

### Flow Measurements with Beam Energy Scan

Shusu Shi 施梳苏

Central China Normal University 华中师范大学

Dec. 3 – 4, 2016

A Workshop on STAR-iTPC upgrade and Beam Energy Scan Physics, 山东大学

## Outline



### Introduction

- > STAR Detector
- Energy Dependence
- > Particle vs. Anti-particle v<sub>2</sub>
- $\blacktriangleright \phi$  meson v<sub>2</sub>
- Baryon/Meson Separation
- > Summary and Outlook

# Elliptic Flow (v<sub>2</sub>)





### **STAR Detectors**





### **Beam Energy Scan**





### Search for the QCD critical point and phase boundary!



# **Energy Dependence**



# **Energy Dependence**





STAR: Phys. Rev. C 86, 054908(2012) ALICE data: Phys. Rev. Lett. 105, 252302 (2010)

- v<sub>2</sub>{4} results Three centrality bins
- Consistent v<sub>2</sub>(p<sub>T</sub>)
  from 7.7 GeV to
  2.76 TeV for p<sub>T</sub> > 2
  GeV/c
- ▷ p<sub>T</sub> < 2GeV/c</p>
  - The v<sub>2</sub> values rise with increasing collision energy

->

Large collectivity? Particle composition?

# **Energy Dependence**



#### Similar v<sub>2</sub>(p<sub>T</sub>) shape for PID



### Particle vs. Anti-particle v<sub>2</sub>





Significant difference between baryon and anti-baryon v<sub>2</sub> is observed

### Particle vs. Anti-particle v<sub>2</sub>





> the relative difference normalized by  $v_2^{norm}$ , the proton elliptic flow at  $p_T = 1.5$  GeV/c, shows a clear centrality dependence with a bigger effect for the more central collisions

STAR: Phys. Rev. C 93, 014907(2016)

## Particle vs. Anti-particle v<sub>2</sub>





Baryonic Chemical Potential  $\mu_B$  (MeV)

The difference between particles and anti-particles increases with decreasing beam energy – NCQ scaling breaks

#### Model comparison

STAR: Phys. Rev. Lett. 110 (2013) 142301

- Hydro + Transport (UrQMD): consistent with baryon data
- Nambu-Jona-Lasino (NJL) model (partonic + hadronic potential): hadron splitting consistent
- > Analytical hydrodynamic solution:  $\Delta v_2^p > \Delta v_2^\Lambda > \Delta v_2^\Xi > \Delta v_2^\Omega$

J. Steinheimer et al., PRC86, 44902(2013); J. Xu et al., PRL112, 012301(2014); Y. Hatta et al., PRD92, 114010(2014)

## φ Meson v<sub>2</sub>





meson is less
 sensitive to late
 hadronic interactions<sup>[1]</sup>

Sizable  $\phi$  meson v<sub>2</sub>: comparable to 19.6 GeV

High statistics and more energies below 20 GeV needed!

STAR: Phys. Rev. C 88, 014902(2013) Phys. Rev. C 93, 014907(2016) [1] STAR: Phys. Rev. Lett. 116, 062301(2016)

## **Baryon/Meson Separation**





A splitting between baryons and mesons is observed at all energies except 7.7 GeV and all centralities.

At 7.7 GeV we are limited by the number of events.

STAR: Phys. Rev. C 93, 014907(2016)

### **Baryon/Meson Separation**





The splitting between baryons and mesons is observed significant for all energies above 14.5 GeV and also at 14.5 GeV for 40%–80%.

For these energies below 11.5 GeV, we are limited by the number of events.

STAR: Phys. Rev. C 93, 014907(2016)

# **Summary**



### Energy Dependence

Similar  $v_2(p_T)$  shape from 7.7 GeV to 2.76 TeV

### Particle vs. Anti-particle v<sub>2</sub>

The difference increases with decreasing beam energy

### **RHIC BES-I:**

 $\sqrt{s_{NN}} \ge 39$  GeV: partonic interactions dominant  $\sqrt{s_{NN}} \le 11.5$  GeV: hadronic interactions dominant **RHIC BES-II:** Focus on  $\sqrt{s_{NN}} \le 20$  GeV region

# **BES II**



#### Electron cooling + longer beam bunches for BES II factor 4-15 improvement in luminosity compared with BES I

### **Detector upgrade**

Event Plane Detector

*important for flow and fluctuation analyses* 

> iTPC upgrade

increases TPC acceptance to ~1.7 in  $\eta$ ; improves dE/dx resolution

ETOF upgrade

New charged hadron PID capabilities for  $1.1 < |\eta| < 1.6$ 

### Fixed target program

extends STAR's physics reach to region of compressed baryonic matter

