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PRELUDE

Since | will be talking about Machine Learning and now is 2023...



PRELUDE

Since | will be talking about Machine Learning and now is 2023...

p— New chat

& Can you write a presentation about graph neural networks for high energy physics?
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A few seconds later...

GNNs for High Energy Physics

& Can you write a presentation about graph neural networks for high energy physics?

Sure, here is a possible presentation about Graph Neural Networks for High Energy

Physics:
Title: Graph Neural Networks for High Energy Physics
Introduction:

* Explain what High Energy Physics is and why it is important (e.g., studying

fundamental particles and forces, exploring the origins of the universe, developing

new technologies).

* Mention that High Energy Physics generates large amounts of data, and that

analyzing this data is a major challenge.

* Introduce the concept of Graph Neural Networks (GNNs) as a promising tool for

analyzing data that has a graph structure, such as particle collisions.

Body:

* Explain what GNNs are and how they work, using a simple example (e.g., predicting

node labels in a social network).

* Emphasize that GNNs can be used to learn from the topology of a graph, as well as

from the features associated with its nodes and edges.

* Show how GNNs can be applied to High Energy Physics, where the graph

corresponds to a particle collision and the nodes and edges represent particles and

their interactions.

* Describe some specific applications of GNNs in High Energy Physics, such as:

* Particle tracking: using GNNs to reconstruct the paths of particles from detector
measurements.
* Event classification: using GNNs to distinguish between different types of

particle collisions. v
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* Event classification: using GNNs to distinguish between different types of
particle collisions.
* Anomaly detection: using GNNs to identify rare or unexpected events that may

indicate new physics.

* Discuss some of the challenges of using GNNs in High Energy Physics, such as:

* Dealing with noisy and incomplete data.
* Handling large graphs with many nodes and edges.

* Ensuring that the learned representations are physically meaningful.

* Present some recent advances in GNNs for High Energy Physics, such as:

* Graph Attention Networks (GATs): GNNSs that use attention mechanisms to
selectively focus on relevant nodes and edges.

* Message Passing Neural Networks (MPNNs): GNNs that use message passing to
aggregate information from neighboring nodes and edges.

* Graph Convolutional Networks (GCNs): GNNs that apply convolutional

operations on graphs to learn local patterns.

* Mention some ongoing research directions in GNNs for High Energy Physics, such

as:
* Incorporating domain-specific knowledge into the GNN architecture.
* Combining GNNs with other machine learning techniques, such as reinforcement
learning.
* Developing GNNSs that can operate on heterogeneous graphs with multiple types

of nodes and edges.

Conclusion:

* Summarize the main points of the presentation, highlighting the potential of GNNs

for High Energy Physics.

* Emphasize the importance of continued research in this area, in order to address

the challenges and fully exploit the capabilities of GNNs.

* Encourage the audience to explore GNNs further, either by reading related papers

or by trying out existing GNN frameworks and libraries.
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A few seconds later...

— GNNs for High Energy Physics GNNs for High Energy Physics

#= Can you write a presentation about graph neural networks for high energy physics? * Event classification: using GNNs to distinguish between different types of

particle collisions.
* Discuss some of the challenges of using GNNs in High Energy Physics, such as: * Anomaly detection: using GNNs to identify rare or unexpected events that may
indicate new physics.
’ Dealing W|th nOisy and incomplete data. * Discuss some of the challenges of using GNNs in High Energy Physics, such as:
\ * Dealing with noisy and incomplete data.
* Handling large graphs with many nodes and edges. * Handling large graphs with many nodes and edges.
. . . . * Ensuring that the learned representations are physically meaningful.
) Ensurlng that the learned representatlons are phySICa”y meanlnngI' * Present some recent advances in GNNs for High Energy Physics, such as:
* Graph Attention Networks (GATs): GNNs that use attention mechanisms to
* Explain what High Energy Physics is and why it is important (e.g., studying selectively focus on relevant nodes and edges.
fundamental particles and forces, exploring the origins of the universe, developing * Message Passing Neural Networks (MPNNs): GNNs that use message passing to
new technologies). aggregate information from neighboring nodes and edges.
" Mention that High Energy Physics generates large amounts of data, and that " Graph Convolutional Networks (GCNs): GNNs that apply convolutional
analyzing this data is a major challenge. operations on graphs to learn local patterns.
" Introduce the concept of Graph Neural Networks (GNNs) as a promising tool for * Mention some ongoing research directions in GNNs for High Energy Physics, such
analyzing data that has a graph structure, such as particle collisions. as:

* Incorporating domain-specific knowledge into the GNN architecture.

Body: - . . . . .
E * Combining GNNs with other machine learning techniques, such as reinforcement

* Explain what GNNs are and how they work, using a simple example (e.g., predicting Salnine;

node labels in a social network).
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Sure, here is a possible presentation about Graph Neural Networks for High Energy
Physics:

Title: Graph Neural Networks for High Energy Physics
Introduction:

* Explain what High Energy Physics is and why it is important (e.g., studying
fundamental particles and forces, exploring the origins of the universe, developing
new technologies).

* Mention that High Energy Physics generates large amounts of data, and that
analyzing this data is a major challenge.

* Introduce the concept of Graph Neural Networks (GNNs) as a promising tool for

analyzing data that has a graph structure, such as particle collisions.
Body:

* Explain what GNNs are and how they work, using a simple example (e.g., predicting
node labels in a social network).

* Emphasize that GNNs can be used to learn from the topology of a graph, as well as
from the features associated with its nodes and edges.

* Show how GNNs can be applied to High Energy Physics, where the graph
corresponds to a particle collision and the nodes and edges represent particles and
their interactions.

* Describe some specific applications of GNNs in High Energy Physics, such as:

* Particle tracking: using GNNSs to reconstruct the paths of particles from detector
measurements.
* Event classification: using GNNs to distinguish between different types of

particle collisions. v

* Anomaly detection: using GNNSs to identify rare or unexpected events that may

indicate new physics.

* Discuss some of the challenges of using GNNs in High Energy Physics, such as:

* Dealing with noisy and incomplete data.
* Handling large graphs with many nodes and edges.

* Ensuring that the learned representations are physically meaningful.

* Present some recent advances in GNNs for High Energy Physics, such as:

* Graph Attention Networks (GATs): GNNs that use attention mechanisms to
selectively focus on relevant nodes and edges.

* Message Passing Neural Networks (MPNNs): GNNs that use message passing to
aggregate information from neighboring nodes and edges.

* Graph Convolutional Networks (GCNs): GNNs that apply convolutional

operations on graphs to learn local patterns.

* Mention some ongoing research directions in GNNs for High Energy Physics, such

as:
* Incorporating domain-specific knowledge into the GNN architecture.
* Combining GNNs with other machine learning techniques, such as reinforcement
learning.
* Developing GNNs that can operate on heterogeneous graphs with multiple types

of nodes and edges.

Conclusion:

* Summarize the main points of the presentation, highlighting the potential of GNNs

for High Energy Physics.

* Emphasize the importance of continued research in this area, in order to address

the challenges and fully exploit the capabilities of GNNs.

* Encourage the audience to explore GNNSs further, either by reading related papers

or by trying out existing GNN frameworks and libraries.

That's all for today.

Thank you!




THE EVOLUTION OF ARTIFICIAL INTELLIGENCE
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— GNNs for High Energy Physics +

% Can you write a presentation about graph neural networks for high energy physics?

“Remind me at 4:38 tonight
to buy a snow shovel”

Sure, here is a possible presentation about Graph Neural Networks for High Energy
Physics:

OK, I'll remind you to ‘Buy
a snow shovel’. When Title: Graph Neural Networks for High Energy Physics
would you like to be
reminded?

Introduction:

* Explain what High Energy Physics is and why it is important (e.g., studying

*430)* fundamental particles and forces, exploring the origins of the universe, developing
new technologies).

* Mention that High Energy Physics generates large amounts of data, and that

analyzing this data is a major challenge.

OK, just tell me what you

want to be remlnded analyzing data that has a graph structure, such as particle collisions.
about. -_—

Body:

* Introduce the concept of Graph Neural Networks (GNNs) as a promising tool for

“You're dumb”

* Explain what GNNs are and how they work, using a simple example (e.g., predicting
node labels in a social network).
OK |'" . * Emphasize that GNNs can be used to learn from the topology of a graph, as well as
! remlnd you' from the features associated with its nodes and edges.
* Show how GNNs can be applied to High Energy Physics, where the graph
r corresponds to a particle collision and the nodes and edges represent particles and
Rem | nder their interactions.

* Describe some specific applications of GNNs in High Energy Physics, such as:
Thursday, November 17, 2016 p PP g gy Phy

* Particle tracking: using GNNs to reconstruct the paths of particles from detector

measurements.
o “-) You're dumb * Event classification: using GNNs to distinguish between different types of
N 4.30 PM pal’ticle collisions. M
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THE EVOLUTION OF ARTIFICIAL INTELLIGENCE

Meta Al/UW RoBERTa (125M)

NVIDIA Megatron-LM (8.3B)

NVIDIA/Microsoft MT-NLG (530B)

LLM DATASET SIZE INCREASES 2018-2022

B common Crawl Wikipedia [l Books [l Reddit submissions Other

Ever-increasing dataset \

OpenAl GPT-1 (117M)
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THE EVOLUTION OF Al FOR SCIENCE

AlphaFold2: reaching atomic accuracy on protein structure prediction

based on Transformer models — the ML technology behind ChatGPT
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J. Jumper, R. Evans, A. Pritzel et al.
[Nature 596, 583-589 (2021)]
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https://doi.org/10.1038/s41586-021-03819-2

THE DATA CHALLENGE IN HIGH ENERGY PHYSICS

Large volume of data, complex topology, ...
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| + HEP: AT THE COLLISION POINT

Input Image
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Large volume of data, complex topology, ...



A JOURNEY |HROUGH GRAPH NEURAL NETWORKS

12



MACHINE LEARNING 101

“Machine learning is just curve fitting”
but...

CURVE-FITTING METHODS
AND THE MESSAGES THEY SEND
UNEAR . QUADRATIC o LOGARITHMIC
. L] . .
T TGRS Inbut data: i x;
REGRESSION' LINE, 50 T MADE ONE TAPERING OFF""
UITH MATH!
EXPONENTIAL o LOESS . LINEAR,
o o NO SLOPE
“LOOK, IT'S GROUING "TM SOPHISTICATED, NOT “I'™M MAKING A
UNCONTROLLABLY™ LIKE THOSE BUMBUING SCATTER PLOT BUT
PoLYNOMIAL PEOPLE" I DON'T WANT TO! M O d e I Y X
LOGISTIC . CONFIDENCE. PIECEVJISE i 9
* - - i * ) /.‘./’.*
.’_"..':__.i,.-.———~ :—r:"".t': .
“T NEED TO CONNECT THESE  “LISTEN, SCIENCE IS HARD. “T HAVE. A THEORY,
TUJO UNES, BUT MYFIRST IDEA  BUT I™M A SERIOUS AND THIS 5 THE ONLY
DIDN'T HAVE ENOUGH MATH!  PERSON DOING MY BEST DATA T COULD FIND®

Optimization
algorithm

5

CONNECTING AD-HOC . HOUSE Of .

“T CLICKED ‘SMOOTH “THAD AN IDEA FOR HOL  “AS YOU CAN SEE, THIS

UNES IN EXCEL To CLEAN UP THE DATA.  MODEL SMOOTHLY FITS
WHAT DO YOU THINK?" THE= WAIT MONO DON'T

EXTEND IT APARARY

Machine learning
(esp. Deep Neural Networks)

Curve fitting

Low dimensional (ID/2D)
Few points O(10-100)

High dimensional (> 100)
Huge data sample (> IM)

Complex functions with highly special
structures (CNNs, RNNs, Transformers, etc.)

and a large number of parameters
(103 to 107)

Simple functions with few
barameters

Minimization of task-specific loss functions

(e.g., cross entropy for classification,
MSE/MAE for regression, etc.)

Minimization of chi square /
likelihood / etc.
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DATA REPRESENTATION

HEP

A . \ . -~
A2 s \ o
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Ce e 7
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Collision events, detector hits, sensor arrays, ...

First and foremost:
How to represent the data’

ML

|4



DATA REPRESENTATION: IMAGE

HEP

Collision events, detector hits, sensor arrays, ...

Convert to 2D/3D image => Computer vision

then use convolutional neural networks (CNNSs)

but:

Inhomogeneous geometry, high sparsity, ...

40 ~

3979 » T

304

78 4 <! EI

o 20 - ]
510—2
15 - B

10 - m

10~

0 10 20 30 40
n
e.g., review in Kagan, arXiv:2012.09719
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DATA REPRESENTATION: SEQUENCE

HEP

— v’ ' u: 4
%e A
: ¢l

Collision events, detector hits, sensor arrays, ...

Convert to a sequence => Natural language processing (NLP)
recurrent neural network (RNN), e.g., GRU/LSTM; 1D CNNSs; etc.

Sequence
Q Output
MLP
| | | LSTM
| > 1 | S States
(1) ... (1 Input
& ' & Sequence

e.g., Guest, Collado, Baldi, Hsu, Urban, Whiteson
arXiv: 1607.08633
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DATA REPRESENTATION: SEQUENCE?

HEP Sequence
| 2 3
2
3
— Permutation symmetry =

| 2 3
S | 2 3
3

Convert to a sequence => Natural language processing (NLP)
recurrent neural network (RNN), e.g., GRU/LSTM; 1D CNNSs; etc.
but:

must impose an ordering on the particles/hits, which can limit the learning performance

|7
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DATA REPRESENTATION: POINT CLOUD

HEP Point cloud

TPy ..\
. i
v’ 'n:l
= ~'s~
- / [} .
' | 4
Collision events, detector hits, sensor arrays, ... '7

IEP data as a point cloud
each particle / detector cell is a point in the cloud
for each point: (spatial) coordinates + any additional properties (energy/momentum, detector response,...)

key feature: permutation symmetry

19



LEARNING ON POINT CLOUDS

HEP Point cloud

: & <
TPy ..\
. i
= ~:~
- / [} .
l\ ' |
Collision events, detector hits, sensor arrays, ... '7

Desired algorithms for learning on point cloud data
symmetry-preserving: the outputs should be invariant under permutation of the points

nigh expressiveness: capable of fully exploiting the correlations between points

.ow computational cost: scalable from O(10) to O(1000) points, and even up to O(1M) points in some cases

20



LEARNING ON POINT CLOUDS

Graph neural network - A unified framework

Edge block Node block Global block

Review in Shlomi, Battaglia, Vlimant, arXiv:2007.1 368

21



WHAT IS A GRAPH?

V2
Vi o)
graph level attributes ‘el/
|
Graph: u V E with IV, vertices and NV, edges \
/ \ e & |,
Vertices (nodes) Edges (links)
V =A{vi}tiz1n, E = {(ek, Tk, 5k) bo=1:N.

attributes of the i-th node attributes of the k-th edge

indices of the two nodes (receiver and sender)
connected by the k-th edge

22



How TO BuUILD THE GRAPH!?

From point clouds to graphs:

points (particles/hits/sensors) naturally become the nodes of the graph

but how to define the edges?

Set: no edges Fully connected graph ierarchical trees:
.e., connect each node decay chain
to all other nodes jet clustering history

Locally connected graph
i.e., connect each node

only to neighbor nodes
k-nearest neighbors
fixed radius

(dynamically) learned

23



GRAPH NETWORK FORMALISM

ypical graph neural networks (GNNs) can be described in the "Message Passing” framework

GI‘GPh (; = u V E with N, vertices and N, edges

/ \ -

Vertices (nodes) Edges (links) \
V — {V}: . E p— 1. €2
1 f1=1:N, {(ek,rk,sk)}k_l,Ne V3

24



GRAPH NETWORK FORMALISM

ypical graph neural networks (GNNs) can be described in the "Message Passing” framework

GI‘GPh (; = u V E with N, vertices and N, edges v
/ \ Vi
. |
Vertices (nodes) Edges (links)
V — {Vz’}izlsz B = {(ek, 'L, Sk)}kzl:Ne V3

Shlomi, Battaglia, Vlimant, arXiv:2007/.13681

e,: message computed for edge k connecting nodes ry, s;

e]/c — ¢e(ek9 vr > Vs u)

Edge block



GRAPH NETWORK FORMALISM

ypical graph neural networks (GNNs) can be described in the "Message Passing” framework

/\

Vertices (nodes)

V = {Vi}izlsz

GI‘GPh (; = u V E with N, vertices and N, edges

Edges (links)

b = {(ek, 'L, Sk)}kzl:Ne

e,: message computed for edge k connecting nodes ry, s,

v: node feature update based on aggregated messages and u

previous features

e, = ¢°(e, Vio Vs u) e;=p° N (E)
.= ¢’ (el, V., u)

Shlomi, Battaglia, Vlimant, arXiv:2007.1368|

N

E_

Edge block

Node block




GRAPH NETWORK FORMALISM

ypical graph neural networks (GNNs) can be described in the "Message Passing” framework

GI‘GPh (; = u V E with N, vertices and N, edges

Vertices (nodes) Edges (links)

e
V = {Vi}i=1:N, E = {(ek, Tk, Sk) }k=1.N. } 3

Shlomi, Battaglia, Vlimant, arXiv:2007.1368|
e,: message computed for edge k connecting nodes ry, s;,

v’: node feature update based on aggregated messages and u

~
previous features
u'. global feature update based on aggregated, updated 14
node and edge features \

I e =/ _ eV L/
ek_¢ (ekﬂvr’ S’u) €, =p (El)
v, _¢v (3 v, u) é/:pe_)u(E/) E —

— ¢ (" v/ ) y = pV—W(V’) Edge block Node block Global block

27



GRAPH NETWORK FORMALISM

ypical graph neural networks (GNNs) can be described in the "Message Passing” framework

Vertices (nodes)

V = {Vi}izlsz

Graph: G = (u,V, F)

/\

Edges (links)

b = {(ek, 'L, Sk)}kzl:Ne

with NV, vertices and [V, edges

Vi

€l

o

V2

e,: message computed for edge k connecting nodes ry, s;,

v’: node feature update based on aggregated messages and u

previous features

node and edge features

~—~
u'. global feature update based on aggregated, updated V\

e],c — ¢e(eka vr > V5 u)

Shlomi, Battaglia, Vlimant, arXiv:2007.1368|

e;=p° (E)

e/ — pe—>u(E/) E -

y' = pV—W(V’) Edge block

v.=¢" (e v, u)
= ¢“(e’. v, u)
Ehared—weight NN

Symmetric functions (e.g., sum, mean, max, etc.) |

Node block

Global block

28



GRAPH NETWORK FORMALISM

ypical graph neural networks (GNNs) can be described in the "Message Passing” framework

GN layer
Edge block Node block Global block
\Y
l Unshared, de GN stack l
Go GN; G4 GN> GNy Gy
FlIGNN

29



GRAPH NEURAL NETWORKS IN ACTION

30



GRAPH ML TASKS

Graph Classification
(and regression)

%n

Community Detection
(Graph clustering)

Node Classification Link Prediction

>k

Graph Embedding Graph Generation

0.2

? o1 ?
mp| 0.7 =g
0.2
0.9

https://towardsdatascience.com/graph-convolutional-networks-deep-29d/fee5 /06f

31
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GRAPH ML TASKS

Graph Classification
(and regression)

T
F

32


https://towardsdatascience.com/graph-convolutional-networks-deep-99d7fee5706f

.| CMS Experiment at LHC, CERN
C S ;| Datarecorded: Sat Aug 5 15:32:22 2017 CEST

JET TAGGING

= Jet: a collimated spray of particles

Key question:
What type of particle initiates the jet?

The answer — Jet tagging!




PARTICLENET

ParticleNet: jet tagging via particle clouds

treating a jet as an unordered set of particles, distributed in the n — ¢ space

HQ and L. Gouskos
Phys.Rev.D 101 (2020) 5,056019

graph neural network architecture, adapted from Dynamic Graph CNN [arXiv:1801.07829]

treating a point cloud as a graph: each point is a vertex

for each point, a local patch is defined by finding its k-nearest neighbors

designing a permutation-invariant “convolution” function

define "edge feature” for each center-neighbor pair: ejj= MLP(x;, x;)

aggregate the edge features in a symmetric way: xi' = mean; e;;

0 Qﬂ X O ‘112 eij- O Ji2
>
C..
/ x\‘ .
i
x @ X, x @ X,
Ji4 Ji |
O

ParticleNet architecture

regation
E\V
A
eLU /
\4

EdgeConv Block
k=16, C = (64, 64, 64)
\_

\ 2 v

EdgeConv Block
k=16, C = (128, 128, 128)
. J

v v

EdgeConv Block
k=16, C = (256, 256, 256)
\. J

v
Global Average Pooling

2

Fully Connected
256, RelLU, Dropout = 0.1
L

v

Fully Connected
2

2

Softmax

. J

cf. PT. Komiske, E. M. Metodiev and J.Thaler, JHEP 01 (2019) 121;

V. Mikuni and F. Canelli, Eur. Phys. |. Plus 135, 463 (2020); Mach.Learn.Sci.Tech. 2 (2021) 3, 035027,
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PARTICLENET IN ACTION: H—=CC SEARCH

. . . . . . M K e
Higgs-charm coupling: next milestone in Higgs physics /s Sy BB (1370
a crucial test of fermion mass generation mechanism in SM |
5 107k E
H—cc: extremely challenging search at the LHC Elf i
. . . . 10—2 3 ‘I:".Q"‘ _
small branching fraction (~3%) vs enormous backgrounds — charm tagging is the key | T8 Vestor bosons
. . c¢ c 9 _3__ ¢ 3" generation fermions _
Innovative approach: search for VH(H—cc) in the "'merged-jet” topology 107w " zndzeneraﬁonfermions
. . T SM Higgs boson ]
reconstructs H—cc decay with one large-R jet (R=1.5) 00k,
2 14 I L L oo T Ly
: : : . D q2b ] 105 3
then: exploits advanced ML for H—cc identification R 1 S P G— I T
S 08F 095; ;
oC 0_6-..I Ll Lol Ll
(13 TeV) 10 1 10 102
> [T " o Particle mass (GeV
? 1-4__C.MS | —e— Resolved 1 {\/lg(/ggo(—j@‘b ( )
o | Simulation Merged (AR <1.5) ]
H(:_J 1.2]- Preliminary g
2 1:_ /H events __
2 I
g 0-8;‘ o = 4 better signal purity at higher pr
8 06 o —T7 E higher reconstruction efficiency with large-R jets
m i
0.4¢ E better exploiting correlations between the two
0.2 4 Vv charm quarks — especially with deep learning
0050150 250 350 450, - AR(c, <) - Zm(H)/pr(f)

Higgs boson p_ [GeV]
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PARTICLENET IN ACTION: H—=CC SEARCH

ParticleNet for H—cc jet tagging and mass reconstruction: substantial improvements

Background efficiency

PRL [31 (2023) 061801 (13 TeV)
! CMS DeepAK15
- Simulation —— ParticleNet
1 §_ anti-k. R =1.5 jets
- p_>300GeV, hl <24
L P " ~5x better
i H— bb rejection
(O = A
21
10 = H— cc tagging
- | ~5x"better
I l VAjet rejection ----- H—>ct vs. H—bb
02k / — H—>cT vs. V4ets
-‘:._ | | | | | | | | | | | | | | | | | |
0)

0.2 0.4 0.6 0.8 1
Signal efficiency

ParticleNet tagger for H—cc tagging
>2x improvement in final sensitivity

event fraction

CMS DP-2021/017 CMS Simulation Preliminary
_l | | | | | | | | | | | | | | | | | | | |_
0.141 anti-k . jets — --seees H -> cc (soft drop)
5 122_ n_1s —— H->cc (regression)_i
[ p_>200GeV i
- Jet mass response: .
0.1- H— cc jets i
0.08F -
i ~50% better -
0.06- T resolution £
- Reduced tails ) :
0.04 :_=> higher efficiency [: E
0.02: .
oL , o
0 0.5 1 1.5 2
Mreco / I\/Itarget

ParticleNet-based jet mass regression

~20-25% improvement in final sensitivity
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PARTICLENET IN ACTION: H—=CC SEARCH

ParticleNet for H—cc jet tagging and mass reconstruction: substantial improvements

PRL 131 (2023) 061801 138 fb1 (13 TeV)
L B> Vo Yo ) g L L L B L L BN
§ - CMS —4— Observed I VH(H—bb) -
L1l - .. VZ(Z—cc) VV(other) _
3 1000 — Prellml{‘)ary B single Top tt —
c - Merged-jet- Wijets Z+jets —
% 800 B All categories I VH(H—cC), u=7.7 5 B uncertainty _|
= _ S/(S+B) weighted _
m i i . .
£ 600 o —| [Most stringent limit on H—cc to date.
B E oo E ~4x higher sensitivity than the ATLAS search
400 il == — Comparable to previous HL-LHC projection,
- n + N - but with only 5% of the data.
200—— e,
B [+
O;_:;._._ Lo L = I—l—_
First observation of [—cC H—cc B subtracted _
Z—cc
at a hadron collider!
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PARTICLENET IN ACTION: ONLINE EVENT SELECTION

ParticleNet also deployed at the CMS High-Level Trigger (HLT) system for online event selection since Run3

substantial improvement in trigger efficiency for e.g., di-Higgs searches

g 70000 _-H
b-tagging performance @ HLT Trigger efficiency for HH—4b ¢ v> <7
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{s= 13.6 TeV
9 1:||||||||||||||||||||||||||||||||||||||||||| 16 Vs = 13, 13.6 TeV
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qL:D - DeepCSV online '6 . HH — 4b Wlth K},, = 1 Run 3 2022 HH trigger ¢(HH— 4b) = 68%
T .. . e e A SRR A S — 8 — B
GCJ 10 - T DeepJet online 14 - - 12 R = Run 2 £(HH— 4b) = 52%
O - — ParticleNet online A - LU &
K2 . - f | - Bre e
= DeePJet offlme. o O 1 i
= """ ParticleNet offline g 7 (@) -
o ; - - o z ®)) i3 — e —————
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D é é i ~ E
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PARTICLENET IN ACTION: BEYOND JETS
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Muon bundle reconstruction
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Cosmic ray pattern identification
Astropart.Phys. 126 (2021) 102527
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BEYOND PARTICLENET

Transformers: the new state-of-the-art architecture in ML — foundation of LLM like BERT/GP

core concept: self-attention mechanism

X wa Q ]
The_ The_
= animal_ animal_
Q 3 didn_ didn_
X t: t:
X SO ftm aX ( ) Cross._ Cross._
’ the_ the_
- \/ﬁ street_ street_
because_ because_
it_ VS W
X - was_ was_
too_ too_
tire tire
) d_ d_
Particle Transformer (ParT): Transformer model tailored for particle physics
L blocks Class token
r A ~N r A r N
) . rParticlej rParticle1 rParticle1 At(tjlaf.s — A:Elaf,s f:
H Q, C. LS. Q’an, Particles =»| 5 b—>| Attention }——>| Attention p == === =-. >| Attention chtion —~> cntion T_) - —
ICML 2022 Block Block xL=1 | Block Ellgrcks llgels =
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Layer:| 5 §|Attention:| Input - Input

.|

Interactions =—>»

(a) Particle Transformer

(Embedding) (Embedding)


https://arxiv.org/abs/2202.03772

PARTICLE T RANSFORMER: ARCHITECTURE

A=/ (Ys— )%+ (¢ — )2,
kr = min(pr q, prp) A,

zZ = min(pT,mpT,b)/(pT,a + pT,b)7
m? = (Eq + Eb)* — [|Pa + Pol|%,

and many other possible
bairwise features...

Interactions =>»

(Embedding)

‘[ p-MHA

C

MatMul

$

( SoftMax )

@

' Mask '

( Matvu )

e x7

A

( Linear) ( Linear) ( Linear)
\ i)

HQ, C. Li, S. Qian,
ICML 2022

P-MHA(Q, K, V) = SoftMax(QK ™ /\/dj, + U)V,

Injection of (physics-inspired) pairwise features to
“bias” the dot-product self-attention

4|


https://arxiv.org/abs/2202.03772

PARTICLE [ RANSFORMER: PERFORMANCE

All classes H—-bW H-—>c H—gg H—4q H-—=lvgy t—bgd t—blv W —qid Z—qq

Accuracy  AUC Rejs09 Rej50 Rej50 Rej5 Rejgge Rejso,  Rejgg 59 Rej50 Rej50
PEN 0.772 0.9714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 047 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 054 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2011 112 1185 3868 17699 12987 384 311

JETCLASS dataset (100M jets)

Particle Transformer (ParT): significant performance improvement!

compared to the existing state-of-the-art, ParticleNet

1.7% increase in accuracy

» Rejyq, = 1/FPR at TPR = X%,

up to 3x increase in background rejection (Rejxx)



https://zenodo.org/record/6619768

PARTICLE [ RANSFORMER: PERFORMANCE

All classes H—-bW H-—>c H—gg H—4q H-—=lvgy t—bgd t—blv W —qid Z—qq
Accuracy  AUC  Rejsgq,  Rejsoy,  Rejggy Rejs09, Rejggo, Rejsoo,  Rejgg 50 Rejsgy, Rejs00,
PFN 0.772 0.9714 2924 341 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 38 474 947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 09877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2011 112 1185 3868 17699 12987 384 311
. o . JETCLASS dataset (100M jets)
Particle Transformer (ParT): significant performance improvement!
compared to the existing state-of-the-art, ParticleNet Model complexity
1.7% increase in accuracy Accuracy # params FLOPs
up to 3x increase in background rejection (Rejxx) PEN 0.772 86.1k  4.62M
o . . P-CNN 0.809 354k 15.5M
ParT (plain): plain Transformer w/o interaction features ParticleNet 0.844 0k 540M
1.2% drop in accuracy compared to full ParT ParT 0.361 2.14M  340M
ParT (plain) 0.849 2.13M 260 M

Physics-driven modification of self-attention plays a key role!
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PARTICLE [ RANSFORMER: PRE- T RAINING + FINE- TUNING

he large

ransformer-based model enables new training paradigm

(supervised) pre-training on a large dataset (e.g.,JETCLASS) & fine-tuning to downstream tasks

significantly outperforms existing models

Top quark tagging benchmark (~2M jets) [SciPost Phys.7 (2019) 014]

Quark-gluon tagging benchmark (~2M jets) [JHEP 01 (2019) 121]

Accuracy AUC Rejs o Rejsq0 Accuracy AUC Rejx g0 Rejsq0
P-CNN 0.930 0.9803 201 +4 759 £+ 24 P-CNNexp 0.827 0.9002 34.7 91.0
PFN — 0.9819 247 £ 3 888 £ 17 PFNexp — 0.9005 34.7+04 —
ParticleNet 0.940 0.9858 397 £ 1615 4 93 ParticleNetey, 0.840 09116 39.8+0.2 98.6 = 1.3
JEDI-net (w/ ) O) 0.930 0.9807 — 774.6 TPCNexp — 0.9081 38.6 0.5 —
PCT 0.940 0.9855 392+ 7 1533 £+ 101 ParT, 0.840 09121 41.34+0.3 101.24+1.1
LGN 0.929 0.964 — 435 £+ 95 ParticleNet-f.t.x, 0.839 09115 40.1 £0.2 100.3 = 1.0
rPCN — 0.9845 364 = 9 1642 £ 93 ParT-f.t.eXp 0.843 09151 42.4+0.2 107.9 £ 0.5
LorentzNet 0.942 0.9868 498 + 18 2195 £ 173 PEN{p _ 09052 374107 —
ParT 0.940 0.9858 413 + 16 1602 + 81 . 4 -
: ABCNetg 0.840 09126 42.6+0.4 1184+ 1.5
ParticleNet-{.t. 0.942 0.9866 487 + 9 1771 £ 80 4 -
ParT-ft. 0.944 0.9877 69115 2766 L 130 PCTeyp 0.841 09140 43.2+0.7 118.0 + 2.2
_ _ LorentzNetg, 0.844 09156 424404 110.2+1.3
ParTqu 0.849 0.9203 47.9 1+ 0.5 129.5 = 0.9
ParT-f.t.qyy 0.852 09230 506+0.2 138.7+1.3
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ECONSTRUCTION

Tracks and calorimeter hits

— Track
e ® Raw ECAL hit
4 paﬁ\o ® Raw HCAL hit
ev . @ Raw Muon chamber hit
O‘(\af%ao\(\ﬂg

Raw detector hits Pa\rt/i/cles

s\ |

N\ A /4 Charged hadron
Calorimeter SN —— Photon

. — S N B )<'/
clustering i ~_  — Neutral hadron
N\ — Electron

Raw tracker hit

Raw ECAL hit

Raw HCAL hit

Raw Muon chamber hit

— Muon

Tracks and calorimeter clusters

— Track
T T @ ECAL or HCAL cluster

Credits: |. Pata


https://indico.cern.ch/event/1253794/contributions/5588555/attachments/2746438/4778991/2023_11_06_hamburg.pdf

CHARGED PARTICLE TRACKING

Charged particle tracking via edge classification with GNNs

each hit Is a node of the graph

edges constructed between pairs of hits with geometrically plausible relations

G. DeZoort et al.
classify whether each edge connects hits belonging to the same track or not [Comput. Softw. Big Sci. 5,26 (2021)]
0) (0 H . 1
(), a?) (xV,all) (wil) 020
] L Y U
Interaction network
Relational Object I?dgc? - E\ | TN
model weighting = R RN/
(1) _ ©) 0 0 (1) _ 1) (D (1) A N VUV A
. \ \ NN /// / /
(1) — (0) (D Lo Y Vv »
X = goly, ’ZjeN(i)aij ) = AR N .
il - EEE True Positive
: Il True Negative
0.02 A Bl False Positive
False Negative

-1.5
z [m]

1.5

See also: S. Farrell et al. [1810.06111]; X. Ju et al. [2003.11603];

C. Biscarat, S. Caillou, C. Rougier, |. Stark and |. Zahreddine [2103.00916]; X. Ju et al. [2103.06995]; etc.
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ECONSTRUCTION

Tracks and calorimeter hits

— Track

® Raw ECAL hit

@® Raw HCAL hit
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Particles
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Credits: |. Pata
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https://indico.cern.ch/event/1253794/contributions/5588555/attachments/2746438/4778991/2023_11_06_hamburg.pdf

CALORIMETER CLUSTERING

End-to-end reconstruction for a high granularity calorimeter
Object condensation: one-stage multi-object reconstruction

supervised clustering of hits belonging to a shower to a ‘condensation point” by using attractive/repulsive
potentials in the loss

simultaneously predict the number of showers and their properties

GarNet/GravNet Truth Reconstructed Time and
memory usage
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S.R. Qasim, |. Kieseler,Y. liyama and M. Pierini [EP|C 79 (2019) 7, 608]; J. Kieseler [EP|C 80 (2020) 9, 886]; S. R. Qasim et. al., [EPJC 82, 753 (2022)]
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ECONSTRUCTION

Tracks and calorimeter hits

— Track
e ® Raw ECAL hit
4 paﬁ\o ® Raw HCAL hit
ev . @ Raw Muon chamber hit
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https://indico.cern.ch/event/1253794/contributions/5588555/attachments/2746438/4778991/2023_11_06_hamburg.pdf

PARTICLE-FLOW RECONSTRUCTION: MLPF

Global particle-flow reconstruction via node classification and regression using GNNSs
comparable performance to the baseline rule-based PF algorithm at CMS

runtime scales linearly with input size, no quartic explosion J. Pata et. dl,
ACAT 2021, 2203.00330

Event as input set Event as graph Transformed inputs
X = {x;} X={x}L,A=A4, H={h}

(] il CMS Simulation Preliminary
tt + PU, /s = 14 TeV

Particle Flow reconstruction

Compac: Muon

® .: Graph building Message passing g
]
]
® ..—> LSH+kNN Emmmd " Y -_’ I .
F(X|w)=A CX,Alw)=H
¢ I
rons . HFEM
N Target set ¥ = {y;} Output set ¥ = {y/} l

Decoding

. /
C § CMS Simulation Preliminary ElementWISG lOSS L(y], y] «— elementwise
Il 5+ PU, /5 = 14 TeV classification & regression FFN
Machine-Learned Particle Flow reg < >

X; = [type, prs Egcar: Eucars 1 @ Mouter» Pouter - ---1> type € {track, cluster
;= [PID, pr, E,n, ¢, q, ...], PID € {none, charged hadron, neutral hadron, y, e*, u*)
h. € R256

N Trainable neural networks: F, &, 9

o ® - track, [ - calorimeter cluster, I - encoded element
- target (predicted) particle, - no target (predicted) particle

HFHAD T —

Neutral hadrons Electrons

Photons Muons



https://arxiv.org/abs/2203.00330

PARTICLE-FLOW RECONSTRUCTION: HGPFLOW

What if multiple clusters should be associated to multiple particles? ==> Hypergraph

Hyperedges

/‘ El\A Nodes Hyperedges ‘ ‘ ‘
O E O

® O

O O

O

Truth Particles fr'ON A:structed Particles
collision/simulation '

(CDe”tector Sata) Hypergraph Bipartite graph Incidence matrix
ells, tracks,...

Nodes

r \ ™)

[ Corrected pr. 7, ¢ ]

Compute
Particles Dol & M’ +

[class (ch had, e, mu)]

v < - e

Detector data TCs + [ Corrected pr. 7, ¢ ]
(Cells + tracks) tracks el N +
pron. ¢ See talk by N. Kakati
| class (nuhad, /) | at ML4Jets2023
~ J | J
Encoding Analogous to Classical PF Calibration + particle identification

(Important for ML)


https://indico.cern.ch/event/1253794/contributions/5588629/attachments/2746927/4779911/HGPflow_nilotpal.pdf

(GNNS FOR RECONSTRUCTION

Almost all ML reconstruction models are based on point clouds and using graph neural networks

however, with varying approaches for different tasks

Node Classification Link Prediction Community Detection

?

MLPF Tracking, Calo clustering
HGPflow (object condensation)
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THE ROAD AHEAD

54



THE ROAD AHEAD

Can we better incorporate physics knowledge into the network design?

physics aware data representation, symmetry group equivariant architecture, ...
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LORENTZNET

S. Gong, Q. Meng, |. Zhang, HQ, C. Li, S. Qian,
W.Du, Z. M. Ma and TY. Liu,
JHEP 07 (2022) 030

Incorporating Lorentz symmetry into graph neural network architecture

probability
| pitt 4}9&“ Softmax
: . . 0 _ K 3
Coordinate input:  x Lorentz 4-vector “ . S
Feature input: o Lorentz scalar : f_ o
_________________________________________________________________________ h X
t ‘ Average Pooling
. [ _ N [ [ 112 [0
Message: mi; = g (bl S, (el = 2I%), w((al,2) > I
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Scalars t Fpimt it
[+1 I l I Bl o LGEB XL—1
Coordinate update: ;™" =i +c Y  ¢z(mi;) -2 Lh° x°
JE[N] MLP Sum Pooling Minkowski Norm & Rl
Inner Product !
Scalars 4-momentum
Feature update: h2+1 — hi + gbh(hé, Z wijméj) Lorentz Group Equivariant Block (LGEB) LorentzNet
JE[N]

cf.A. Bogatskiy, B. Anderson, J. Offermann, M. Roussi, D. Miller and R. Kondor, arXiv: 2006.04/780 ["LGN"];
A. Bogatskiy, I. Hoffman, D.W. Miller, |. 1. Offermann and X. Liu, 230/.16506 ["PELICAN"];
. Batatia, M. Geiger, |. Munoz, I. Smidt, L. Silberman and C. Ortner, arXiv: 2306.00091 [“lie-nn”];
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https://arxiv.org/abs/2306.00091

L ORENTZNET: BENEFITS FROM SYMMETRY

Benefits from the symmetry preservation
model response invariant under Lorentz transformation

sample efficiency: incorporation of Lorentz symmetry allows to train with very few samples

Model stability under Lorentz boost

1.0
‘ Performance when trained on a fraction of the top-tagging dataset
091 = i .
.o ...0. “ ‘ T 1] 1 1
. e, Ny ram.mg Model Accuracy | AUC /eB /eB
0.8 N : Fraction (es =0.5) | (e5 =0.3)
g osor | ParticleNet | 0.913 [ 0.0687 | 774 | 199+ 14
2071 + LGN . e 20 | LorentzNet | 0.929 | 0.9793 | 176 £ 14 | 562 + 72
< © P-CNN |y | ParticleNet [ 0.919 [ 00734 | 10345 | 287419
| E A " | LorentzNet | 0.932 | 0.9812 | 209+5 | 697+ 58
«  ResNeXt 5 ParticleNet 0.931 0.9807 195 +4 609 £+ 35
05| ° EGNN LorentzNet | 0.937 | 0.9839 | 293 +12 | 1108 =+ 84
' * LorentzNet
0.0 0.2 0.4 0.6 0.8 1.0

jo8)
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THE ROAD AHEAD

Can we scale up to a large model for HEP?

large datasets, pre-training, multi-modal learning, ...
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L ARGE PHYSICS MODEL!?
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https://huggingface.co/blog/large-language-models R. Das, G. Kasieczka and D. Shih, arXiv: 221 2.00046

Large Language Models (like GPT) has transformed NLP.
What if a Large Physics Model?
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A FIRST STEP

JETCLASS: a new large and comprehensive jet simulation dataset

A¢

A¢

100M jets in 10 classes: ~two orders of magnitude larger than existing public datasets
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We invite the community to explore and experiment with this dataset and
extend the boundary of deep learning and HEP even further.
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THE ROAD AHEAD

Can we improve the computational efficiency of GNNs?
emerging specialized libraries for GNN training and inference (PyG, DGL, TF-GNN,...)

accelerated inference on specialized ASICs / FPGAs (e.g., for triggering), software hardware co-design, ...

Can we improve the robustness of GNNs (e.g., data/simulation difference)?

domain adaption? calibration? uncertainty aware training? ...

Can we improve the interpretability and explainability of GNNs?
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THE ROAD AHEAD

Can we better incorporate physics knowledge into the network design?

physics aware data representation, symmetry group equivariant architecture, ...

Can we scale up to a large model for HEP?

large datasets, pre-training, multi-modal learning, ...

Can we imprc Your :novation and cr

emerging sp oraiWN training and inference (PyG, DGL, TF-GNN,...)

accelerated inference on specialized ASICs / FPGAs (e.g., for triggering), software hardware co-design, ...

Can we improve the robustness of GNNs (e.g., data/simulation difference)?

domain adaption? calibration? uncertainty aware training? ...

Can we improve the interpretability and explainability of GNNs?
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GRAPH GENERATIVE MODELS

Graph Embedding Graph Generation
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https://towardsdatascience.com/graph-convolutional-networks-deep-29d/fee5 /06f
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Graph Generation

PARTICLE CLOUD GENERATION 7

Exploit GNNs for “particle cloud” generation

enables fast detector simulation R. Kansal, ]. Duarte, H. Su, B. Orzari, T. Tomei, M. Pierini,
M. Touranakou, . R.Vlimant and D. Gunopulos
[NeurlPS 2021]
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Graph Embedding

A N O MALY D ET ECTI O N O.Atkinson, A. Bhardwaj, C. Englert,V.
S. Ngairangbam and M. Spannowsky 2 [22]

[J[HEP 08 (202 1) 080] nd

0.9

GNN based autoencoders for anomaly detection

enables automated and model-agnostic new physics search
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CORRELATION WITH THE JET MASS

Plain training: One feature of these taggers is the correlation with the jet mass

d lati : . :
10 mass decorreiation jet mass shape of the background becomes similar to that of the signal

2 Background sample after selection with the tagger: “mass sculpting”
Signal sample (Fixed mass) . . .
-~ not necessarily a problem, but a mass-independent tagger is often more
P desirable:
o | allows to use the mass variable to further separate signal and background
enables tagging signal jets with an unknown mass
Jet mass
Background jet mass
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DECORRELATION WITH THE JET MASS  asoeaum

Mass-decorrelated ParticleNet:

Plain training: Mass-decorrelated DeepAKS8: N , , ,
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PERFORMANCE COMPARISON

Background efficiency
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»bb tagging performance
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Signal efficiency

ParticleNet-MD

using a special signal sample for training
hadronic decays of a spin-0 particle X
X = bb,X = cc,X = g
not a fixed mass, but a flat mass spectrum
m(X) € [15, 250] GeV

allows to easily reweight both signal and background
to a ~flat 2D distribution in (pt, mass) for the training

ParticleNet-MD shows the best performance

~53-4x better background rejection compared to
DeepAK8-MD (based on “adversarial training”)

only slight performance loss compared to the
nominal version w/o mass decorrelation
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MASS REGRESSION

(13 TeV)
Jet mass: one of the most powerful observables for boosted jet tagging 20012g|\n:l~:t et e
characteristic mass peak for top/W/Z/H jets v.s. continuum for QCD jets 212: Imualon E%vib :
"% | CMS, INST 15 (2020) PO600S :
Mass regression:
exploit deep learning to reconstruct jet mass with the highest possible resolution

training setup similar to the ParticleNet tagger

but: predict the jet mass directly from the jet consitituents

Regression target:

signal (X = bb/cc/qq): generated particle mass of X [flat spectrum in 15 - 250 GeV]
background (QCD) jets: soft drop mass of the generated particle-level jet

Loss function
LogCosh: L, y?) = X log(cosh(y; — y:))
=1
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— Squared
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———Log-Cosh
4+ ——Huber ?5:5;
——Huber (d=1

https://www.cs.cornell.edu/courses/cs4/80/20 | Sfa/webl

lecturenotes/lecturenote | O.html
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TAGGER CALIBRATION IN DATA

Events / bin

Data / Post-fit

Crucial to calibrate these taggers in real data for them to be used in analyses

Top/W tagging efficiency

35.9 fb! (13 TeV) JINST 15 (2020) P06005 35.9 fb" (13 TeV) Top tagging: DeepAK8-MD CMS DP-2020/025
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measured using the single-uy sample enriched in semi-leptonic ttbar events
fit jet mass templates in the "pass” and “fail” categories simultaneously to extract efficiency in data
simulation-to-data scale factors SF = eff(data) / eff(MC) derived to correct the simulation

jet mass scale and resolution scale factors can also be extracted

Mistag rates of background jet typically derived directly from analysis-specific control regions
7]
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Calibration of the cc-tagger

d Need to measure ParticleNet cc-tagging efficiency in data

no pure sample of H — cc jets (or even Z — cc) in data

using g — cc in QCD multi-jet events as a proxy

 Difficulty: select a phase-space in g — cc that resembles H — cc (é@&é@
solution: a dedicated BDT developed to distinguish hard 2-prong splittings ~ { H — cc like
(i.e., high quark contribution to the jet momentum) from soft cc radiations

g Soft radiations:
Dominant contribution!

(i.e., high gluon contribution to the jet momentum) Effects of the BDT
also allows to adjust the similarity between proxy and signal jets = H— cc
by varying the stBDT cut — treated as a systematic uncertainty I
. . . o | g—cc (sfBDT>0.90)
1 Perform a fit to the secondary vertex mass shapes in the “passing g— cc (sfBDT>0.95) y!

and “failing” regions simultaneously to extract the scale factors

three templates: cc (+ single ¢), bb (+ single b), light flavor jets

d Derived cc-tagging scale factors typically 0.9—1.3

corresponding uncertainties are 20—30%

ParticleNet cc discriminant 79



CMS B-TAG HLITS

Trigger Efficiency
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