Chiral phase transition from holography

Mei Huang

Theoretical Physics Division Institute of High Energy Physics, CAS

Workshop on iTPC upgrade and Beam energy scan physics,

Dec.3-4, 2016, Jinan, Shandong Uni. 1

Content

- **I. Dynamical hQCD model**
- **II. Realization of QCD chiral phase transition**
- **III. Colombia plot with Nf=2+1 flavors**
- **IV. Inverse magnetic catalysis**
- **V. Conclusion and Outlook**

Recent works on chiral phase transition in DhQCD:

- 1, Realization of chiral symmetry breaking and restoration in holographic QCD, Kaddour Chelabi, Zhen Fang, Mei Huang, Danning Li, Yue-Liang Wu Phys.Rev. D93 (2016) no.10, 101901
- 2, Chiral Phase Transition in the Soft-Wall Model of AdS/QCD, Kaddour Chelabi, Zhen Fang, Mei Huang, Danning Li, Yue-Liang Wu JHEP 1604 (2016) 036
- 3, Chiral phase transition of QCD with Nf=2+1Nf=2+1 flavors from holography Danning Li, Mei Huang, arXiv:1610.09814
- 4, Inverse Magnetic Catalysis in the Soft-Wall Model of AdS/QCD, Danning Li, Mei Huang, Yi Yang, Pei-Hung Yuan arXiv:1610.04618

Main Collaborator: Danning Li Jinan Uni., Guangzhou

I. Dynamical hQCD model ----- 5D effective QCD model

Strong QCD

Holographic Duality: Gravity/QFT

AdS/CFT : Original discovery of duality

J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)

Supersymmetry and conformality are required for AdS/CFT.

Holographic Duality: (d+1)-Gravity/ (d)-QFT

Holographic Duality & RG flow

Coarse graining spins on a lattice: Kadanoff and Wilson

 $u\frac{\partial}{\partial u}J_i(x,u)=\beta_i(J_j(x,u),u)$ **arXiv:1205.5180**

Holographic Duality & RG flow

QFT on lattice equivalent to GR problem from Gravity RG scale -> an extra spatial dimension Coupling constant -> dynamical filed arXiv:1205.5180

 $J_i|_{UV}$ $\Phi_i|_{\partial}$ **UV** \boldsymbol{r} $\overline{\boldsymbol{u}}$ н 1R

The extra dimension plays the role of energy scale in QFT, with motion along the extra dimension representing a change of scale, or renormalization group (RG) flow. 8 A systematic framework: Graviton-dilaton system

$$
S_G = \frac{1}{16\pi G_5} \int d^5x \sqrt{g_s} e^{-2\Phi} \left(R_s + 4\partial_M \Phi \partial^M \Phi - V_G^s(\Phi) \right)
$$

N=4 Super YM conformal

QCD nonconformal

deformed AdS5

AdS_5

$$
ds^2 = \frac{L^2}{z^2} \left(dt^2 + d\vec{x}^2 + dz^2 \right)
$$

 $V_E(\phi) = -\frac{12}{L^2}$

$$
ds^{2} = \frac{h(z)L^{2}}{z^{2}}(dt^{2} + d\vec{x}^{2} + dz^{2})
$$

Dilaton field breaks conformal symmetry

Input: QCD dynamics at IR Solve: Metric structure, dilaton potential

Dynamical hQCD & RG

deformed AdS₅

Progresses made in 2012-2015:

Hadron spectra chiral symmetry breaking & linear confinement

Phase transitions (deconfinement)

Equation of state

Transport properties

in one systematic framework

Glueball spectra

Hadron spectra

Equation of state

Danning Li, Jinfeng Liao, M.H. arXiv:1401.2035, PRD3014

Transport properties

Danning Li, Song He, M.H. JHEP2015

Lacey et al., PRL 98:092301,2007

Bulk viscosity

Danning Li, Song He, M.H. JHEP2015 Dmitri Kharzeev, Kirill Tuchin arXiv:0705.4280,

Jet quenching

Danning Li, Jinfeng Liao, M.H. arXiv:1401.2035, PRD2014

[Jet Collaboration] arXiv:1312.5003

II. Realization of chiral symmetry

breaking & restoration

First time in holographic QCD model

K. Chelabi, Z.Fang, M.Huang, D.N.Li, Y.L.Wu, arXiv:1511.02721, arXiv:1512.06493

Only focus on the scalar sector: $SU(N_f)_L \times SU(N_f)_R$

$$
S = -\int d^5x \sqrt{-g}e^{-\Phi}Tr(D_mX^+D^mX + V_X(|X|)).
$$

$$
ds^{2} = e^{2A_{s}(z)}(-f(z)dt^{2} + \frac{1}{f(z)}dz^{2} + dx_{i}dx^{i}),
$$

\n
$$
A_{s}(z) = -\log(z),
$$

\n
$$
f(z) = 1 - \frac{z^{4}}{z_{h}^{4}}.
$$

$$
S_{\chi} = -\int d^{5}x \sqrt{-g}e^{-\Phi} \left(\frac{1}{2}g^{zz}\chi^{'2} + V(\chi)\right),
$$

$$
X_{0} = \frac{\chi(z)}{\sqrt{2N_{f}}}I_{N_{f}}
$$

Profile of the scalar potential

$$
V(\chi) \equiv Tr(V_X(|X|)) = -\frac{3}{2}\chi^2 + v_3\chi^3 + v_4\chi^4.
$$

Only for three-flavor scalar

Profile of the dilaton field

$$
\Phi(z) = -\mu_1 z^2 + (\mu_1 + \mu_0) z^2 \tanh(\mu_2 z^2),
$$

Nagative at UV, same as Brodsky and Zuo

F. Zuo, Phys. Rev. D 82, 086011 (2010) T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D 85, 076003 (2012) 19

Profile of the scalar potential determines the possible solution of the chiral condensate

Profile of the dilaton field represents the gluodynamics, and it determines the real solution of the chiral condensate

Two-flavor case: chiral limit, 2nd order phase transition nonzero current quark mass, cross-over ₂₁

Three-flavor case: chiral limit, 1st order phase transition finite current quark mass, cross-over

III. Colombia Plot

Danning Li, Mei Huang, arXiv:1610.09814

Extension to Nf=2+1 Danning Li, M.Huang, arXiv:1610.09814

$$
S = -\int d^5x \sqrt{-g}e^{-\Phi} Tr(D_m X^+ D^m X + V_X(X) + \frac{1}{4g_5^2}(F_L^2 + F_R^2)),
$$

$$
m_l \equiv m_u = m_d \neq m_s
$$

$$
X = \begin{pmatrix} \frac{\chi_l(z)}{\sqrt{2}} & 0 & 0 \\ 0 & \frac{\chi_l(z)}{\sqrt{2}} & 0 \\ 0 & 0 & \frac{\chi_s(z)}{\sqrt{2}} \end{pmatrix},
$$

Colombia Plot

Danning Li, M.Huang, arXiv:1610.09814 25

Interesting observation:

No flavor separation phase transition! 26

IV. Inverse magnetic catalysis from holography

Magnetic catalysis at zero temperature

Bali et al. arXiv:1206.4205 [hep-lat]

Inverse magnetic catalysis at nonzero temperature

Bali et al. arXiv:1206.4205 [hep-lat]

Surprise ! Puzzle!

In our current understanding of the chiral phase transition, some important information is missing, which might be revealed by magnetic fields!

How to understand inverse magnetic catalysis ?

1) Magnetic inhibition K. Fukushima, Y. Hidaka, PRL 110, 031601 (2013)

Contribution from neutral pions

2) Contribution from sea quarks

Bruckmann et.al. arXiv:1303.3972

- **3) Polyakov holomoly Nowak et.al. arXiv:1304.6020**
- **4) Running coupling Ferreira et.al. arXiv:1404.5577**
- **5) Chirality imbalance Jingyi Chao, Pengcheng Chu, MH, Sphaleron transition arXiv:1305.1100, PRD88(2013)**

Instanton-anti-instanton pairing condensate

Lang Yu, Hao Liu, MH, arXiv:1404.6969, PRD90(2014) Lang Yu, Jos Doorsselaere, MH, arXiv:1411.7752

IMC from holography

Danning Li, Mei Huang, Yi Yang, Pei-Hung Yuan arXiv:1610.04618

$$
S_B = \frac{1}{16\pi G_5} \int d^5 x \sqrt{-g} \left(R - F^{MN} F_{MN} + \frac{12}{L^2} \right),
$$

$$
S = -\int d^5x \sqrt{-g}e^{-\Phi} Tr(D_m X^+ D^m X + V_X + \frac{1}{4g_5^2}(F_L^2 + F_R^2)),
$$

IMC from holography

Warning: weak magnetic field expansion has been used 32

V. Conclusion and Outlook

In the DhQCD model, we have achieved:

- 1, QCD vacuum properties
	- glueball spectra, light-flavor meson spectra,
	- chiral symmetry breaking and linear confinement
- 2, QCD phase transitions
	- deconfinement phase transition(HP) & chiral phase transition(Landau)
- 3, Equation of state for QCD matter agree with lattice result.
- 4, Temperature dependent transport properties reflect phase transitions of QCD.

5D effective QCD model is more powerful than 4D effective QCD model! 34

To-do-list in the future

- 1, Heavy flavor physics (struggled for a long time, but now in progress) $SU(2)$ ->SU(3)->SU(4)
- 2, Check CEP
	- Go to high density (add chemical potential)
- 3, Relationship between chiral and deconfinement phase transitions
- 4, Equation of state and transport properties for 1st order phase transition (inhomogeneous phase)
- 5, CME and CVE

6, ……

Thanks for your attention!