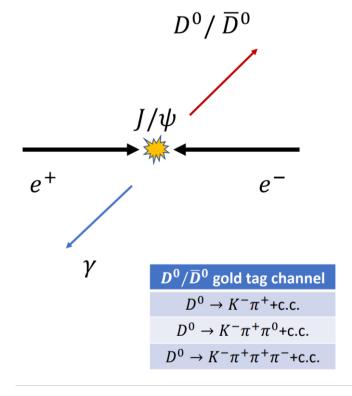
Question

 Angular distribution with different generators, which is important to evaluate the systematic uncertainties from signal model

Signal MC	PHSP	. ,	$D^0 \rightarrow K^-\pi^+$ +c.c.	2×10^5
			$D^0 \to K^- \pi^+ \pi^0 + \text{c.c.}$	2×10^5
			$D^0 \to K^- \pi^+ \pi^+ \pi^- + \text{c.c.}$	2×10^5



electromagnetic transitions $J/\psi \rightarrow Pl^+l^-$

$$|T|^2 = 16\pi^2 \alpha^2 \frac{|f_{\psi P}(q^2)|^2}{q^4} \left[8(p \cdot q)^2 m_l^2 - 8p^2 q^2 m_l^2 - 2p^2 q^4 - 8(k_1 \cdot p)(k_2 \cdot p)q^2 + 4(p \cdot q)^2 q^2 \right], \tag{3}$$

where m_l is the lepton mass; $q = k_1 + k_2$, and p, k_1 and k_2 are 4-momenta of particles P, l^+ and l^- , respectively. The angular distribution of the differential decay width can be obtained as

$$\frac{d\Gamma(\psi \to Pl^+l^-)}{dq^2} = \frac{1}{3} \frac{\alpha^2}{256\pi^3 m_\psi^3} \frac{|f_{\psi P}(q^2)|^2}{q^2} \left(1 - \frac{4m_l^2}{q^2}\right)^{1/2} \left[(m_\psi^2 - m_P^2 + q^2)^2 - 4m_\psi^2 q^2 \right]^{3/2} \times \int d\Omega_3 d\Omega_1^* \left[\left(1 + \frac{4m_l^2}{q^2}\right) + \left(1 - \frac{4m_l^2}{q^2}\right) \cos^2 \theta_1^* \right], \tag{4}$$

For the corresponding radiative decay of $\psi \to P\gamma$, the decay width can be obtained as:

$$\Gamma(\psi \to P\gamma) = \frac{1}{3} \frac{\alpha (m_{\psi}^2 - m_P^2)^3}{8m_{\psi}^3} |f_{\psi P}(0)|^2.$$
 (6)

FCNC transition $c \rightarrow u\gamma$

C. The amplitude

Using the above Lagrangians and form factor decomposition of Eqs. (2), (7), (9), the final amplitude for $B_c \rightarrow B_u^* \gamma$ containing SD and LD contributions can be expressed as

$$A[B_{c}(p) \rightarrow B_{u}^{*}(p', \epsilon') \gamma(q, \epsilon)] = i \epsilon_{\mu}^{*'} \epsilon_{\nu}^{*} [A_{PV}(p^{\mu}p^{\nu} - g^{\mu\nu}p \cdot q) + i A_{PC} \epsilon^{\mu\nu\alpha\beta} p_{\alpha}' p_{\beta}], \qquad (10)$$

$$\Gamma = \frac{1}{4\pi} \left(\frac{m_{B_c}^2 - m_{B_u^*}^2}{2m_{B_c}} \right)^3 (|A_{PV}|^2 + |A_{PC}|^2).$$