets can be
considered as the signal. The signal efficiency (TPR) for
each signal type is chosen to be representative of actual
usages at the LHC experiments and is typically 50%. It is
increased to 99% (99.5%) for H ! `⌫qq0 (t ! b`⌫), as
these types of jets have more distinct characteristics and can
be more easily separated from q/g jets. Since the definition
of the RejX metric involves only two classes, i.e., the signal
class under consideration (S) and the background class (B),
the TPR and FPR are evaluated using a two-class score,

scoreSvsB ⌘
score(S)

score(S) + score(B)
, (2)

where score(S) and score(B) are the softmax outputs for
class S and B, respectively, to achieve optimal performance
for S vs B separation. This is aligned with the conven-
tion adopted by the CMS experiment (CMS Collaboration,
2020b). Note that the background rejection metric, although
rarely used in vision or language tasks, is actually a stan-
dard metric for jet tagging because it is directly related to
the discovery potential at the LHC experiments. A factor

3The AUC can be calculated using roc auc score in scikit-
learn with average=’macro’ and multi class=’ovo’.

JETCLASS dataset (100M jets)

https://zenodo.org/record/6619768
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PARTICLE TRANSFORMER: PERFORMANCE

Particle Transformer (ParT): significant performance improvement! 

compared to the existing state-of-the-art, ParticleNet 

1.7% increase in accuracy 

up to 3x increase in background rejection (RejX%) 

ParT (plain): plain Transformer w/o interaction features 

1.2% drop in accuracy compared to full ParT 

Physics-driven modification of self-attention plays a key role!
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Table 1. Jet tagging performance on the JETCLASS dataset. ParT is compared to PFN (Komiske et al., 2019b), P-CNN (Sirunyan et al.,
2020b) and the state-of-the-art ParticleNet (Qu & Gouskos, 2020). For all the metrics, a higher value indicates better performance. The
ParT architecture using plain MHAs instead of P-MHAs, labelled as ParT (plain), is also shown for comparison.

All classes H ! bb̄ H ! cc̄ H ! gg H ! 4q H ! `⌫qq0 t ! bqq0 t ! b`⌫ W ! qq0 Z ! qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

PFN 0.772 0.9714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2911 112 1185 3868 17699 12987 384 311

The large improvement of ParT is likely to lead to a sig-
nificant jump in the discovery potential for related physics
searches at the LHC.

Another observation is that there is a large variation in tag-
ging performance between signals of different types. The
best separation against the background q/g jets is achieved
for t ! b`⌫ and H ! `⌫qq0 signals – with the powerful
ParT model, these two can be selected almost perfectly, i.e.,
at an efficiency of more than 99% with nearly no contami-
nation from background jets. This opens up new territory
for jet tagging at the LHC, as these types of jets have not
been exploited for tagging so far.

Ablation study. To quantify the effectiveness of the P-
MHA introduced in ParT, we carried out an ablation study
by replacing the P-MHA with a standard MHA, the result-
ing architecture is then a plain Transformer and therefore
denoted as ParT (plain). We train ParT (plain) with the same
procedure as the full ParT and the performance is shown in
Table 1. An accuracy drops of 1.2% is observed compared
to the full ParT, and the background rejection is reduced
by 20–30% for most signals. Note that, replacing P-MHA
with plain MHA implies that the particle interaction input is
discarded completely, but this does not imply a reduction of
information content, as the interaction features defined in
Equation (3) are derived purely from the energy-momentum
4-vectors, which are already used as particle features via
the 7 kinematic variables presented in Table 5. Therefore,
the improvement of ParT over a plain Transformer indeed
arise from an efficient exploitation of the particle kinematic
information using the P-MHA.

Model complexity. Table 2 compares the model complexity
of ParT with the baselines. While the number of trainable
parameters is increased by more than 5⇥ compared to Par-
ticleNet, the number of floating point operations (FLOPs)
is actually 40% lower. We also observe that the FLOPs
of ParT are 30% higher than ParT (plain), which mostly
comes from the encoding of the pairwise features, because
the computational cost there scales quadratically with the
number of particles in a jet.

Table 2. Number of trainable parameters and FLOPs.

Accuracy # params FLOPs

PFN 0.772 86.1 k 4.62 M
P-CNN 0.809 354 k 15.5 M
ParticleNet 0.844 370 k 540 M
ParT 0.861 2.14 M 340 M

ParT (plain) 0.849 2.13 M 260 M

5.2. Fine-Tuning for Other Datasets

Top quark tagging dataset. The top quark tagging bench-
mark (Butter et al., 2019) provides a dataset of 2 M
(1.2/0.4/0.4 M for train/validation/test) jets in two classes,
t ! bqq0 (signal) and q/g (background). Only kinematic
features, i.e., the energy-momentum 4-vectors, are provided.
Therefore, we pre-train a ParT model on the JETCLASS
dataset also using only the kinematic features, and then fine-
tune it on the top quark tagging dataset. The particle input
features are the 7 kinematic features listed in Table 5, the
same as used by ParticleNet. The JETCLASS pre-training
follows the same setup as described in Section 5.1. For the
fine-tuning, we replace the last MLP with a new randomly-
initialized MLP with 2 output nodes, and then fine-tune all
the weights on the top tagging dataset for 20 epochs. A
smaller LR of 0.0001 is used for the pre-trained weights,
while a larger LR of 0.005 is used to update the randomly-
initialized weights of the MLP. The LR remains constant
across the full training, with a weight decay of 0.01. We run
a total of 9 experiments, starting from the same pre-trained
model but different random initializations of the replaced
MLP, and report the performance of the model with median
accuracy and the spread, following the procedure used by
ParticleNet. For comparison, we also trained ParT from
scratch on this dataset for 20 epochs, using a start LR of
0.001, a schedule that decays the LR to 1% in the last 30%
of the epochs, and a weight decay of 0.01. Both results are
presented in Table 3. The pre-trained ParT achieves a sig-
nificant improvement over the existing baselines, increasing
Rej30% by 70% compared to the previous state-of-the-art,
ParticleNet. On the other hand, the ParT model trained from
scratch only reaches similar performance as ParticleNet.

JETCLASS dataset (100M jets)
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Table 1. Jet tagging performance on the JETCLASS dataset. ParT is compared to PFN (Komiske et al., 2019b), P-CNN (Sirunyan et al.,
2020b) and the state-of-the-art ParticleNet (Qu & Gouskos, 2020). For all the metrics, a higher value indicates better performance. The
ParT architecture using plain MHAs instead of P-MHAs, labelled as ParT (plain), is also shown for comparison.

All classes H ! bb̄ H ! cc̄ H ! gg H ! 4q H ! `⌫qq0 t ! bqq0 t ! b`⌫ W ! qq0 Z ! qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

PFN 0.772 0.9714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2911 112 1185 3868 17699 12987 384 311

The large improvement of ParT is likely to lead to a sig-
nificant jump in the discovery potential for related physics
searches at the LHC.

Another observation is that there is a large variation in tag-
ging performance between signals of different types. The
best separation against the background q/g jets is achieved
for t ! b`⌫ and H ! `⌫qq0 signals – with the powerful
ParT model, these two can be selected almost perfectly, i.e.,
at an efficiency of more than 99% with nearly no contami-
nation from background jets. This opens up new territory
for jet tagging at the LHC, as these types of jets have not
been exploited for tagging so far.

Ablation study. To quantify the effectiveness of the P-
MHA introduced in ParT, we carried out an ablation study
by replacing the P-MHA with a standard MHA, the result-
ing architecture is then a plain Transformer and therefore
denoted as ParT (plain). We train ParT (plain) with the same
procedure as the full ParT and the performance is shown in
Table 1. An accuracy drops of 1.2% is observed compared
to the full ParT, and the background rejection is reduced
by 20–30% for most signals. Note that, replacing P-MHA
with plain MHA implies that the particle interaction input is
discarded completely, but this does not imply a reduction of
information content, as the interaction features defined in
Equation (3) are derived purely from the energy-momentum
4-vectors, which are already used as particle features via
the 7 kinematic variables presented in Table 5. Therefore,
the improvement of ParT over a plain Transformer indeed
arise from an efficient exploitation of the particle kinematic
information using the P-MHA.

Model complexity. Table 2 compares the model complexity
of ParT with the baselines. While the number of trainable
parameters is increased by more than 5⇥ compared to Par-
ticleNet, the number of floating point operations (FLOPs)
is actually 40% lower. We also observe that the FLOPs
of ParT are 30% higher than ParT (plain), which mostly
comes from the encoding of the pairwise features, because
the computational cost there scales quadratically with the
number of particles in a jet.

Table 2. Number of trainable parameters and FLOPs.

Accuracy # params FLOPs

PFN 0.772 86.1 k 4.62 M
P-CNN 0.809 354 k 15.5 M
ParticleNet 0.844 370 k 540 M
ParT 0.861 2.14 M 340 M

ParT (plain) 0.849 2.13 M 260 M

5.2. Fine-Tuning for Other Datasets

Top quark tagging dataset. The top quark tagging bench-
mark (Butter et al., 2019) provides a dataset of 2 M
(1.2/0.4/0.4 M for train/validation/test) jets in two classes,
t ! bqq0 (signal) and q/g (background). Only kinematic
features, i.e., the energy-momentum 4-vectors, are provided.
Therefore, we pre-train a ParT model on the JETCLASS
dataset also using only the kinematic features, and then fine-
tune it on the top quark tagging dataset. The particle input
features are the 7 kinematic features listed in Table 5, the
same as used by ParticleNet. The JETCLASS pre-training
follows the same setup as described in Section 5.1. For the
fine-tuning, we replace the last MLP with a new randomly-
initialized MLP with 2 output nodes, and then fine-tune all
the weights on the top tagging dataset for 20 epochs. A
smaller LR of 0.0001 is used for the pre-trained weights,
while a larger LR of 0.005 is used to update the randomly-
initialized weights of the MLP. The LR remains constant
across the full training, with a weight decay of 0.01. We run
a total of 9 experiments, starting from the same pre-trained
model but different random initializations of the replaced
MLP, and report the performance of the model with median
accuracy and the spread, following the procedure used by
ParticleNet. For comparison, we also trained ParT from
scratch on this dataset for 20 epochs, using a start LR of
0.001, a schedule that decays the LR to 1% in the last 30%
of the epochs, and a weight decay of 0.01. Both results are
presented in Table 3. The pre-trained ParT achieves a sig-
nificant improvement over the existing baselines, increasing
Rej30% by 70% compared to the previous state-of-the-art,
ParticleNet. On the other hand, the ParT model trained from
scratch only reaches similar performance as ParticleNet.

Model complexity

https://zenodo.org/record/6619768


G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r H
ig

h 
En

er
gy

 P
hy

sic
s 

- D
ec

em
be

r 8
, 2

02
3 

- H
ui

lin
 Q

u 
(C

ER
N

)

PARTICLE TRANSFORMER: PRE-TRAINING + FINE-TUNING
The large Transformer-based model enables new training paradigm 

(supervised) pre-training on a large dataset (e.g., JETCLASS) & fine-tuning to downstream tasks 

significantly outperforms existing models
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Top quark tagging benchmark (~2M jets) [SciPost Phys. 7 (2019) 014] Quark-gluon tagging benchmark (~2M jets) [JHEP 01 (2019) 121]

Particle Transformer for Jet Tagging

Table 5. Comparison between ParT and existing models on the
top quark tagging dataset. ParT refers to the model trained from
scratch on this dataset. ParticleNet-f.t. and ParT-f.t. denote the
corresponding models pre-trained on JETCLASS and fine-tuned
on this dataset. Results for other models are quoted from their
published results: P-CNN and ParticleNet (Qu & Gouskos, 2020),
PFN (Komiske et al., 2019b), JEDI-net (Moreno et al., 2020), PCT
(Mikuni & Canelli, 2021), LGN (Bogatskiy et al., 2020), rPCN
(Shimmin, 2021), and LorentzNet (Gong et al., 2022).

Accuracy AUC Rej50% Rej30%
P-CNN 0.930 0.9803 201 ± 4 759 ± 24
PFN — 0.9819 247 ± 3 888 ± 17
ParticleNet 0.940 0.9858 397 ± 7 1615 ± 93
JEDI-net (w/

P
O) 0.930 0.9807 — 774.6

PCT 0.940 0.9855 392 ± 7 1533 ± 101
LGN 0.929 0.964 — 435 ± 95
rPCN — 0.9845 364 ± 9 1642 ± 93
LorentzNet 0.942 0.9868 498 ± 18 2195 ± 173
ParT 0.940 0.9858 413 ± 16 1602 ± 81
ParticleNet-f.t. 0.942 0.9866 487 ± 9 1771 ± 80
ParT-f.t. 0.944 0.9877 691 ± 15 2766 ± 130

the JETCLASS dataset. In the “full” scenario, we consider
all particle types and further distinguish electrically charged
(and neural) hadrons into more types, such as pions, kaons,
and protons. We perform the pre-training on JETCLASS
using only kinematic and particle identification inputs un-
der the “exp” scenario. For the fine-tuning, we then carry
out experiments in both scenarios. The construction of the
input features is described in Table 2. The pre-training and
fine-tuning setup is the same as in the top quark tagging
benchmark, and the fine-tuning also lasts for 20 epochs.
Results are summarized in Table 6. The pre-trained ParT
achieves the best performance and improves existing base-
lines by a large margin in both scenarios.

6. Discussion and Conclusion
Large-scale datasets have always been a catalyst for new
breakthroughs in deep learning. In this work, we present
JETCLASS, a new large-scale open dataset to advance deep
learning research in particle physics. The dataset consists
of 100 M simulated jets, about two orders of magnitude
larger than existing public jet datasets, and covers a broad
spectrum of 10 classes of jets in total, including several
novel types that have not been studied with deep learning
so far. While we focus on investigating a classification
task, i.e., jet tagging, with this dataset, we highlight that
this dataset can serve as the basis for many important deep
learning researches in particle physics, e.g., unsupervised or
self-supervised training techniques for particle physics (e.g.,
Dillon et al. (2021)), generative models for high-fidelity fast
simulation of particle collisions (e.g., Kansal et al. (2021a)),
regression models to predict jet energy and momentum with
higher precision (e.g., CMS Collaboration (2020a)), and
more. We invite the community to explore and experiment

Table 6. Comparison between ParT and existing models on the
quark-gluon tagging dataset. ParT refers to the model trained from
scratch on this dataset. ParticleNet-f.t. and ParT-f.t. denote the
corresponding models pre-trained on JETCLASS and fine-tuned on
this dataset. Results for other models are quoted from their pub-
lished results: P-CNN and ParticleNet (Qu & Gouskos, 2020), PFN
(Komiske et al., 2019b), ABCNet (Mikuni & Canelli, 2020), PCT
(Mikuni & Canelli, 2021), rPCN (Shimmin, 2021), and LorentzNet
(Gong et al., 2022). The subscript “exp” and “full” distinguish
models using partial or full particle identification information.

Accuracy AUC Rej50% Rej30%
P-CNNexp 0.827 0.9002 34.7 91.0
PFNexp — 0.9005 34.7 ± 0.4 —
ParticleNetexp 0.840 0.9116 39.8 ± 0.2 98.6 ± 1.3
rPCNexp — 0.9081 38.6 ± 0.5 —
ParTexp 0.840 0.9121 41.3 ± 0.3 101.2 ± 1.1
ParticleNet-f.t.exp 0.839 0.9115 40.1 ± 0.2 100.3 ± 1.0
ParT-f.t.exp 0.843 0.9151 42.4 ± 0.2 107.9 ± 0.5

PFNfull — 0.9052 37.4 ± 0.7 —
ABCNetfull 0.840 0.9126 42.6 ± 0.4 118.4 ± 1.5
PCTfull 0.841 0.9140 43.2 ± 0.7 118.0 ± 2.2
LorentzNetfull 0.844 0.9156 42.4 ± 0.4 110.2 ± 1.3
ParTfull 0.849 0.9203 47.9 ± 0.5 129.5 ± 0.9
ParT-f.t.full 0.852 0.9230 50.6 ± 0.2 138.7 ± 1.3

with this dataset and extend the boundary of deep learning
and particle physics even further.

With this large dataset, we introduce Particle Transformer
(ParT), a new architecture that substantially improves jet
tagging performance over previous state-of-the-art. We pro-
pose it as a new jet tagging baseline for future research
to improve upon. The effectiveness of ParT arises mainly
from the augmented self-attention, in which we incorpo-
rate physics-inspired pairwise interactions together with the
machine-learned dot-product attention. This approach is
likely to be effective for other tasks on similar datasets, such
as point clouds or many-body systems, especially when
prior knowledge is available to describe the interaction or
the geometry. On the other hand, one limitation of using the
full pairwise interaction matrix is the increase in computa-
tional time and memory consumption. Novel approaches for
particle (point) embeddings and self-attentions that alleviate
the computational cost (e.g., Zhou et al. (2021); Kitaev et al.
(2020)) could be an interesting direction for future research.
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Results are summarized in Table 6. The pre-trained ParT
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so far. While we focus on investigating a classification
task, i.e., jet tagging, with this dataset, we highlight that
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tagging performance over previous state-of-the-art. We pro-
pose it as a new jet tagging baseline for future research
to improve upon. The effectiveness of ParT arises mainly
from the augmented self-attention, in which we incorpo-
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prior knowledge is available to describe the interaction or
the geometry. On the other hand, one limitation of using the
full pairwise interaction matrix is the increase in computa-
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How to build physics objects 
from low-level detector information?
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Credits: J. Pata

https://indico.cern.ch/event/1253794/contributions/5588555/attachments/2746438/4778991/2023_11_06_hamburg.pdf
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CHARGED PARTICLE TRACKING
Charged particle tracking via edge classification with GNNs 

each hit is a node of the graph 

edges constructed between pairs of hits with geometrically plausible relations 

classify whether each edge connects hits belonging to the same track or not
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Charged particle tracking via edge-classifying interaction networks 7
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Fig. 6 (Left) The complete IN forward-pass with the relational and object models approximated as MLPs. (Right) An example hyperparameter
scan in which a models with varying numbers of hidden units (h.u.) were trained on ?min

T = 0.7 GeV graphs.

which are decayed by a factor of W = 0.95 for ?min
T  1 GeV

and W = 0.8 for ?min
T > 1 GeV every 10 epochs.

In order to evaluate the IN edge-classification perfor-
mance, it is necessary to define a threshold X such that each
edge weight F: 2 , (G⇠$$) satisfying F: � X or F: < X

indicates that edge : was classified as true or false respec-
tively. Here, we define X

⇤ as the threshold at which the true
positive rate (TPR) equals the true negative rate (TNR). In
principle, X⇤ may be calculated individually for each graph.
However, this introduces additional overhead to the inference
step, which is undesirable in constrained computing environ-
ments. We instead determine X

⇤ during the training process
by minimizing the di�erence |TPR � TNR| for graphs in the
validation set. The resulting X

⇤, which is stored for use in
evaluating the testing sample, represents the average optimal
threshold for the validation graphs. Accordingly, we define
the model’s accuracy at X⇤ as (=TP + =TN)/=edges, where =TP

(=TN) is the number of true positives (negatives), and note
that the BCE loss is independent of X⇤.

As shown in Fig. 7, the training process results in smooth
convergence to excellent edge-classification accuracy for a
range of ?

min
T . Classification accuracy degrades slightly as

?
min
T is lowered below 1 GeV; hyperparameter studies in-

dicate that larger networks improve performance on lower
?

min
T graphs (see Fig. 6). A transfer learning study was con-

ducted in which models trained on graphs at a specific ?
min
T

were tested on graph samples at a range of ?
min
T . The re-

sults are summarized in Fig. 8, which shows that the models
achieve relatively robust performance on a range of graph
sizes. These results suggest it may be possible to train IN
models in simplified scenarios and apply them to more com-
plex realistic scenarios (e.g. without a ?

min
T cut).

4.4 Track Building

In the track building step, the predicted edge weights F: 2
, (GCOO) are used to infer that edges satisfying F: � X

⇤

represent true track segments. If the edge weight mask per-
fectly reproduced the training target (i.e. int(, (GCOO) �
X
⇤) = H), the edge-classification step would produce =particles

disjoint subgraphs, each corresponding to a single parti-
cle. Imperfect edge-classification leads to spurious connec-
tions between these subgraphs, prompting the need for more
sophisticated track-building algorithms. Here, we use the
union-find algorithm [45] and DBSCAN to cluster hits in the
edge-weighted graphs. Hit clusters are then considered to be
reconstructed tracks candidates; the track candidates are sub-
sequently matched to simulated particles (when possible). In
a full tracking pipeline, these track candidates would then be
fit to extract track parameters such as ?T and [; in this work
we use truth information for matched particles to get the
track parameters. Tracking e�ciency metrics measure the
relative success of the clustering and matching process using
various definitions. We define three tracking e�ciency mea-
surements using progressively tighter requirements to allow
comparison with current tracking algorithm e�ciencies and
other on-going HL-LHC tracking studies:

1. LHC match e�ciency: the number of reconstructed
tracks containing over 75% of hits from the same par-
ticle, divided by the total number of particles.

2. Double-majority e�ciency: the number of reconstructed
tracks containing over 50% of hits from the same particle
and over 50% of that particle’s hits, divided by the total
number of particles.

3. Perfect match e�ciency: the number of reconstructed
tracks containing only hits from the same particle and
every hit generated by that particle, divided by the num-
ber of particles.

We note that the perfect match e�ciency is not commonly
used by experiments as 100% is not realistically achievable,
but we present it to demonstrate the absolute performance of
the GNN tracking pipeline.

Figure 9 shows each of these tracking e�ciencies as
a function of particle ?T and [ for both the DBSCAN

8 G. DeZoort et al.

Fig. 7 (Left) Loss convergence for models trained on various ?min
T graphs. (Right) A model trained on ?min

T = 1 GeV graphs was used to evaluate
an unseen ?min

T = 1 GeV graph, yielding a loss of 1.52 ⇥ 10�3 and accuracy of 99.9%. 98 out of 95,160 edges were incorrectly classified; these
erroneous classifications are magnified in the figure.

Fig. 8 Models trained on various ?min
T graphs in the train_1 sample

were tested on 400 graphs from the train_3 sample at various ?min
T

thresholds.

and union-find clustering approaches. Additionally, Table 2
shows the corresponding fake rates, or fractions of un-
matched clusters relative to all clusters, across the full ?T

and [ range. The e�ciencies and fake rates are calculated
with ?

min
T = 0.9 GeV graphs. Tracking performance is rela-

tively stable at low ?T but degrades for higher ?T particles;
similar e�ects have been noted in other edge-weight-based
hit clustering schemes [40]. The tracking e�ciencies are
lowest in the neighborhood of [ = 0, indicating that perfor-
mance is worst in the pixel barrel region. This is consistent
with the observation that most edge classification errors oc-
cur in the barrel, where the density of detector modules
is significantly higher [36]. Tracking e�ciency loss around
|[ | ⇡ 2.5 corresponds to the transition region between barrel
and endcap layers. DBSCAN demonstrates higher tracking
e�ciency than union-find across all ?T and [ values and e�-

ciency definitions. This performance gap is likely due to the
additional spatial information used in DBSCAN’s clustering
routine. Moving forward, additional tracking performance
may be recovered by leveraging the specific values of each
edge weight to make dynamic hit clustering decisions. The
fake rates are relatively low for both track-building methods,
and as expected roughly increase for increasingly tight ef-
ficiency definitions. Interestingly, DBSCAN demonstrates a
lower fake rate for LHC match e�ciency while union-find
demonstrates a lower fake rate for the perfect match e�-
ciency; DBSCAN also has a larger drop in tracking e�cency
between the double match and perfect match definitions, indi-
cating that while DBSCAN identifies more track candidates,
union-find builds tracks more precisely.

E�ciency definition Union-find DBSCAN
LHC match 0.0471 ± 0.008 0.0275 ± 0.005

Double majority 0.0934 ± 0.01 0.0891 ± 0.01
Perfect match 0.0910 ± 0.01 0.1242 ± 0.01

Table 2 Overall fake rates of union-find and DBSCAN track-building
for three tracking e�ciency definitions for ?min

T = 0.9 GeV.

4.5 Inference Timing

An important advantage of GNN-based approaches over tra-
ditional methods for HEP reconstruction is the ability to
natively run on highly parallel computing architectures. The
P�G library supports graphics processing units (GPUs) to
parallelize the algorithm execution. Moreover, the model was
prepared for inference by converting it to a TorchScript pro-
gram [46]. For the IN studied in this work, the average CPU
and GPU inference times per graph for a variety of mini-
mum ?T cuts is shown in Table 3. For this test, the graphs

G. DeZoort et al.  
[Comput. Softw. Big Sci. 5, 26 (2021)]

See also: S. Farrell et al. [1810.06111]; X. Ju et al. [2003.11603];  
C. Biscarat, S. Caillou, C. Rougier, J. Stark and J. Zahreddine [2103.00916]; X. Ju et al. [2103.06995]; etc.

https://doi.org/10.1007/s41781-021-00073-z
https://arxiv.org/abs/1810.06111
https://arxiv.org/abs/2003.11603
https://arxiv.org/abs/2103.00916
https://arxiv.org/abs/2103.06995
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Credits: J. Pata

https://indico.cern.ch/event/1253794/contributions/5588555/attachments/2746438/4778991/2023_11_06_hamburg.pdf
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CALORIMETER CLUSTERING
End-to-end reconstruction for a high granularity calorimeter 

Object condensation: one-stage multi-object reconstruction 

supervised clustering of hits belonging to a shower to a “condensation point” by using attractive/repulsive 
potentials in the loss 

simultaneously predict the number of showers and their properties
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Fig. 9 True versus predicted cluster examples in 200 pileup. In the top
two figures, a single particle is shot into the calorimeter, where the left
and right figures show the true and the corresponding matched predicted
cluster, respectively. The bottom row shows particles originating from

qq → t t collision in colors while the grey is 200 pileup. The predicted
clusters (right) are matched to the true clusters (left). Jet reconstruction
performance is studied on these true and matched clusters while the
pileup is ignored

ers, the tendency to oversplit is inherent to the nature of
hadrons which is why the hadronic efficiency drops also at
high pT when pileup is added. Therefore, to study the over-
splits, we use energy-weighted intersection over minimum
(EIOM), defined below:

EIOM(t, p) =
∑

h∈(Ht∩Hp)
eh

min(
∑

h∈Ht
eh,

∑
h∈Hp

eh)
.

Unmatched showers are all the predicted clusters with
EIOM > 0.9 with the truth-level probe particle but with
EIOU less than 0.5 and these are shown in Fig. 12. The
unmatched rate decreases steeply with the predicted pT . This
indicates that low pT clusters are split off from higher-pT
showers while most of the energy is reconstructed properly.
We note, that by adding tracking information and employ-
ing a suitable particle flow algorithm, these splits could be
re-merged, increasing the efficiency. In addition to oversplit-

123
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Fig. 8 Compute specifications of our model as a function of the amount
of pileup to run inference with one event. The left axis (blue) shows
average execution time, and the right (orange) shows the average peak
memory allocated on the GPU

In Fig. 8, we show inference time and peak GPU mem-
ory required for single particle in different pileup conditions.
The inference times are evaluated on a Nvidia V100 GPU.
For single-particle events, inference takes about 200 ms. The
inference time increases to 1.2 s or 7 s for 40 and 200 pileup,
respectively. We expect an additional significant improve-
ment of the overall inference time using edge-contraction
methods to reduce the cardinality of the hits. These refine-
ments will be considered in future work. These values should
be compared to O(1000) s taken by currently adopted algo-
rithms running on CPU, when scaled up to a 200 pileup envi-
ronment.

Inference in 40 and 200 pileup allocates an average of
only 500 MiB and 1300 MiB, respectively, on the GPU. This
opens up the possibility that our method can be deployed
on machines with less powerful GPUs with smaller VRAM.
Note that a larger GPU is required for the training stage as
memory can’t be freed up after executing a neural network
layer for backpropagation-related computations.

Here, the final inference algorithm was adapted to only
consider close-by hits using a binning approach, making its
contribution to the execution time negligible.

8 Physics performance

We evaluate physics performance in several ways by study-
ing the reconstruction performance of the individual particles
and jets. The individual particles, split in electromagnetic
particles (e− and γ ) and hadronic particles (π+), are studied
separately as they exhibit different behaviors. Reconstruc-
tion efficiency, energy response, and resolution are studied

in different pileup environments, as well as the rate of recon-
structed clusters that are either split off from the main shower
(unmatched showers). For jets, we investigate the response
and resolution in different pileup environments, assuming
per-particle pileup removal procedures are in place.

The metrics are studied as a function of the pT of the
particles and jets. The neural network is regressing only the
particles’ energy, but for the computation of their pT , we use
energy-weighted mean hit positions to estimate the particles’
direction. For consistency, we also use the same methodology
to compute truth-level pT .

Figure 9 visually shows the predictions of the neural net-
work and compares them to the truth for both individual par-
ticle reconstruction and jet reconstruction.

8.1 Particle reconstruction performance

We begin by studying the performance in 0 pileup. These
events contain only one probe truth particle and some detector
noise. The probe particle is taken from Type B simulations
as discussed in Sect. 4. We then overlay the probe particle
with 40 and 200 pileup interactions to study performance in
a more controlled fashion. While our method reconstructs all
the particles in the event, including all the particles from the
pileup, we only study the reconstruction performance of the
probe particle.

First, we match the probe shower to one of the predicted
showers by applying a hit-based matching procedure that
we already introduced in Ref. [20]. The procedure calculates
energy weighted hit-intersection over hit-union score (EIOU)
of a reconstructed cluster p and a truth shower t̂ . The pre-
dicted shower that results in the highest overlap is taken as
the matched shower ( p̂):

p̂ = argmax
p∈P

(EIOU(t̂, p)). (14)

We apply a lower threshold of 0.5 to the EIOU score to study
reconstruction efficiency which is shown in Figs. 10a and
11a for electromagnetic and hadronic particles respectively.

The efficiency rises steeply with the increase in pT in
both electromagnetic and hadronic cases. In 0 pileup, the
efficiency reaches a plateau of almost one at pT > 1 GeV
for electromagnetic particles while it remains slightly lower
for the hadronic particles with pT < 15 GeV. As expected,
because of the dense environment, the performance drops as
the pileup is increased. In 40 pileup, the reconstruction effi-
ciency of the electromagnetic particles deteriorates to around
80% at 1-15 GeV with a significant drop for pT < 1 GeV.
For the hadronic particles the reconstruction efficiency drops
to around 70% at 5-20 GeV.

The efficiency deterioration occurs when the neural net-
work oversplits the showers and these split showers fail to
satisfy the matching criterion. Unlike electromagnetic show-

123

Time and 
memory usage

Truth Reconstructed

S. R. Qasim, J. Kieseler, Y. Iiyama and M. Pierini [EPJC 79 (2019) 7, 608]; J. Kieseler [EPJC 80 (2020) 9, 886]; S. R. Qasim et. al., [EPJC 82, 753 (2022)]

608 Page 4 of 11 Eur. Phys. J. C (2019) 79 :608

s1

s2

FIN

FLR

S

(a) (b) (c)

di2

di1

dj2

dj1

(e)(d)

vk

v1

v2

v3

v4

f2
i

f3
i

f4
i

d1k

d2k

d3k

d4k

f1
i

fj
i

  ifjk = fj V(djk)
~i

Max( fjk)~i
j

 fjk
~i

j
fk =  ~i

FOUT

FIN

FLR

FLR

~

~

Fig. 1 Pictorial representation of the data flow across the GarNet and
the GravNet layers. a The input features FIN of each vi ∈ V are pro-
cessed by a dense neural network with two output arrays: a set of learned
features FLR and spatial information S in some learned representation
space. b In the case of the GravNet layer, the S quantities are inter-
preted as the coordinates of the vertices in some abstract space. The
graph is built in this space, connecting each vi to its N closest neigh-
bors (N = 4 in the figure), using the euclidean distance di j between the
vertices to rank the neighbors. c In the case of the GarNet layer, the
S quantities are interpreted as the distances between the vertices and a
set of S aggregators in some abstract space. The graph is then built con-

necting each vi vertex to each a j aggregator, and the S quantities are the
di j euclidean distances. d Once the graph structure is established, the
f ij features of the v j vertices connected to a given vertex or aggregator

vk are converted into the f̃ ijk quantities, through a potential (function of
d jk ). The corresponding information is then gathered across the graph
and turned into a new feature f̃ ik of vk (e.g. summing over the edges, or
taking the maximum). e For each choice of gathering function, a new
set of features f̃ ik ∈ F̃LR is generated. The F̃LR vector is concatenated
to the initial FIN vector. The resulting feature vector is given as input to
a dense neural network with tanh activation, which returns the output
representation FOUT

tors back to the initial vertices, weighted by the V (d jk)

potential. This information exchange of the garnered
information through the aggregators defines the Gar-
Net name.

The full process transforms the initial B × V × FIN data
set into a B × V × FOUT data set. As common with graph
networks, the main advantage comes from the fact that the
FOUT output (unlike the FIN input) carries collective infor-
mation from each vertex and its surrounding, providing a
more informative input to downstream processing. Thanks
to the distinction between learned space information S and
learned features FLR, the dimensionality of connections in
the graph is kept under control, resulting in a smaller mem-
ory consumption than, for instance, the EdgeConv layer.

The two layer architectures and the models based on them,
described in the following sections, are implemented in Ten-
sorFlow [43].5

5 The code for the models and layers can be found in https://github.
com/jkiesele/caloGraphNN.

4 Data set

The data set used in this paper is based on a simplified
calorimeter with irregular geometry, built in GEANT4 [44].
The calorimeter is made entirely of Tungsten, with a width
of 30 cm × 30 cm in the x and y directions and a length of
2 m in the longitudinal direction (z), which corresponds to
20 nuclear interaction lengths. The longitudinal dimension
is further split into 20 layers of equal thickness. Each layer
contains square sensor cells, with a fine segmentation in the
quadrant with x > 0 and y > 0 and a lower granularity else-
where. The total number of cells and their individual sizes
vary by layer, replicating the basic features of a slightly irreg-
ular calorimeter. For more details, see Fig. 2 and Table 1.

Charged pions are generated at z = − 2 m; the x and y
coordinates of the generation vertex are randomly sampled
within |x | < 5 cm and |y| < 5 cm. The x and y components
of the particle momentum are set to 0, while the z component
is sampled uniformly between 10 and 100 GeV. The particles
therefore impinge the calorimeter front face perpendicularly
and shower along the longitudinal direction.

The resulting total energy deposit in each cell, as well
as the cell position, width, and layer number, are recorded
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Credits: J. Pata

https://indico.cern.ch/event/1253794/contributions/5588555/attachments/2746438/4778991/2023_11_06_hamburg.pdf
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PARTICLE-FLOW RECONSTRUCTION: MLPF
Global particle-flow reconstruction via node classification and regression using GNNs 

comparable performance to the baseline rule-based PF algorithm at CMS 

runtime scales linearly with input size, no quartic explosion

51
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LSH+kNN GCN

Event as input set

X = {xi}

Event as graph

X = {xi}, A = Aij

Transformed inputs

H = {hi}

Target set Y = {yj}

�(X, A |w) = H�(X |w) = A

elementwise 
FFN

�(xj, hj |w) = y��j

Output set Y�� = {y��j}

Elementwise loss 

classification & regression

L(yj, y��j)

Graph building Message passing

Decoding








Trainable neural networks: 


 - track,  - calorimeter cluster,  - encoded element

 - target (predicted) particle,  - no target (predicted) particle

xi = [type, pT, EECAL, EHCAL, �, �, �outer, �outer, q, …], type � {track, cluster}
yj = [PID, pT, E, �, �, q, …], PID � {none, charged hadron, neutral hadron, �, e±, �±}

hi � �256
�, �, �

Fig. 3 Functional overview of the end-to-end trainable MLPF setup with GNNs. The event is represented as a set of detector elements xi. The
set is transformed into a graph by the graph building step, which is implemented here using an locality sensitive hashing (LSH) approximation of
kNN. The graph nodes are then encoded using a message passing step, implemented using graph convolutional nets. The encoded elements are
decoded to the output feature vectors y j using elementwise feedforward networks.

We have a joint graph building, but separate graph con-
volution and decoding layers for the multi-classification and
the momentum and charge regression subtasks. This allows
each subtask to be retrained separately in addition to a com-
bined end-to-end training should the need arise. The classifi-
cation and regression losses are combined with constant em-
pirical weights such that they have an approximately equal
contribution to the full training loss. We use categorical
cross-entropy for the classification loss, which measures the
similarity between the true label distribution c j and the pre-
dicted labels c

0
j
. For the regression loss, we use componen-

twise mean-squared error between the true and predicted
momenta, where the losses for the individual momentum
components (pT,h ,sinf ,cosf ,E) are scaled by normaliza-
tion factors such that the components have approximately
equal contributions to the total loss. It may be beneficial to
use specific multi-task training strategies such as gradient
surgery [63] to further improve the performance across all

subtasks and to reduce the reliance on ad-hoc scale factors
between the losses in a multi-task setup.

The multi-classification prediction outputs for each node
are converted to particle probabilities with the softmax op-
eration. We choose the PID with the highest probability for
the reconstructed particle candidate, while ensuring that the
probability meets a threshold that matches a fake rate work-
ing point defined by the baseline DELPHES PF reconstruc-
tion algorithm.

The predicted graph structure is an intermediate step in
the model and is not used in the loss function explicitly—
we only optimize the model with respect to reconstruction
quality. However, using the graph structure in the loss func-
tion when a known ground truth is available may further
improve the optimization process. In addition, access to the
predicted graph structure may be helpful in evaluating the
interpretability of the model.

Figure 1: One simulated tt event with pileup under LHC Run 3 conditions, reconstructed with
particle flow (top) and machine-learned particle flow (bottom). The trajectories correspond to
the particle flow candidates extrapolated to the ECAL surface, with candidates of di↵erent type
shown in di↵erent colors. We also show the ECAL detector surface (cyan) and the muon stations
(blue).

Table 1: Simulation samples used for optimizing the MLPF model.

Sample fragment PU Configuration MC events
Top quark-antiquark pairs (tt) Flat 55–75 20 k

Z ! ⌧⌧ all-hadronic Flat 55–75 20 k
Single electron flat pT 2 [1, 100]GeV No PU 400 k
Single muon flat pT 2 [0.7, 10]GeV No PU 400 k

Single ⇡
0 flat pT 2 [0, 10]GeV No PU 400 k

Single ⇡ flat pT 2 [0.7, 10]GeV No PU 400 k
Single ⌧ flat pT 2 [2, 150]GeV No PU 400 k
Single � flat pT 2 [10, 100]GeV No PU 400 k

J. Pata et. al., 
ACAT 2021, 2203.00330

https://arxiv.org/abs/2203.00330
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PARTICLE-FLOW RECONSTRUCTION: HGPFLOW
What if multiple clusters should be associated to multiple particles? ==> Hypergraph
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Encoding
(Important for ML) Analogous to Classical PF Calibration + particle identification

See talk by N. Kakati 
at ML4Jets2023

https://indico.cern.ch/event/1253794/contributions/5588629/attachments/2746927/4779911/HGPflow_nilotpal.pdf
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GNNS FOR RECONSTRUCTION
Almost all ML reconstruction models are based on point clouds and using graph neural networks 

however, with varying approaches for different tasks

53

MLPF Tracking,
HGPflow

Calo clustering 
(object condensation)



THE ROAD AHEAD
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THE ROAD AHEAD
Can we better incorporate physics knowledge into the network design? 

physics aware data representation, symmetry group equivariant architecture, …

55



G
ra

ph
 N

eu
ra

l N
et

w
or

ks
 fo

r H
ig

h 
En

er
gy

 P
hy

sic
s 

- D
ec

em
be

r 8
, 2

02
3 

- H
ui

lin
 Q

u 
(C

ER
N

)

LORENTZNET
Incorporating Lorentz symmetry into graph neural network architecture

56
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Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

3 Network Architecture

In this section, we illustrate the architecture of LorentzNet. The construction of the
LorentzNet is based on the following universal approximation theorem for the Lorentz
group equivariant continuous function.

Proposition 3.1. [55] A continuous function � : (RN⇥4) ! R4 is Lorentz-equivariant if
and only if

�(x1, x2, · · · , xN ) =
NX

i=1

gi(hxi, xjiNi,j=1)xi, (3.1)

where gi are continuous Lorentz-invariant scalar functions, and h·, ·i is the Minkowski inner
product.

Proposition 3.1 provides a way to construct Lorentz group equivariant mapping with
no need to calculate the high-order tensors. Instead, a Lorentz group equivariant continu-
ous mapping can be constructed by the attention on xi with encoding the Minkovski dot
products of xi with its neighbours. This motivates us to design the Minkowski dot product
attention in LorentzNet, which will be introduced in the next section.

3.1 LorentzNet

We introduce the blocks in LorentzNet. As described in Fig. 1, LorentzNet is mainly
constructed by the stack of Lorentz Group Equivariant block (LGEB) along with encoder
and decoder layers.

Input layer. The inputs into the network are 4-momenta of particles from a collision
event, and may include scalars associated with them (such as label, charge, etc.). That is,
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3.1 LorentzNet

We introduce the blocks in LorentzNet. As described in Fig. 1, LorentzNet is mainly
constructed by the stack of Lorentz Group Equivariant block (LGEB) along with encoder
and decoder layers.

Input layer. The inputs into the network are 4-momenta of particles from a collision
event, and may include scalars associated with them (such as label, charge, etc.). That is,
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the input is a set of vectors vi = xi�si where xi = (Ei, pix, p
i
j , p

i
z) denotes the 4-momentum

vector and si = (si1, s
i
2, · · · , si↵) is the collection of scalars. In the experiments in this paper,

the scalars include the mass of the particle (i.e., (Ei)2 � (pix)
2 � (piy)

2 � (piz)
2) or particle

identification (PID) information directly if it is available.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hln) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xln) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0 equals the input of the 4-momenta and h0i = si denotes
the input of the scalar variables. LGEB aims to learn deeper embeddings hl+1, xl+1 via
current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and  (·) = sgn(·) log(| · | + 1) in Equation (3.2) is a
normalizing function to make the heavy tailed distributed quantities centralized for ease
of optimization. Except for the embedding of the scalar features hli and hlj , according
to Proposition 3.1, the input of the neural network contains the Minkowski dot product
hxi, xji. The kxli � xljk2 is also included because the interaction between particles relies on
this term and we include it as a prior feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j2[N ]

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, we introduce the hyperparameter c to control the forward stability together with
the shortcut connection. This step captures the interactions of the i-th particle with other
particles via the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-
preserving neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which
only include the radial distance kxi � xik2 as the only scalars extracted from the vector
representation, we include the dot product hxi, xji in mij to recover the information of
angles according to Equation (3.1) which can not be captured by the radial distance.

The scalar features for particle i is forward as

hl+1
i = hli + �h(h

l
i,

X

j2[N ]

wijm
l
ij), (3.4)

where �h(·) is also modeled by neural networks whose output dimension equals the dimen-
sion of hl+1

i . For efficient computation, we operate summation
P

j2[N ]wijml
ij to aggregate

ml
ij . We introduce an neural network �m(·) to learn the edge significance from node j to

node i, i.e., wij = �m(ml
ij) 2 [0, 1]. This can both ensure the permutation invariance but

also ease the implementation for jets with different number of particles. This operation is
also widely adopted in other types of graph neural networks [54, 56].

1
The relation with EGNN is discussed in the Appendix.

– 6 –

the input is a set of vectors vi = xi�si where xi = (Ei, pix, p
i
j , p

i
z) denotes the 4-momentum

vector and si = (si1, s
i
2, · · · , si↵) is the collection of scalars. In the experiments in this paper,

the scalars include the mass of the particle (i.e., (Ei)2 � (pix)
2 � (piy)

2 � (piz)
2) or particle

identification (PID) information directly if it is available.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hln) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xln) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0 equals the input of the 4-momenta and h0i = si denotes
the input of the scalar variables. LGEB aims to learn deeper embeddings hl+1, xl+1 via
current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and  (·) = sgn(·) log(| · | + 1) in Equation (3.2) is a
normalizing function to make the heavy tailed distributed quantities centralized for ease
of optimization. Except for the embedding of the scalar features hli and hlj , according
to Proposition 3.1, the input of the neural network contains the Minkowski dot product
hxi, xji. The kxli � xljk2 is also included because the interaction between particles relies on
this term and we include it as a prior feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j2[N ]

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, we introduce the hyperparameter c to control the forward stability together with
the shortcut connection. This step captures the interactions of the i-th particle with other
particles via the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-
preserving neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which
only include the radial distance kxi � xik2 as the only scalars extracted from the vector
representation, we include the dot product hxi, xji in mij to recover the information of
angles according to Equation (3.1) which can not be captured by the radial distance.

The scalar features for particle i is forward as

hl+1
i = hli + �h(h

l
i,

X

j2[N ]

wijm
l
ij), (3.4)

where �h(·) is also modeled by neural networks whose output dimension equals the dimen-
sion of hl+1

i . For efficient computation, we operate summation
P

j2[N ]wijml
ij to aggregate

ml
ij . We introduce an neural network �m(·) to learn the edge significance from node j to

node i, i.e., wij = �m(ml
ij) 2 [0, 1]. This can both ensure the permutation invariance but

also ease the implementation for jets with different number of particles. This operation is
also widely adopted in other types of graph neural networks [54, 56].

1
The relation with EGNN is discussed in the Appendix.

– 6 –

the input is a set of vectors vi = xi�si where xi = (Ei, pix, p
i
j , p

i
z) denotes the 4-momentum

vector and si = (si1, s
i
2, · · · , si↵) is the collection of scalars. In the experiments in this paper,

the scalars include the mass of the particle (i.e., (Ei)2 � (pix)
2 � (piy)

2 � (piz)
2) or particle

identification (PID) information directly if it is available.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hln) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xln) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0 equals the input of the 4-momenta and h0i = si denotes
the input of the scalar variables. LGEB aims to learn deeper embeddings hl+1, xl+1 via
current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and  (·) = sgn(·) log(| · | + 1) in Equation (3.2) is a
normalizing function to make the heavy tailed distributed quantities centralized for ease
of optimization. Except for the embedding of the scalar features hli and hlj , according
to Proposition 3.1, the input of the neural network contains the Minkowski dot product
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this term and we include it as a prior feature for ease of learning.
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where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, we introduce the hyperparameter c to control the forward stability together with
the shortcut connection. This step captures the interactions of the i-th particle with other
particles via the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-
preserving neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which
only include the radial distance kxi � xik2 as the only scalars extracted from the vector
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where �h(·) is also modeled by neural networks whose output dimension equals the dimen-
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i . For efficient computation, we operate summation
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ij . We introduce an neural network �m(·) to learn the edge significance from node j to

node i, i.e., wij = �m(ml
ij) 2 [0, 1]. This can both ensure the permutation invariance but

also ease the implementation for jets with different number of particles. This operation is
also widely adopted in other types of graph neural networks [54, 56].
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The relation with EGNN is discussed in the Appendix.
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Message: 

Coordinate update: 

Feature update: 

Lorentz 4-vector 
Lorentz scalar

Pairwise Lorentz invariantsScalars

S. Gong, Q. Meng, J. Zhang, HQ, C. Li, S. Qian,  
W. Du, Z. M. Ma and T. Y. Liu,

JHEP 07 (2022) 030 

cf. A. Bogatskiy, B. Anderson, J. Offermann, M. Roussi, D. Miller and R. Kondor, arXiv: 2006.04780 [“LGN”]; 
A. Bogatskiy, T. Hoffman, D. W. Miller, J. T. Offermann and X. Liu, 2307.16506 [“PELICAN”]; 

I. Batatia, M. Geiger, J. Munoz, T. Smidt, L. Silberman and C. Ortner, arXiv: 2306.00091 [“lie-nn”];

https://doi.org/10.1007/JHEP07(2022)030
https://arxiv.org/abs/2006.04780
https://arxiv.org/abs/2307.16506
https://arxiv.org/abs/2306.00091
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LORENTZNET: BENEFITS FROM SYMMETRY
Benefits from the symmetry preservation 

model response invariant under Lorentz transformation 

sample efficiency: incorporation of Lorentz symmetry allows to train with very few samples 

57

Model Equivariance Accuracy AUC 1/"B
("S = 0.5)

1/"B
("S = 0.3)

LorentzNet (w/o) 7 0.934 0.9832 290± 30 1105± 59

LorentzNet 3 0.942 0.9868 498± 18 2195± 173

Table 4. Performance comparison between LorentzNet and corresponding non-equivalent version
on top tagging dataset. Both of the results are averaged on 6 runs.

training data on the rotated test data and the tagging accuracy on the rotated test data is
reported in Fig. 3. The horizontal axis of Fig. 3 shows the value of � and the vertical axis
shows the tagging accuracy on the top tagging dataset under Lorentz transformation with
corresponding �. Fig. 3 shows that the test accuracy of LorentzNet and LGN on the test
data after Lorentz transformation is robust in a large range of �, while the test accuracy of
other non-equivariant models will drop as � becomes larger. According to special relativity,
the fundamental quantities to clarify the particles will not be changed. The results show
that only the Lorentz group equivariant models LorentzNet and LGN can capture this
symmetry. Even compared with LGN, LorentzNet is more stable when � approaches 1 and
the instability of LGN is caused by the rounding errors in float arithmetic as described in
its original paper [52].

Figure 3. Equivariant test under Lorentz boosts on top tagging dataset.

4.5 Ablation study

In this section, we report the results of the ablation study to further demonstrate the effec-
tiveness of the components in LorentzNet. To show the effectiveness of keeping the Lorentz
group equivariance, we directly use xli, x

l
j as inputs of the �e to break the Lorentz group

equivariance because xli, x
l
j are not Lorentz group invariant variables, i.e., the Equation

(3.2) is replaced by

mij = �e(x
l
i, x

l
j , h

l
i, h

l
j), (4.1)
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Model stability under Lorentz boost
fine-grained signal efficiency. The ROC curves of LorentzNet achieve the highest score at
all the selected signal efficiency compared to the baselines. Especially, LorentzNet shows
superiority compared to the LGN. Especially, it achieves 4 or 5 times improvement on the
background rejection. The results verify our discussions in Section 3.2.

Training
Fraction

Model Accuracy AUC 1/"B
("S = 0.5)

1/"B
("S = 0.3)

0.5%
ParticleNet 0.913 0.9687 77± 4 199± 14

LorentzNet 0.929 0.9793 176± 14 562± 72

1%
ParticleNet 0.919 0.9734 103± 5 287± 19

LorentzNet 0.932 0.9812 209± 5 697± 58

5%
ParticleNet 0.931 0.9807 195± 4 609± 35

LorentzNet 0.937 0.9839 293± 12 1108± 84

Table 3. Performance comparison between LorentzNet and ParticleNet on top tagging dataset by
a fraction of training data. The results are all averaged on 6 runs.

4.3 Sample Efficiency

The benefit of the preservation of Lorentz group symmetry in jet tagging has not been
studied in literature. In theory, the Lorentz group symmetry injects inductive bias into
the deep learning model which restricts the function class of the hypothesis space. The
inductive bias can help to boost the generalization and improve the sample efficiency. As
the improvement on the generalization performance (i.e., the tagging accuracy) has been
shown in the previous section, we show the robustness of LorentzNet trained on smaller
training data to verify the sample efficiency of LorentzNet in this part.

We choose the best performed architecture among the models with and without fully
Lorentz group symmetry (i.e., the LorentzNet and the ParticleNet) to compare. The induc-
tive bias in ParticleNet is a subgroup symmetry of Lorentz group, which only consider the
Lorentz boosts in the z-axis and the rotation on the x� y plane, while LorentzNet is sym-
metric to Lorentz group. We random select 5%, 1%, and 0.5% fraction of training data to
train the LorentzNet and ParticleNet on top tagging dataset, and we test the performance
of them on the same test data with size 400k. The training strategy keeps the same with
the experiments on the full training data. The results are reported in Table 3. The gap of
the tagging accuracy and AUC between LorentzNet and ParticleNet becomes larger as the
number of the training data becomes smaller. The results clearly show the benefit of the
preservation of Lorentz group symmetry in jet tagging.

4.4 Equivariance test

Another advantage of symmetry-preserving deep learning models is their robustness under
Lorentz transformation. To verify it, we rotate the test data by Lorentz transformation
with different scales of � along the x axis, i.e., the value of (E, px) in the 4-momentum
vector will be rotated. As � becomes larger, the difference between the distributions of
training and test data will become larger. We test the model trained on the original

– 11 –

Performance when trained on a fraction of the top-tagging dataset

(~6k jets)
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THE ROAD AHEAD
Can we better incorporate physics knowledge into the network design? 

physics aware data representation, symmetry group equivariant architecture, … 

Can we scale up to a large model for HEP? 

large datasets, pre-training, multi-modal learning, …
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LARGE PHYSICS MODEL?

59

R. Das, G. Kasieczka and D. Shih, arXiv: 2212.00046

8

FIG. 5. R30 vs. number of parameters of the model, for many di↵erent approaches to top-tagging. LorentzNet[23], PaticleNet
[14], ParT [19], and PELICAN [24] are the some of the recent taggers with very good performances. “DisCo-FFS on EFPs”
corresponds to the simple DNN trained on the first nine EFPs selected by DisCo-FFS, while “DNN EFPs” is our DNN trained
on all the 7k EFPs. The remaining taggers are taken from [1]. We see that the nine EFPs selected using Disco-FFS have a
very competitive performance, especially given the number of parameters.

FIG. 6. Performance of training on 0.5%, 1% and 5% of
the training data. The EFPs selected using DisCo out-
perform ParticleNet, and match up to the performance of
LorentzNet [23] at 0.5% of the total training data.

lected feature that probes wide-angle radiation. In the
other path, we see the appearance of the first EFP which
probes 4-prong substructure with small-angle radiation
(� = 0.5), and this is followed up by an IRC-safe EFP
probing 3-prong substructure.

Interestingly in our single run of LorentzNet-guided
DisCo-FFS, the first 6 features are the same as Table II,

whereas after that the 7th-EFP is the same one selected in
Path 1 in III. This confirms that the similar performance
between DisCo-FFS with truth and with LorentzNet is
no coincidence, and is likely because LorentzNet (being
so high-performing) is quite close to the truth labels.

IV. CONCLUSIONS

In this work, we have introduced a new forward fea-
ture selection method, based on the distance correlation
measure of statistical dependence — dubbed DisCo-FFS.
Our method can operate equally well on either truth-
labels (for ab initio feature selection) or on the outputs
of a pre-trained classifier (for explaining a “black box”
AI).

We demonstrated the performance of our method using
the task of boosted top tagging, as boosted top jets have
a rich substructure and many subtle correlations that
have proven to be a fruitful laboratory for developing
increasingly powerful state-of-the-art taggers in the HEP
literature.

Following [30], we have trained our DisCo-FFS method
on a large set (7,000+) of Energy Flow Polynomials,
which aim to provide a complete description of the jet
substructure. We have seen that DisCo-FFS is very e↵ec-
tive at selecting EFPs from this large feature set; DisCo-
FFS can achieve nearly-state-of-the-art top tagging per-

HEP models (jet tagging)Natural language models

https://huggingface.co/blog/large-language-models

?

Large Language Models (like GPT) has transformed NLP.  
What if a Large Physics Model?

https://huggingface.co/blog/large-language-models
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A FIRST STEP
JETCLASS: a new large and comprehensive jet simulation dataset 

100M jets in 10 classes: ~two orders of magnitude larger than existing public datasets

60

H ! 4qH ! bb̄ H ! cc̄ H ! gg H ! `⌫qq
0

q/gt ! b`⌫t ! bqq0 W ! qq0 Z ! qq̄

We invite the community to explore and experiment with this dataset and 
extend the boundary of deep learning and HEP even further. 

HQ, C. Li, S. Qian,  
ICML 2022

https://arxiv.org/abs/2202.03772
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THE ROAD AHEAD
Can we better incorporate physics knowledge into the network design? 

physics aware data representation, symmetry group equivariant architecture, … 

Can we scale up to a large model for HEP? 

large datasets, pre-training, multi-modal learning, … 

Can we improve the computational efficiency of GNNs? 

emerging specialized libraries for GNN training and inference (PyG, DGL, TF-GNN, …) 

accelerated inference on specialized ASICs / FPGAs (e.g., for triggering), software hardware co-design, … 

Can we improve the robustness of GNNs (e.g., data/simulation difference)? 

domain adaption? calibration? uncertainty aware training? … 

Can we improve the interpretability and explainability of GNNs?

61
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THE ROAD AHEAD
Can we better incorporate physics knowledge into the network design? 

physics aware data representation, symmetry group equivariant architecture, … 

Can we scale up to a large model for HEP? 

large datasets, pre-training, multi-modal learning, … 

Can we improve the computational efficiency of GNNs? 

emerging specialized libraries for GNN training and inference (PyG, DGL, TF-GNN, …) 

accelerated inference on specialized ASICs / FPGAs (e.g., for triggering), software hardware co-design, … 

Can we improve the robustness of GNNs (e.g., data/simulation difference)? 

domain adaption? calibration? uncertainty aware training? … 

Can we improve the interpretability and explainability of GNNs?
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Your innovation and creativity can make a big difference!
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GRAPH GENERATIVE MODELS

64
https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f

(Graph clustering)

(and regression)

https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f
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PARTICLE CLOUD GENERATION
Exploit GNNs for “particle cloud” generation 

enables fast detector simulation

65

MP(-LFC) Generator
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Message Passing

Figure 2: Top: The MP generator uses message passing to generate a particle cloud. In blue is the
initial latent vector and FC layer part of the MP-LFC variant. Bottom: The MP discriminator uses
message passing to classify an input particle cloud as real or generated.

Fréchet ParticleNet Distance (FPND), using the state-of-the-art ParticleNet graph convolutional jet
classifier [9] in lieu of the Inception network. We note that the FPND and comparing distributions as
above is conceptually equivalent, except here instead of physically meaningful and easily interpretable
features, we are comparing those found to be statistically optimum for distinguishing jets.

Two common metrics for evaluating point cloud generators are coverage (COV) and minimum
matching distance (MMD) [21]. Both involve finding the closest point cloud in a sample X to each
cloud in another sample Y , based on a metric such as the Chamfer distance or the earth mover’s
distance. Coverage is defined as the fraction of samples in X which were matched to one in Y ,
measuring thus the diversity of the samples in Y relative to X , and MMD is the average distance
between matched samples, measuring the quality of samples. We use both, and due to drawbacks of
the Chamfer distance pointed out in Ref. [21], for our distance metric choose only the analogue of
the earth mover’s distance for particle clouds a.k.a. the energy mover’s distance (EMD) [31]. We
discuss the effectiveness and complementarity of all four metrics in evaluating clouds in Sec. 5.

4 MPGAN Architecture

In this section, we describe the architecture of our MPGAN model (Fig. 2), noting particle cloud-
motivated aspects compared to its r-GAN and GraphCNN-GAN predecessors.

Message passing. Jets originate from a single source particle decaying and hadronizing, hence
they end up with important high-level jet features and a rich global structure, known as the jet
substructure [1], stemming from the input particle. Indeed any high-level feature useful for analyzing
jets, such as jet mass or multi-particle correlations, is necessarily global [28]. Because of this, while
past work in learning on point clouds [9, 32, 33], including GraphCNN-GAN, has used a locally
connected graph structure and convolutions for message passing, we choose a fully connected graph,
equally weighting messages from all particles in the clouds. Rather than subtracting particle features
for messages between particles, useful in graph convolutions to capture local differences within a
neighborhood, the respective features are concatenated to preserve the global structure. In addition,
the difference between particle features is only physically meaningful if they are in the 4-vector

5

R. Kansal, J. Duarte, H. Su, B. Orzari, T. Tomei, M. Pierini, 
M. Touranakou, J. R. Vlimant and D. Gunopulos 

[NeurIPS 2021]

Figure 4: Comparison of real and generated distributions for a subset of jet and particle features. We
use the best performing model for each of the FC, GraphCNN, and MP generators, as per Table 2.
Top: gluon jet features, Middle: top quark jet, Bottom: lighter quark jets.

Architecture discussion. To disentangle the effectiveness of the MP generator and discriminator,
we train each individually with alternative counterparts (Table 2). With the same PointNet discrimi-
nator, the GraphCNN generator performs worse than the simple FC generator for every metric on
all three datasets. The physics-motivated MP generator on the other hand outperforms both on the
gluon and top quark datasets, and significantly so on the jet-level W1 scores and the FPND. We note,
however, that the MP generator is not a significant improvement over FC or GraphCNN with an FC
discriminator. Holding the generator fixed, the PointNet discriminator performs significantly better
over the FC for all metrics. With the FC and GraphCNN generators, PointNet is also an improvement
over the MP discriminator. With an MP generator, the MP discrimimator is more performant on
jet-level W1 and FPND scores but, on the gluon and top quark datasets, degrades WP

1 relative to
PointNet.

We learn from these three things: (1) a generator or discriminator architecture is only as effective
as its counterpart — even though the MPGAN combination is the best overall, when paired with a
network which is not able to learn complex substructure, or which breaks the permutation symmetry,
neither the generator or discriminator is performant, (2) for high-fidelity jet feature reconstruction,
both networks must be able to learn complex multi-particle correlations — however, this can come at
the cost of low-level feature accuracy, and (3) MPGAN’s masking strategy is highly effective as both
MP networks are improvements all around on light quark jets.

Particle cloud evaluation metrics. Each metric proposed here has unique merit. We see that
models with low W1 scores relative to the baseline have the best coverage and MMD scores as well.
This indicates that the W1 metrics are sensitive to both mode collapse (measured by coverage) — this
is expected as, in terms of feature distributions, mode collapse manifests as differing supports, to
which the W1 distance is reasonably sensitive, as well as to individual sample quality (measured by
MMD) — this supports our claim that recovering jet feature distributions implies accurate learning of
individual cloud structure. Together this suggests that low W1 scores are alone sufficient to validate
sample quality and against mode collapse, and justifies our criteria that a practical ML simulation
alternative have W1 scores close to the baselines in Table 2. However, MMD and coverage, being
focused tests of these aspects of generation, are useful for understanding failure modes.

8

Gluon jets

Top quark jets

Light quark jets

https://arxiv.org/abs/2106.11535
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ANOMALY DETECTION
GNN based autoencoders for anomaly detection 

enables automated and model-agnostic new physics search

66

O. Atkinson, A. Bhardwaj, C. Englert, V. 
S. Ngairangbam and M. Spannowsky

[JHEP 08 (2021) 080]
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Figure 3. A schematic representation of a graph-autoencoder network. The network contains the
(a) Encoder and the (b) Decoder. We employ an edge reconstruction network in the decoder to
reconstruct the multidimensional edge information.

3 Graph Neural Networks

In this section, we describe the various components of our neural network analysis. We

briefly detail the conceptual structure of GNNs before moving on to describe the ones we

utilise in our analysis, along with the explicit form of the autoencoder’s loss function. The

network architecture and the process of training are described thereafter.

Graph Neural Networks are models that can extract features from graph-structured

data. They generalise the inbuilt inductive biases in Convolutional Neural Networks (CNNs)

like local connectivity and shared weights to variable length and possibly non-Euclidean

data [52]. For supervised learning applications, this was formalised as Message Passing

Neural Networks (MPNNs) in Ref. [53]. We sketch the general paradigm and then describe

in greater detail the two specific forms that are used in our work in the succeeding para-

graphs. In the following, h(l)
i is the ith node’s features at the lth timestep (analogous to a

layer in the usual ANNs). e(l)ij denotes the features of the edge connecting the nodes i and

j, and N (i) is the set of nodes connected to the node i. For the input layer, we take l = 0,

and h(0)
i = xi. MPNNs consist of a message passing phase and a graph readout layer. In

the first phase, a message-passing function is defined for two nodes i and j

m(l)
ij = M(l)(h(l)

i ,h(l)
j , e(l)ij ) , (3.1)

which calculates the message mij for the edge connecting the nodes. The message function

is usually a multilayer-perceptron (MLP) shared between all the edges, hence the term

graph convolutions. For each timestep (or layer), the messages between all connected

nodes are calculated, after which the features of each node are updated according to an

aggregation function

h(l+1)
i = ⇤(h(l)

i , {m(l)
ij | j 2 N (i)}) , (3.2)

– 5 –

Recluster R=1.5 jets 
to R=0.1 microjets 
and use as inputs

features. The message passing function performs a broadcasted element-wise multiplication

of the form
abm(1)

ij = abFe(eij)⇥ abh̃(0)j , (3.3)

where a and b are the indices of the matrix, and abh̃(0)j is formed by repeating h(0)
j , the input

node features, n times. The aggregation step takes the mean of abm(1)
ij over all neighbouring

nodes j, and then sums over the a index of the matrix:

bh(1)i =
X

a

meanj2N (i)

⇣n
abm(1)

ij

o⌘
, (3.4)

to give updated n dimensional node features h(1)
i .

EdgeConv: The backbone of our architecture is the edge convolution operation [54]. This

involves two linear layers: ⇥w and �w, with identical input and output dimensions, which

determine the dimensions of original and updated node features respectively. The message

passing function is defined as

m(l)
ij = ⇥w(h

(l)
j � h(l)

i ) + �w(h
(l)
i ) , (3.5)

while the aggregation step involves taking the maximum value

ah(l+1)
i = max

j2N (i)
{am(l)

ij } , (3.6)

in each component a of the incoming message vectors to give the updated node features

h(l+1)
i .

Inner Product Layer: The edge-reconstruction network uses an Inner Product Layer to

reconstruct the edge features from the node features of the final edge convolution output.

The inner product makes the correspondence to the two-node indices for each edge. Since

our graphs are undirected, the layer constructs a symmetric N ⇥ N matrix, N being the

number of nodes in the graph. Its components are therefore

Âij = hi . hj , (3.7)

where hi and hj are node-feature vectors.

Loss Function: We use root-mean squared error (RMSE) for the node as well as the edge

reconstruction losses. For the node feature this is

Lnode =

sX

ia

(x̂ai � xai )
2

N ⇥ 5
, (3.8)

where a is the node-feature index, i is the node index, x̂ai and xai are the reconstructed

and input node features, respectively. We define the edge reconstruction loss as the sum

of three individual RMSEs for each edge feature

Ledge =
X

a

vuut
X

ij

(Âa
ij �Aa

ij)
2

N ⇥N
, (3.9)
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The inner product makes the correspondence to the two-node indices for each edge. Since
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number of nodes in the graph. Its components are therefore

Âij = hi . hj , (3.7)

where hi and hj are node-feature vectors.

Loss Function: We use root-mean squared error (RMSE) for the node as well as the edge

reconstruction losses. For the node feature this is

Lnode =

sX

ia

(x̂ai � xai )
2
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, (3.8)

where a is the node-feature index, i is the node index, x̂ai and xai are the reconstructed
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where a is the edge-feature index, i and j are node indices. Âa
ij and Aa

ij are the reconstructed

and input adjacency matrices respectively. The total loss is the weighted sum of the

individual losses,

Lauto = �node Lnode + �edge Ledge (3.10)

We choose �node = 0.3 and �edge = 1, so that the combined node features get the same

weight as each individual edge feature, which carry more relevant physics information. Note

that the loss function is invariant to node permutations of the input graph since, mean is

a permutation invariant function, and the architecture respects permutation invariance:

any change in the node ordering changes the output of each layer(via the graph readout)

in conjunction with the adjacency matrix. Our network however, does not reconstruct

an arbitrarily permuted graph for a given input, which is not strictly necessary since we

concentrate on the reconstruction error of a single graph and not of an equivalence class of

graphs.

3.2 Network Architecture and training

Neural networks require a careful optimal choice of hyperparameters. As this is a proof-of-

principle analysis, we do not perform an extensive hyperparameter scan. However, we scan

over the latent dimension, which is critical for any autoencoder. For the first layer of the

graph-encoder (NNConv), we use an MLP of hidden dimensions: 256, 128, 64, and 32 as the

edge function to map the 3-dimensional edge features to a 5⇥128 dimensional output. The

hidden layers have ReLU activations, whereas the final layer has a sigmoid activation. The

limited range of the sigmoid activation helps in giving the addition operation in aggregation

(as defined in Eq. (3.4)) an interpretation of a weighted sum over messages in an additional

dimension without the dynamics being entirely dominated by the outputs of the edge

function. Each hidden layer has a dropout layer with fraction 0.2 of disconnected nodes

between layers to avoid overfitting and achieve better generalisation. After the aggregation,

we get a 128-dimensional output that feeds into a series of edge-convolution layers with

linear layers as ⇥w and �w. The output dimensions of the linear layers are 64 and 32

and outputs a 6 dimensional latent node encoding. This value is chosen after a scan over

di↵erent latent dimensions which we elaborate on in the next section. The shared block

of the decoder uses the encoder’s reversed dimensions: 32, 64, and 128. With the 128-

dimensional vector as input, the node reconstruction layer performs an edge-convolution

to give the reconstructed node vectors x̂. Similarly, each edge reconstruction network

has three successive edge convolutions of output dimensions 32, 16, and 8. We calculate

the inner products on the 8-dimensional vector space to give the reconstructed adjacency

matrices Âa
ij .

We train the network with the Adam optimiser [55] initialised with a 0.001 learning

rate on mini-batches of 64 samples. The learning rate is decayed with a reduce-on-plateau

condition with decay factor 0.5, and a patience of five epochs with an additional five epochs

of cool-down. We use 85k jets to train the network. After each epoch, we calculate the

loss of an independent validation dataset containing 28k QCD jets. We stop the training

– 8 –

(a) (b)

Figure 4. The AUC and mean loss for the three signal classes as a function of latent dimension
from 2 to 12 for the given architecture

once the learning rate goes below 10�8. The epoch with minimum validation loss is used

for further inference.

4 Results and Discussion

(a) (b)

Figure 5. The loss of the graph-autoencoder (a) and ROC curves (b) for a network trained only
on QCD jets.

In order to test the performance of the graph-autoencoder for the di↵erent non-QCD

signals described in Sec. 2, we evaluate the discrimination power of the total loss function

as defined in Eq. (3.10). We use an independent testing data set of 28k for QCD jets

and a similar number for the signal samples. We first scan the latent dimension from

– 9 –
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CORRELATION WITH THE JET MASS
One feature of these taggers is the correlation with the jet mass 

jet mass shape of the background becomes similar to that of the signal 
after selection with the tagger: “mass sculpting” 

not necessarily a problem, but a mass-independent tagger is often more 
desirable: 

allows to use the mass variable to further separate signal and background 

enables tagging signal jets with an unknown mass 

…
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PERFORMANCE COMPARISON
ParticleNet-MD 

using a special signal sample for training 

hadronic decays of a spin-0 particle X 

X → bb, X → cc, X → qq 

not a fixed mass, but a flat mass spectrum 

m(X) ∈ [15, 250] GeV 

allows to easily reweight both signal and background 
to a ~flat 2D distribution in (pT, mass) for the training 

ParticleNet-MD shows the best performance 

~3-4x better background rejection compared to 
DeepAK8-MD (based on “adversarial training”) 

only slight performance loss compared to the 
nominal version w/o mass decorrelation
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MASS REGRESSION
Jet mass: one of the most powerful observables for boosted jet tagging 

characteristic mass peak for top/W/Z/H jets v.s. continuum for QCD jets 

Mass regression:  

exploit deep learning to reconstruct jet mass with the highest possible resolution 

training setup similar to the ParticleNet tagger 

but: predict the jet mass directly from the jet consitituents 

Regression target: 

signal (X → bb/cc/qq): generated particle mass of X [flat spectrum in 15 – 250 GeV] 

background (QCD) jets: soft drop mass of the generated particle-level jet 

Loss function 

LogCosh: 
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TAGGER CALIBRATION IN DATA
Crucial to calibrate these taggers in real data for them to be used in analyses 

Top/W tagging efficiency 

measured using the single-µ sample enriched in semi-leptonic ttbar events 

fit jet mass templates in the “pass” and “fail” categories simultaneously to extract efficiency in data 

simulation-to-data scale factors SF := eff(data) / eff(MC) derived to correct the simulation 

jet mass scale and resolution scale factors can also be extracted 

Mistag rates of background jet typically derived directly from analysis-specific control regions
71
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Calibration of the cc-tagger

q Need to measure ParticleNet cc-tagging efficiency in data
§ no pure sample of H → cc jets (or even Z → cc) in data

§ using g → cc in QCD multi-jet events as a proxy

q Difficulty: select a phase-space in g → cc that resembles H → cc
§ solution: a dedicated BDT developed to distinguish hard 2-prong splittings

(i.e., high quark contribution to the jet momentum) from soft cc radiations 
(i.e., high gluon contribution to the jet momentum)

§ also allows to adjust the similarity between proxy and signal jets

§ by varying the sfBDT cut — treated as a systematic uncertainty

q Perform a fit to the secondary vertex mass shapes in the “passing” 
and “failing” regions simultaneously to extract the scale factors

§ three templates: cc (+ single c), bb (+ single b), light flavor jets

q Derived cc-tagging scale factors typically 0.9—1.3
§ corresponding uncertainties are 20—30%

g

c-
c

g

c
c-

g→cc (all)
g→cc (sfBDT>0.85)
g→cc (sfBDT>0.90)
g→cc (sfBDT>0.95)

H→cc

ParticleNet cc discriminant

A.U
.

H → cc like Soft radiations:
Dominant contribution! 

Effects of the BDT

72
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CMS B-TAG HLTS

73

Trigger Requirement
Rates at 
2x1034 
cm-2s-1

2023 HH trigger HT > 280 GeV, 4 jets with pT > 30 GeV,  
PNet@AK4(mean 2 highest b-tag score) > 0.55 180 Hz

2022 HH trigger 4 jets pT > 70, 50, 40, 35 GeV,  
PNet@AK4 (mean 2 highest b-tag score) > 0.65 60 Hz

2018 triple b-tag trigger HT > 340 GeV, 4 jets pT > 75, 60, 45, 40 GeV,  
3 b-tags with DeepCSV > 0.24 8 Hz

6

Trigger efficiency as a function of the invariant mass mHH for the simulated Standard Model HH→4b process 
with 𝛋𝜆 = 1 shown for Run 2 (black), Run 3 2022  (blue) and Run 3 2023 trigger (orange). The two Higgs 
boson candidates are reconstructed from four central jets with the highest b-tagging scores. The trigger 
efficiency achieved by the new strategy is 82%, improved by 57% with respect to Run 2 and 20% with respect 
to 2022. The better performance of ParticleNet tagging on small-radius jets with respect to Run 2 taggers and 
the lowered HT requirement from 360 GeV to 280 GeV at the L1 trigger result in a higher trigger efficiency on 
the full spectrum of the mHH distribution. 

Online ParticleNet@HLT b-tag efficiency, as used in the High Level Trigger (HLT), as a function of the mean ParticleNet 
b-tag score of the two most b-tagged jets with pT > 35 GeV. The efficiency is measured in a ttbar + jets (electron-muon) 
control region, and shown for 2022 data (orange) as well as simulated data events (blue) corresponding to the integrated 
luminosity (L) of 35.1 fb-1. The vertical dashed line shows the minimum threshold of the ParticleNet@HLT b-tag score 
applied at the HLT.  The lower panel shows the associated data-to-simulation scale factors. The tanh-1 of the offline b-tag 
score is shown rather than the raw score to focus the efficiency measurement on the bulk of the distribution populated by 
real b jets. The emulated online b-tag efficiency in simulation models well the data, validating the online b-tagging trigger 
performance studies that have been performed on simulation.  5
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