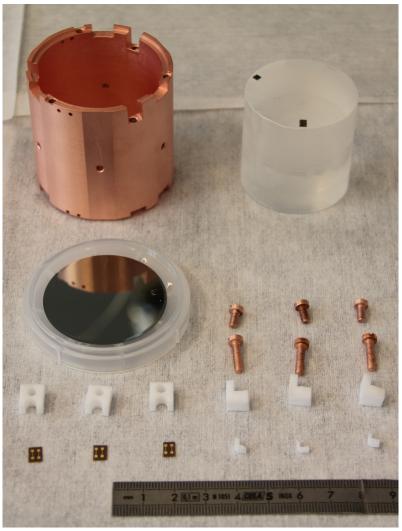


CUPID-Mo article reading

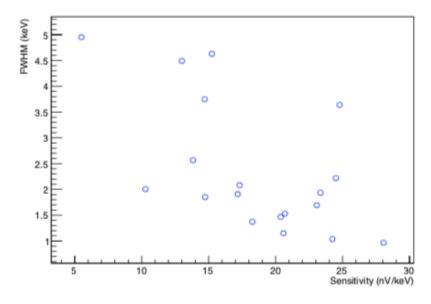

Kangkang Zhao, Sept 5th 2019

Experimental setup

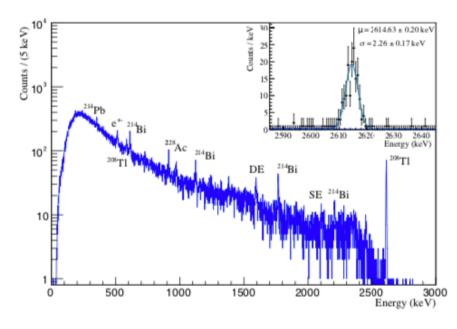
- An array of 5×4 scintillating bolometers;
- Enriched 0.2 kg Li_2MoO_4 , ~97% enriched Mo
- Crystal $\sim \phi 44 \times 45$ mm, 4.158 kg crystal, 2.264 kg ¹⁰⁰Mo in total;
- LD Ge $\sim \phi 44 \times 0.175$ mm with $\sim 70\,$ nm SiO coating;
- NTD $3.0 \times 0.8 \times 1.0 \text{ mm}^3$;
- Silicon-based resistive chip;
- Araldite® Rapid gule, single glue spot for heater, six glue spots for 5 LMO,
 - nine glue spots for the remain LMOs and LDs

Assembly

Shield & Operation



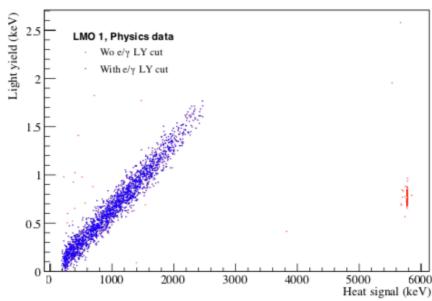
- Low background cryogenic facility (20.7 mK):
 - 1. 1700 m rock overburden (4800 m water equivalent) with cosmic muon flux 5 muons/m2/day;
 - 2. Refilling of the liquid helium (LHe) bath every 10 days.
 - 3. Passive shield: 20 cm lead and 55 cm polyethylene;
 - Inner part: 2 cm Roman lead with ²¹⁰Pb radioactivity low than 0.12 Bq/kg;
 - 5. Roman lead (14 cm) and polyethylene (10 cm) shield at the 1K-plate
 - 6. Muon vwto: 46 individual plastic scintillator modules with a total surface of 100 m² and provides a detection efficiency of 97.7% for central muons;
- Operation:
 - The 60 Co source , \sim 2-days-long Th/U calibration;


Performance

 Baseline FWHM versus Sensitivity for Ge LDs also for LMOs;

Fig. 12 Sensitivity versus baseline resolution (FWHM) for the 19 LMO detectors considered in this analysis. One detector (LMO 2) is omitted due to abnormal performance; see text).

Fig. 13 Summed calibration spectrum for $19/20 \, \text{Li}_2 \, \text{MoO}_4$ bolometers. All the major peaks have been labeled. The inset shows a fit of the $^{208} \, \text{Tl}$ γ peak at 2614.5 keV.

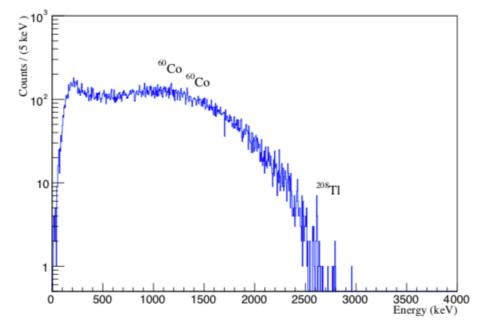

• Median baseline FWHM: 146eV, median sensitivity $1.1\mu\text{V/keV}$ for LDs;

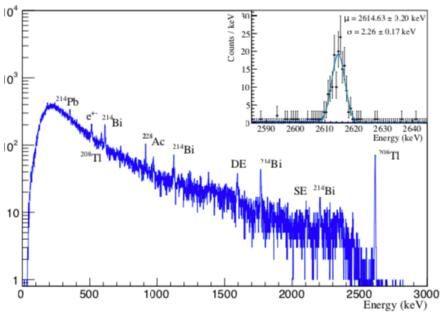
Performance

RLY(2-3MeV region) versus LMO top and bottom LD pairs;

 Top LY~0.74 keV/MeV, bottom~0.64 keV/MeV, high sum~1.44 keV/MeV;

Performance




- α discrimination all both reached 99.9%;
- 5.3 keV(6.5 keV) energy resolution(FWHM) at 2615 keV;
- DP > 15σ between α s and γ/β s in the region of interest for 100 Mo $0\nu\beta\beta$;

Background

Anticoincidence with a time coincidence window of 100 ms, reject multi-Compton and muon shower events;

- no event compatible with the RLY of γ/β events above 3034 keV;
- The γ/β spectrum of Li₂¹⁰⁰MoO₄ bolometers above ~1 MeV is dominated by the $2\nu\beta\beta$ decay of ¹⁰⁰Mo with an activity of 10 mBq/kg