Update on the PID DIRC for EicC

Xin Li 10/19/2022

3rd EicC CDR workshop

OutLine

Barrel DIRC simualtion & readout electronics
 Cosmic ray test platform
 Next Plan

PID Barrel Detectors at EicC

2022/10/22

Contributions to DIRC Angular Resolution

The experimentally measured Cherenkov angular resolution is expressed as

$$\sigma_{\Theta_{C},\mathrm{Track}} = \sqrt{\sigma_{\Theta_{C}}^{2}/N_{\gamma} + \sigma_{\mathrm{Corr}}^{2}}.$$

There are various error contributions of the Cherenkov light generation process, which is related to the particle momentum, including track resolution, multiple scattering, system collimation error and other external environment factors.

The Cherenkov photon angular resolution for each DIRC module can be refined to

$$\sigma_{\theta_c} = \sqrt{\sigma_{chrom}^2 + \sigma_{foc}^2 + \sigma_{bar}^2 + \sigma_{trans}^2 + \sigma_{rec}^2}$$

Chromatic dispersion	Optical focusing lens and	Thickness & width of	Surface properties of	Angle of the incident particles and image reconstruction
of quartz radiator	MCP-PMT pixel size	quartz radiator	quartz radiator	
$\sigma_{chrom} = 5.4mrad$	$\sigma_{_{foc}}$ < 10mrad	$\sigma_{\scriptscriptstyle bar} \leq 2mrad$	$\sigma_{trans} \leq 3mrad$	$\sigma_{\rm rec} \leq 1mrad$

To improve DIRC's performance, the optical geometry of radiator and focusing lens need to be optimized.

2022/10/22

Simulation on different radiator installation positions

Radiator location	Photon number	SPE Angle resolution (mrad)
top	15 ~ 68	7~12
center	14 ~ 70	7~12
bottom	12 ~ 63	9~13

2022/10/22

X.Li - 3rd EicC CDR workshop

Simulation on different radiator thickness

Simulation on different radiator widths

2022/10/22

Angle resolution and photon yield with different focus

Optical Focus	Size (cm)	Photon number	SPE Angle resolution (mrad)
Without lens		17~56	11~ 24
2-layer lens	30°, R=7.5	14~54	8~18
3-layer lens	30°, 30/7.5	12~48	7~12

2022/10/22

X.Li - 3rd EicC CDR workshop

Simulation on different PMT tilt Angle

PMT plane Tile angle	Photon number	SPE Angle resolution (mrad)
10°	16~71	8~12
15°	16~69	7~12
20°	15 ~ 68	7~11
25°	13~67	7~13

2022/10/22

Simulated performance for a single module

10

Readout Electronics

Cosmic Ray Test Platform

500.00 mm	 Cosmic ray detector: 8 layer 50cm x 50cm tracker (4 layer for x, y each) One layer: 3 module + 1 electronics One module: 16 EJ-200 scintillators + 32 light fiber + 8 SiPM Tracking resolution: ~1mm, 1mrad 		
1000.00 mm	*Cooncertion with the EicCUSTC group		
	*Cooperation with the EicC USTC group		

Cosmic Ray Module Design

- Detector module:
 - Larger detection area (50cm * 50cm)
 - Encoding readout
 - Tyvek wrapping
 - Double fiber design:
 - SiPM put in one side

• Light fiber:

- Wider fiber
- 4 fibers correlated to 1 SiPM, a module consists of 8 SiPMs and 16 strips
- Reflective end (ESR film)

Scint 0	SiPM A0	Module0	Module1	Module2	Module3
Scint 1	SiPM	16 Scint bars	16 Scint bars	16 Scint bars	16 Scint bars
Scint 2	A1				
Scint 3	SiPM B0				
	SiPM				
	Ы	Fiber- SiPM &	Fiber- SiPM &	Fiber-	Fiber- SiPM &
Computer		Communication bus			

2022/10/22

Performance Test of Single Strip

- ESR film reflection factor:
 - LED light source
 - 2 SiPMs coincidence
 - Yellow, green: ch24, ch25 without reflection
 - Blue, black: ch24, ch25 with reflection
 - Light collection: 50%-70% improvement

ESR film

- Light output measurement:
 - No reflection for new strip with 2 grooves
 - Red: new strip + 1.0mm Kuraray fiber
 - Blue: new strip +1.5mm Saint-Gobain fiber
 - Black: new strip + 1.5mm Kuraray fiber

Next: DIRC Prototype Manufacture

Next: Optical Performance Tests Setup

- To test optical characteristics of quartz radiator (including surface roughness, reflection coefficient, transmittance, etc.), four monochromatic light sources (covering the wavelength range of Cherenkov light) are provided by the laser.
- Through the optical beam spliter, the light beams enter the quartz at various incident angles.
- Two photodiodes (one serves as the reference) measure the light intensity changes at different incident positions and angles.

2022/10/22

Summary

Barrel DIRC:

Simulated the DIRC performance with various geometry of radiator and focusing, optimize the design of DIRC module to achieve $\sigma_{\theta c} \sim$ 1mrad. Also developed 627ch readout electronics prototype.

Cosmic ray test:

Design & manufacture the cosmic ray platform for DIRC test

> Next Step:

DIRC prototype manufacture & optical performance test

Thank you !