Partial wave analysis of Singly Cabibbo Suppressed Decays $\Lambda_c^+ \rightarrow p \pi^+ \pi^-$ at BESIII

Chuangjie Xu¹, Cong Geng¹, Xiaorong Zhou², Haiping Peng², Wei Wang¹

¹SYSU, ²USTC

Dec. 16, 2022

- Motivation
- Data and MC Sample
- Analysis Strategy
- Summary

Motivation

- Pan Yue et. al. have measured the SCS process $\Lambda_c^+ \to p\pi^+\pi^-$, and found the existence of the intermediate states like σ , ρ^0 , $f_0(980)$, Δ and Δ^* in the individual process, but didn't give their branching fraction results.
- Using the new taken $\Lambda_c \overline{\Lambda}_c$ data samples above mass threshold, it has potential to perform Partial Wave Analysis (PWA) on the hadronic decay $\Lambda_c^+ \rightarrow p\pi^+\pi^-$ and measured the branching fractions of the intermediate states processes.
- The increase of the data samples would help us to search more exotic intermediate states, like N*.
- More precise measurement can help to deepen our understanding of the charm hadronic decays. Especially for the SCS decay $\Lambda_c^+ \rightarrow p\pi^+\pi^-$, which have the nonfactorizable contributions W-exchange and internal W emission diagrams.

Data Sample

◆ Data sets:

Seven energy points, from 4.600-4.700 GeV Total integrated luminosity: 4.5 fb^{-1} Boss version: 7.0.6

- ◆ Signal MC:
 - Samples dedicated for single-tag efficiency: Λ_c to 10 tag modes, the other Λ_c inclusively decays.
 - Samples dedicated for single-tag shape: Λ_c to 10 tag modes, the other Λ_c decays to ev.
 - Samples dedicated for signal: Λ_c to 10 tag modes, the other Λ_c decays to signal.
- Inclusive $\Lambda_c \overline{\Lambda}_c$ MC: The production of Λ_c pair.

Phys. Rev. Lett. 128, 142001 (2022) Phys. Rev. D 106, 072002 (2022) Phys. Rev. D 106, 072008 (2022)

Inclusive hadron MC:

The production of hadron , which excludes Λ_c pair.

Double Tag method

Ten hadronic decay mode

10 significant hadronic modes of Λ_c decays are chosen for single tag side:

Modes	Branching Fractions (%)
$\Lambda_c^+ \to p K^- \pi^+$	6.23 ± 0.33
$\Lambda_c^+ \to p K^- \pi^+ \pi^0$	4.42 ± 0.31
$\Lambda_c^+ \to p K_S$	1.58 ± 0.08
$\Lambda_c^+ \to p K_S \pi^0$	1.96 ± 0.13
$\Lambda_c^+ \to p K_S \pi^+ \pi^-$	1.59 ± 0.12
$\Lambda_c^+ \to \Lambda \pi^+$	1.29 ± 0.07
$\Lambda_c^+\to\Lambda\pi^+\pi^0$	7.0 ± 0.4
$\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$	3.61 ± 0.29
$\Lambda_c^+ \to \Sigma^+ \pi^0$	1.28 ± 0.07
$\Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-$	4.42 ± 0.28

Event selections of single tag side

Good charged tracks:

• $|V_r| < 1.0$ cm, $|V_z| < 10$ cm, $|\cos\theta| < 0.93$

PID:

- K: prob(K) > prob(p)&&prob(K) > prob(π)
- $P: prob(p) > prob(\pi) \& prob(p) > prob(K)$
- $\pi: \operatorname{prob}(\pi) > \operatorname{prob}(K) \& \operatorname{prob}(\pi) > \operatorname{prob}(p)$ K_s:
- π^+ and $\pi^-: |V_z| < 20$ cm, $|\cos\theta| < 0.93$
- Do vertex fit: $\chi^2 < 100$
- Do second vertex fit: $\frac{L}{\sigma} > 2$
- $0.487 < M(\pi^+\pi^-) < 0.511 \text{ GeV}$

 $\Lambda:$

- p and $\pi^-: |V_z| < 20$ cm, $|\cos\theta| < 0.93$
- $\operatorname{prob}(p) > \operatorname{prob}(\pi) \& \operatorname{prob}(p) > \operatorname{prob}(K)$
- Do vertex fit: $\chi^2 < 100$
- Do second vertex fit: $\frac{L}{\sigma} > 2$
- $1.111 < M(p\pi) < 1.121 \text{ GeV}$

 π^0 :

- Showers: $0 < TDC < 14\&\& E > 50MeV, 0.86 < |\cos\theta| < 0.92\&\&E > 25MeV, |\cos\theta| < 0.8$
- $0.115 < M(\gamma \gamma) < 0.15 \text{ GeV}$
- 1C kinematic && $\chi^2 < 200$ Σ^0 :
- Showers: $0 < TDC < 14\&\& E > 50MeV, 0.86 < |\cos\theta| < 0.92\&\&E > 25MeV, |\cos\theta| < 0.8$
- $1.179 < M_{\Sigma} < 1.203 \text{ GeV}$ Σ^+ :
- $1.176 < M_{\Sigma^+} < 1.2 \text{ GeV}$

Same as pair $\Lambda_{\!C}$ pair cross section measurement

Phys.Rev.Lett,120,132001,(2018) Phys. Rev. Lett. 128, 142001 (2022) Phys. Rev. D 106, 072002 (2022) Phys. Rev. D 106, 072008 (2022)

ΔE and background veto/check

> To improve the signal significance, we use

 $\Delta E_{ST} = E_{\overline{\Lambda}_{c}} - E_{beam}$

where $E_{\overline{\Lambda}_{c}}$ is the sum of the measured energies for all particles from $\overline{\Lambda}_{c}^{-}$ decays.

Modes	ΔE window
$\bar{\Lambda}^c \to \bar{p} K^+ \pi^-$	[-0.034, 0.02]
$\bar{\Lambda}_c^- \to \bar{p} K_{\rm S}^0$	[-0.02, 0.02]
$\bar{\Lambda}_c^- \rightarrow \bar{p} K^+ \pi^- \pi^0$	[-0.03, 0.02]
$\bar{\Lambda}_c^- \to \bar{p} K_{\rm S}^0 \pi^0$	[-0.03, 0.02]
$\bar{\Lambda}_c^- \rightarrow \bar{p} K_{\rm S}^0 \pi^+ \pi^-$	[-0.02, 0.02]
$\bar{\Lambda}^c ightarrow \bar{\Lambda} \pi^-$	[-0.02, 0.02]
$\bar{\Lambda}_c^- ightarrow \bar{\Lambda} \pi^- \pi^0$	[-0.03, 0.02]
$\bar{\Lambda}_c^- ightarrow \bar{\Lambda} \pi^+ \pi^- \pi^-$	[-0.02, 0.02]
$ar{\Lambda}^c o ar{\Sigma}^0 \pi^-$	[-0.02, 0.02]
$\bar{\Lambda}_c^- \to \bar{\Sigma}^- \pi^+ \pi^-$	[-0.03, 0.02]

Mode	peaking background	requirement to veto the peaking background
$\Lambda_c^+ \to p K_{\rm S}^0 \pi^0$	$\Lambda_c^+ \to \Lambda \pi^+ \pi^0$	veto events with $M(p\pi^{-})$ in (1.100, 1.125) GeV/c ²
	$\Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-$	veto events with $M(p\pi^0)$ in (1.170, 1.200) GeV/c ²
$\Lambda_c^+ \to p K_{\rm S}^0 \pi^+ \pi^-$	$\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$	veto events with $M(p\pi^{-})$ in (1.100, 1.125) GeV/c ²
$\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$	$\Lambda_c^+ \to p K_{\rm S}^0 \pi^+ \pi^-$	veto events with $M(\pi^{+}\pi^{-})$ in (0.490, 0.510) GeV/c ²
$\Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-$	$\Lambda_c^+ \to p K_{\rm S}^0 \pi^0$	veto events with $M(\pi^{+}\pi^{-})$ in (0.490, 0.510) GeV/c ²
	$\Lambda_c^+ \to \Lambda \pi^+ \pi^0$	veto events with $M(p\pi^{-})$ in (1.100, 1.125) GeV/c ²

→ Minimum the ΔE_{ST} for the best Λ_c candidates from the ten tag modes

Single Tagged Yields at $\sqrt{s} = 4.620$ GeV

Modes	4.600	4.612	4.620	4.640	4.660	4.680	4.700
$\Lambda_c^+ \to p K^- \pi^+$	6705 ± 90	1158 ± 38	5911 ± 87	6229 ± 90	5884 ± 86	17415 ± 145	5156 ± 80
$\Lambda_c^+ \to p K_S$	1268 ± 37	241 ± 16	1063 ± 35	1110 ± 35	1117 ± 35	3353 ± 61	964 ± 33
$\Lambda_c^+ \to p K^- \pi^+ \pi^0$	741 ± 28	281 ± 13	1239 ± 50	1307 ± 52	1349 ± 54	4005 ± 95	1116 ± 51
$\Lambda_c^+ \to p K_S \pi^0$	1539 <u>+</u> 57	109 ± 13	460 ± 29	485 ± 30	479 ± 30	1454 ± 52	386 ± 26
$\Lambda_c^+ \to p K_S \pi^+ \pi^-$	485 ± 29	103 ± 13	423 ± 28	455 ± 28	458 ± 28	1261 ± 49	417 ± 27
$\Lambda_c^+\to\Lambda\pi^+$	1382 ± 49	120 ± 11	662 ± 28	691 ± 28	651 ± 27	2012 ± 47	519 ± 24
$\Lambda_c^+ \to \Lambda \pi^+ \pi^0$	512 ± 29	226 ± 18	1161 ± 42	1328 ± 45	1165 ± 41	3576 ± 71	1045 ± 39
$\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$	646 ± 31	128 ± 13	512 ± 29	667 ± 32	624 ± 30	1818 ± 52	548 ± 28
$\Lambda_c^+\to \Sigma^+\pi^0$	404 ± 22	77 ± 9	329 ± 20	345 ± 21	343 ± 20	1047 ± 34	283 ± 18
$\Lambda_c^+\to \Sigma^+\pi^+\pi^-$	872 ± 38	155 ± 16	738 ± 37	812 ± 38	751 ± 36	2275 ± 63	699 <u>+</u> 35

Same as those in the measurement of $\Lambda_c^+ \rightarrow n\pi^+$. The uncertainty in the ST yield is statistical only.

Single Tagged Yields and Efficiencies

Modes	4.600	4.612	4.620	4.640	4.660	4.680	4.700
$\Lambda_c^+ \to p K^- \pi^+$	51.0%	50.2%	49.5%	49.0%	48.0%	47.3%	46.4%
$\Lambda_c^+ \to pK_S$	56.2%	53.2%	51.6%	50.9%	49.7%	48.1%	47.3%
$\Lambda_c^+ \to p K^- \pi^+ \pi^0$	15.4%	14.9%	15.0%	14.8%	14.6%	14.5%	14.2%
$\Lambda_c^+ \to p K_S \pi^0$	18.4%	17.2%	17.0%	17.0%	16.5%	16.5%	16.1%
$\Lambda_c^+ \to p K_S \pi^+ \pi^-$	19.9%	19.0%	18.4%	18.4%	18.2%	17.7%	17.6%
$\Lambda_c^+ \to \Lambda \pi^+$	47.7%	42.5%	40.8%	40.4%	39.1%	37.8%	37.1%
$\Lambda_c^+ \to \Lambda \pi^+ \pi^0$	16.6%	15.6%	15.2%	15.3%	14.9%	14.6%	14.2%
$\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$	13.7%	12.7%	12.5%	12.5%	12.7%	12.3%	12.5%
$\Lambda_c^+ \to \Sigma^+ \pi^0$	22.5%	21.0%	20.2%	20.5%	19.6%	19.3%	18.8%
$\Lambda_c^+\to \Sigma^+\pi^+\pi^-$	18.1%	17.6%	17.4%	17.1%	16.7%	16.2%	16.1%

Same as those in the measurement of $\Lambda_c^+ \rightarrow n\pi^+$.

Event selections of signal side

Signal side selected:

- Charged track:
 - ✓ $p \text{ and } \pi^{\pm}$ in: $|V_r| < 1 cm$, $|V_z| < 10 cm$, $cos\theta < 0.93$
 - ✓ Only three tracks.

D PID:

- ✓ $p: prob(p) > 0& prob(p) > prob(K) > prob(\pi)$
- $\checkmark \pi: prob(\pi) > 0 \& prob(\pi) > prob(p) > prob(K)$
- M_{BC} of the tag Λ_c and recoil Λ_c : \checkmark 2.275 < M_{BC} < 2.31
- Veto most of non-signal $\Lambda_c \Lambda_c$ background : $\checkmark \Delta E_{DT} = E_{p\pi^+\pi^-} - E_{beam};$ $\checkmark \Delta E_{DT} > -0.05.$
- □ Veto the peaking background:
 - ✓ Peaking background from $\Lambda_c^+ \to \Lambda \pi^+$: veto event in 1.103 < $M(p\pi^-)$ < 1.129 MeV.
 - ✓ Peaking background from $\Lambda_c^+ \rightarrow pK_S^0$: veto event in 0.47 < $M(\pi^+\pi^-)$ < 0.51 MeV.

Mass window on recoiling mass of $\overline{\Lambda}_c^-$

The requirement of invariant mass of recoil Λ_c : 2.275 $< m_{recoil}^{\overline{\Lambda}_c^-} < 2.31$

The definition of invariant mass of recoil Λ_c :

$$m_{\text{recoil}}^{\Lambda_{c}^{+}} = \sqrt{(E_{\text{beam}} - E_{\bar{\Lambda}_{c}^{-}})^{2} - (\vec{P}_{\bar{\Lambda}_{c}^{-}})^{2}},$$

The mass window of this cut is consistent with that in the single tag side.

ΔE window on DT side

The cut range is decided by keeping more than 97% of signal events.

Mass window on invariant mass of $p\pi^-$

✓ Peaking background from $\Lambda_c^+ \to \Lambda \pi^+$: veto event in 1.103 < $M(p\pi^-)$ < 1.129 GeV.

The cut range is decided by keeping more than 97% of $\Lambda_c^+ \to \Lambda \pi^+$ events.

Mass window on invariant mass of $\pi^+\pi^-$

✓ Peaking background from $\Lambda_c^+ \to pK_S^0$: veto event in 0.47 < $M(\pi^+\pi^-)$ < 0.51 MeV.

The cut range is decided by keeping more than 97% of $\Lambda_c^+ \to PK_S^0$ events.

Double Tagged Yields and Efficiencies

Modes	4.600	4.612	4.620	4.640	4.660	4.680	4.700
$\Lambda_c^+ \to p K^- \pi^+$	28.23%	26.71%	25.49%	24.75%	24.78%	23.57%	23.20%
$\Lambda_c^+ \to pK_S$	32.12%	29.07%	27.69%	27.58%	26.02%	25.86%	24.94%
$\Lambda_c^+ \to p K^- \pi^+ \pi^0$	9.38%	8.77%	8.34%	7.56%	7.70%	7.81%	7.49%
$\Lambda_c^+ \to p K_S \pi^0$	11.20%	10.13%	9.70%	9.70%	9.52%	9.13%	8.46%
$\Lambda_c^+ \to p K_S \pi^+ \pi^-$	11.79%	9.65%	9.20%	9.54%	9.07%	9.28%	8.86%
$\Lambda_c^+\to\Lambda\pi^+$	26.19%	23.96%	22.92%	22.69%	21.23%	20.90%	19.44%
$\Lambda_c^+\to\Lambda\pi^+\pi^0$	9.54%	8.65%	8.14%	8.03%	7.55%	7.53%	6.97%
$\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$	7.55%	6.44%	6.89%	6.22%	6.24%	6.51%	6.10%
$\Lambda_c^+ \to \Sigma^+ \pi^0$	14.39%	11.99%	11.51%	11.17%	11.24%	10.74%	10.53%
$\Lambda_c^+\to\Sigma^+\pi^+\pi^-$	10.88%	9.93%	9.34%	9.19%	9.08%	8.61%	8.66%

Comparison between Data and inclusive MC in sideband

✓ Sideband regions: $-0.4 < \Delta E_{DT} < -0.2$

- The inclusive MC samples are consistent with the data within the statistical uncertainty.
- We could use the inclusive MC samples to model the backgrounds in data.

Distributions of M_{BC}

- The inclusive MC samples are normalized to the luminosity of data.
- The main background sources are from the $q\bar{q}$ backgrounds.
- The contributions from non-signal $\Lambda_c \overline{\Lambda}_c$ pair production backgrounds are negligible.

Fitting on $q\overline{q}$ Backgrounds

- The shapes of the $q\bar{q}$ backgrounds are described by the five order Chebyshev polynomial functions.
- The parameters of the five order Chebyshev polynomial functions are fixed by fitting the inclusive hadron MC samples.

Fitting on M_{BC} of Data

- The 1D un-binned maximum likelihood fits are performed on the M_{BC} distributions to extract the signal yields.
- The signal shapes are modeled by the MC simulation, convolved with a same Gaussian function accounting for the resolution difference between data and MC.

Signal Yields and Purity

Data set	Signal yields	Bkg yields	Purity(%)
4600	33.0 ± 6.6	7.0 ± 4.2	82.6
4612	6.7 ± 2.7	0.3 ± 6.0	95.9
4620	44.0 ± 6.5	$5.2 \times 10^{-6} \pm 3.1$	≈ 100
4640	36.6 ± 7.2	14.4 ± 5.5	71.7
4660	20.6 ± 4.4	11.4 ± 6.3	64.4
4680	89.6 ± 6.7	43.4 ± 5.6	67.4
4700	39.6 ± 7.2	4.3 ± 4.2	90.1
Sum	270.1±16.2	80.8±13.5	77.0

• The equations for branching fraction calculation:

$$N_{obs} = B \cdot \sum_{i} N_i^{ST} \cdot (\epsilon_i^{DT} / \epsilon_i^{ST}).$$

• The measured branching fraction is $(4.87 \pm 0.29) \times 10^{-3}$, consistent with the previous result on BESIII.

Fitting on M_{BC} of Data

- Apply the requirements on M_{BC} .
- The window ranges are approximately 3 sigma Gaussian coverage.

Signal Yields and Purity

Data set	M_{BC} requirement (GeV/ c^2)	Signal yields	Bkg yields	Purity(%)
4600	(2.282,2.291)	30.4 ± 6.0	2.9 ± 1.7	91.4
4612	(2.282,2.291)	6.1 ± 2.4	0.1 ± 2.6	98.0
4620	(2.282,2.291)	39.5 ± 5.9	$2.0 \times 10^{-6} \pm 1.2$	≈ 100
4640	(2.282,2.292)	33.5 ± 6.6	6.1 ± 2.3	84.7
4660	(2.282,2.292)	18.7 ± 4.0	4.5 ± 2.5	80.5
4680	(2.282,2.293)	82.3 ± 6.1	19.6 ± 2.5	80.7
4700	(2.282,2.293)	36.0 ± 6.5	2.1 ± 2.0	94.6

• Ensure the signal purity is larger than 80% for each energy point.

Dalitz Plot of Data

- No obvious resonances are observed, a partial wave analysis need to be performed.
- For example, to verified the contributions of $\Lambda_c^+ \to pf_0(980)$.

	final states	iTopo	nEvt	nTot
, $\bar{\Lambda}_c^- \to \bar{p}\pi^- K^+$, $\Lambda_c^+ \to \pi^- \pi^+ \Sigma^+$, $\Sigma^+ \to \pi^0 p$,	$e^+e^- \rightarrow \gamma\gamma p K^+\pi^+e^-\pi^-\pi^-\bar{p}$	97	7118	7118
, $\bar{\Lambda}_c^- \to \Sigma^- \pi^- \pi^+$, $\bar{\Lambda}_c^+ \to K^- \pi^+ p$, $\Sigma^- \to \bar{p} \pi^0$,	$e^+e^- \rightarrow \gamma\gamma p\pi^+\pi^+e^-\pi^-K^-\bar{p}$	23	6975	14093
$, \bar{\Lambda}_{c}^{-} \rightarrow \bar{\Lambda}\pi^{-}, \Lambda_{c}^{+} \rightarrow \bar{K}^{-}\pi^{0}\pi^{+}p, \bar{\Lambda} \rightarrow \bar{p}\pi^{+},$	$e^+e^- \rightarrow \gamma\gamma p\pi^+\pi^+e^-\pi^-K^-p$	69	5410	19503
$, \bar{\Lambda}_{c}^{-} \rightarrow \bar{p}\pi^{-}K^{+}, \Lambda_{c}^{+} \rightarrow \pi^{0}\pi^{+}\Lambda, \Lambda \rightarrow \pi^{-}p,$	$e^+e^- \rightarrow \gamma \gamma p K^+ \pi^+ e^- \pi^- \pi^- \bar{p}$	12	5395	24898
, $\overline{\Lambda_c^-} \to \overline{p}\pi^- K^+$, $\Lambda_c^+ \to \overline{K}^0 \pi^- \pi^+ p$, $\overline{K}^0 \to K_L$,	$e^+e^- \rightarrow pK^+\pi^+K_Le^-\pi^-\pi^-\bar{p}$	11	4241	29139
$\bar{\Lambda}_{c}^{-}\bar{\Lambda}_{c}^{+}, \ \bar{\Lambda}_{c}^{-} \rightarrow \bar{p}\pi^{-}\bar{K}^{+}, \ \Lambda_{c}^{+} \rightarrow \pi^{-}\pi^{+}\Sigma^{+}, \ \Sigma^{+} \rightarrow \pi^{0}p,$	$e^+e^- \rightarrow \gamma \gamma \gamma_{FSR} p K^+ \pi^+ e^- \pi^- \pi^- \bar{p}$	204	4192	33331
$, \bar{\Lambda}_c^- \rightarrow \bar{p}\pi^-\pi^+ K^0, \Lambda_c^+ \rightarrow K^-\pi^+ p, K^0 \rightarrow K_L,$	$e^+e^- \rightarrow p\pi^+\pi^+K_Le^-\pi^-K^-\bar{p}$	146	4010	37341
$\bar{\Lambda}_c^- \bar{\Lambda}_c^+$, $\bar{\Lambda}_c^- \to \Sigma^- \pi^- \pi^+$, $\Lambda_c^+ \to K^- \pi^+ p$, $\Sigma^- \to p \pi^0$,	$e^+e^- \rightarrow \gamma \gamma \gamma_{FSR} p \pi^+ \pi^+ e^- \pi^- K^- \bar{p}$	5	3913	41254
$\bar{\Lambda}_c^- \Lambda_c^+, \ \bar{\Lambda}_c^- \to \bar{\Lambda}\pi^-, \ \Lambda_c^+ \to K^- \pi^0 \pi^+ p, \ \bar{\Lambda} \to \bar{p}\pi^+,$	$e^+e^- \rightarrow \gamma \gamma \gamma_{FSR} p \pi^+ \pi^+ e^- \pi^- K^- \bar{p}$	234	3226	44480
$\bar{\Lambda}_c^- \Lambda_c^+, \ \bar{\Lambda}_c^- \to \bar{p}\pi^- K^+, \ \Lambda_c^+ \to \pi^0 \pi^+ \Lambda, \ \Lambda \to \pi^- p,$	$e^+e^- \rightarrow \gamma \gamma \gamma_{FSR} p K^+ \pi^+ e^- \pi^- \pi^- \bar{p}$	66	3185	47665
, $\bar{\Lambda}_c^- \to \bar{p}\pi^- K^+$, $\Lambda_c^+ \to \pi^0 \pi^+ \Sigma^0$, $\Sigma^0 \to \gamma \Lambda$, $\Lambda \to \pi^- p$,	$e^+e^- \rightarrow \gamma\gamma\gamma pK^+\pi^+e^-\pi^-\pi^-\bar{p}$	24	2871	50536
, $\bar{\Lambda}_c^- \to p\pi^- K^+$, $\Lambda_c^+ \to \mu^- \nu_\mu \Lambda$, $\Lambda \to \pi^- p$,	$e^+e^- \rightarrow pK^+\nu_\mu e^-\mu^-\pi^-\pi^-p$	95	2713	53249
, $\bar{\Lambda}_c^- \to \bar{\Lambda} p_\mu \mu^+$, $\Lambda_c^+ \to K^- \pi^+ p$, $\bar{\Lambda} \to p \pi^+$,	$e^+e^- \rightarrow p\pi^+\pi^+\mu^+e^-\nu_\mu K^-\bar{p}$	1	2709	55958
, $\bar{\Lambda}_c^- \to \Sigma^0 \pi^- \pi^0$, $\bar{\Lambda}_c^+ \to K^- \pi^+ p$, $\Sigma^0 \to \bar{\Lambda}\gamma$, $\bar{\Lambda} \to \bar{p}\pi^+$,	$e^+e^- \rightarrow \gamma\gamma\gamma p\pi^+\pi^+e^-\pi^-K^-\bar{p}$	87	2689	58647
$\bar{\Lambda}_c^- \Lambda_c^+, \ \bar{\Lambda}_c^- \to p \pi^- K^+, \ \Lambda_c^+ \to K^0 \pi^- \pi^+ p, \ K^0 \to K_L,$	$e^+e^- \rightarrow \gamma_{FSR} pK^+ \pi^+ K_L e^- \pi^- \pi^- \bar{p}$	144	2449	61096
, $\bar{\Lambda}_c^- \to p \pi^0 \pi^0 K^0$, $\Lambda_c^+ \to K^- \pi^+ p$, $K^0 \to K_S$, $K_S \to \pi^- \pi^+$,	$e^+e^- \rightarrow \gamma\gamma\gamma\gamma p\pi^+\pi^+e^-\pi^-K^-p$	246	2421	63517
, $\Lambda_c^- \to p\pi^- K^+$, $\Lambda_c^+ \to K^0 \pi^0 \pi^0 p$, $K^0 \to K_S$, $K_S \to \pi^- \pi^+$,	$e^+e^- \rightarrow \gamma\gamma\gamma\gamma pK^+\pi^+e^-\pi^-\pi^-p$	47	2394	65911
$\bar{\Lambda}_c^- \Lambda_c^+, \ \bar{\Lambda}_c^- \to \bar{p}\pi^- \pi^+ K^0, \ \Lambda_c^+ \to K^- \pi^+ p, \ K^0 \to K_L,$	$e^+e^- \to \gamma_{FSR} p \pi^+ \pi^+ K_L e^- \pi^- K^- \bar{p}$	111	2378	68289
, $\bar{\Lambda}_c^- \to \bar{\Lambda}\pi^-\pi^0$, $\Lambda_c^+ \to \pi^0\pi^+\Lambda$, $\Lambda \to \pi^-p$, $\bar{\Lambda} \to p\pi^+$,	$e^+e^- \rightarrow \gamma\gamma\gamma\gamma p\pi^+\pi^+e^-\pi^-\pi^-p$	311	2288	70577
, $\bar{\Lambda}_c^- \to \bar{\Lambda}\pi^-\pi^0$, $\Lambda_c^+ \to K^-\pi^0\pi^+p$, $\bar{\Lambda} \to p\pi^+$,	$e^+e^- \rightarrow \gamma\gamma\gamma\gamma p\pi^+\pi^+e^-\pi^-K^-p$	57	2175	72752
, $\bar{\Lambda}_c^- \to p\pi^- K^+$, $\Lambda_c^+ \to \omega \Sigma^+$, $\omega \to \pi^- \pi^0 \pi^+$, $\Sigma^+ \to \pi^0 p$,	$e^+e^- \rightarrow \gamma\gamma\gamma\gamma pK^+\pi^+e^-\pi^-\pi^-p$	142	2150	74902
, $\bar{\Lambda}_c^- \to p \pi^- \pi^0 K^+$, $\Lambda_c^+ \to \pi^0 \pi^+ \Lambda$, $\Lambda \to \pi^- p$,	$e^+e^- \rightarrow \gamma \gamma \gamma \gamma p K^+ \pi^+ e^- \pi^- \pi^- p$	273	2143	77045
, $\bar{\Lambda}_c^- \to \bar{\Lambda} \bar{\nu}_e e^-$, $\Lambda_c^+ \to K^- \pi^+ p$, $\bar{\Lambda} \to \bar{p} \pi^+$,	$e^+e^- \rightarrow p\pi^+\pi^+e^-e^-\nu_e K^-\bar{p}$	25	2119	79164
, $\bar{\Lambda}_c^- \to p\pi^- K^+$, $\Lambda_c^+ \to e^+ \nu_e \Lambda$, $\Lambda \to \pi^- p$,	$e^+e^- \rightarrow pK^+\nu_e e^-e^+\pi^-\pi^-p$	104	2115	81279
, $\bar{\Lambda}_c^- \to p\pi^- K^+$, $\Lambda_c^+ \to \bar{K}^0 \pi^0 p$, $\bar{K}_c^0 \to K_S$, $K_S \to \pi^- \pi^+$,	$e^+e^- \rightarrow \gamma \gamma p K^+ \pi^+ e^- \pi^- \pi^- p$	27	2065	83344
, $\bar{\Lambda}_c^- \to \bar{p}\pi^0 K^0$, $\Lambda_c^+ \to K^- \pi^+ p$, $K^0 \to K_S$, $K_S \to \pi^- \pi^+$,	$e^+e^- \rightarrow \gamma\gamma p\pi^+\pi^+e^-\pi^-K^-p$	96	2009	85353
, $\bar{\Lambda}_c^- \to \bar{\Sigma}^- \omega$, $\Lambda_c^+ \to K^- \pi^+ p$, $\bar{\Sigma}^- \to p \pi^0$, $\omega \to \pi^- \pi^0 \pi^+$,	$e^+e^- \rightarrow \gamma\gamma\gamma\gamma p\pi^+\pi^+e^-\pi^-K^-p$	72	1990	87343
$, \ \bar{\Lambda}_c^- \to \bar{\Lambda}\pi^-\pi^0, \ \Lambda_c^+ \to \pi^-\pi^+\Sigma^+, \ \Sigma^+ \to \pi^0 p, \ \bar{\Lambda} \to \bar{p}\pi^+,$	$e^+e^- \rightarrow \gamma\gamma\gamma\gamma p\pi^+\pi^+e^-\pi^-\pi^-p$	143	1925	89268
, $\bar{\Lambda}_c^- \to \Sigma^- \pi^- \pi^+$, $\Lambda_c^+ \to \pi^0 \pi^+ \Lambda$, $\Lambda \to \pi^- p$, $\Sigma^- \to p \pi^0$,	$e^+e^- \rightarrow \gamma\gamma\gamma\gamma p\pi^+\pi^+e^-\pi^-\pi^-p$	7	1878	91146
$, \bar{\Lambda}_c^- \to p\pi^-\pi^+, \Lambda_c^+ \to K^-\pi^+ p,$	$e^+e^- \rightarrow p\pi^+\pi^+e^-\pi^-K^-\bar{p}$	76	1666	92812

	final states	iTopo	nEvt	nTot
$\bar{\Lambda}_c^- \to \bar{p}\pi^- K^+, \ \Lambda_c^+ \to K^- \pi^+ p,$	$e^+e^- \rightarrow pK^+\pi^+e^-\pi^-K^-\bar{p}$	51	74	74
$\bar{\Lambda}_c^- \to \bar{p}K^0, \ \Lambda_c^+ \to K^-\pi^+p, \ K^0 \to K_S, \ K_S \to \pi^-\pi^+,$	$e^+e^- \rightarrow p\pi^+\pi^+e^-\pi^-K^-\bar{p}$	12	57	131
$\bar{\Lambda}_c^- \to \bar{p}\pi^- K^+, \ \Lambda_c^+ \to \bar{K}^0 p, \ \bar{K}^0 \to K_S, \ K_S \to \pi^- \pi^+,$	$e^+e^- \rightarrow pK^+\pi^+e^-\pi^-\pi^-\bar{p}$	7	47	178
$\bar{\Lambda}_{c}^{-} \rightarrow \bar{\Lambda}\pi^{-}, \ \Lambda_{c}^{+} \rightarrow K^{-}\pi^{+}p, \ \bar{\Lambda} \rightarrow \bar{p}\pi^{+},$	$e^+e^- \rightarrow p\pi^+\pi^+e^-\pi^-K^-\bar{p}$	18	43	221
$\bar{\Lambda}_{-}^{-} \rightarrow \bar{p}\pi^{-}K^{+}, \ \Lambda_{+}^{+} \rightarrow \pi^{+}\Sigma^{0}, \ \Sigma^{0} \rightarrow \gamma\Lambda, \ \Lambda \rightarrow \pi^{-}p,$	$e^+e^- \rightarrow \gamma p K^+ \pi^+ e^- \pi^- \pi^- \bar{p}$	26	41	262
$\bar{\Lambda}^{+}, \bar{\Lambda}^{-} \rightarrow \bar{p}K^0, \bar{\Lambda}^+_{+} \rightarrow K^-\pi^+p, K^0 \rightarrow K_S, K_S \rightarrow \pi^-\pi^+,$	$e^+e^- \rightarrow \gamma_{FSR}p\pi^+\pi^+e^-\pi^-K^-\bar{p}$	76	39	301
$\bar{\Lambda}^{-}\Lambda^+_{-}, \ \bar{\Lambda}^{-} \to \bar{p}\pi^- K^+, \ \Lambda^+_{+} \to K^- \pi^+ p,$	$e^+e^- \rightarrow \gamma_{FSR}pK^+\pi^+e^-\pi^-K^-\bar{p}$	54	37	338
$\bar{\Lambda}_c^- \to \bar{\Sigma}^0 \pi^-, \ \Lambda_c^+ \to K^- \pi^+ p, \ \bar{\Sigma}^0 \to \bar{\Lambda}\gamma, \ \bar{\Lambda} \to \bar{p}\pi^+,$	$e^+e^- \rightarrow \gamma p \pi^+ \pi^+ e^- \pi^- K^- \bar{p}$	16	37	375
$\bar{\Lambda}_{c}^{-} \rightarrow \bar{p}\pi^{-}\gamma_{FSR}\pi^{+}, \ \Lambda_{c}^{+} \rightarrow K^{-}\pi^{+}p,$	$e^+e^- \rightarrow \gamma_{FSR}p\pi^+\pi^+e^-\pi^-K^-\bar{p}$	84	36	411
$\bar{\Lambda}_{c}^{-} \rightarrow \bar{p}\pi^{-}\pi^{0}\bar{K}^{+}, \ \Lambda_{c}^{+} \rightarrow \pi^{+}\Lambda, \ \Lambda \rightarrow \pi^{-}p,$	$e^+e^- \rightarrow \gamma \gamma p K^+ \pi^+ e^- \pi^- \pi^- \bar{p}$	9	35	446
$\bar{\Lambda}_{-}^{-} \rightarrow \bar{p}\pi^{-}K^{+}, \ \Lambda_{+}^{+} \rightarrow \pi^{+}\Lambda, \ \Lambda \rightarrow \pi^{-}p,$	$e^+e^- \rightarrow pK^+\pi^+e^-\pi^-\pi^-\bar{p}$	32	35	481
$\bar{\Lambda}_c^- \bar{\Lambda}_c^+, \ \bar{\Lambda}_c^- \to \bar{p}\pi^- \bar{K}^+, \ \Lambda_c^+ \to \bar{K}^0 p, \ \bar{K}^0 \to K_S, \ K_S \to \pi^- \pi^+,$	$e^+e^- \rightarrow \gamma_{FSR}pK^+\pi^+e^-\pi^-\pi^-\bar{p}$	27	33	514
$\bar{\Lambda}_{c}^{-} \rightarrow \bar{p}\pi^{-}K^{+}, \ \Lambda_{c}^{+} \rightarrow \pi^{-}\gamma_{FSB}\pi^{+}p,$	$e^+e^- \rightarrow \gamma_{FSR}pK^+\pi^+e^-\pi^-\pi^-\bar{p}$	5	32	546
$\bar{\Lambda}_{c}^{-} \rightarrow \bar{\Lambda}\pi^{-}\pi^{0}, \ \Lambda_{c}^{+} \rightarrow K^{-}\pi^{+}p, \ \bar{\Lambda} \rightarrow \bar{p}\pi^{+},$	$e^+e^- \rightarrow \gamma\gamma p\pi^+\pi^+e^-\pi^-K^-\bar{p}$	53	28	574
$\bar{\Lambda}_c^- \bar{\Lambda}_c^+, \ \bar{\Lambda}_c^- \to \bar{p}\pi^- \pi^0 K^+, \ \Lambda_c^+ \to \pi^+ \Lambda, \ \Lambda \to \pi^- p,$	$e^+e^- \rightarrow \gamma \gamma \gamma_{FSR} p K^+ \pi^+ e^- \pi^- \pi^- \bar{p}$	39	24	598
$\bar{\Lambda}_{c}^{-} \rightarrow \bar{p}\pi^{-}K^{+}, \ \Lambda_{c}^{+} \rightarrow \bar{K}^{0}\pi^{0}p, \ \bar{K}^{0} \rightarrow K_{S}, \ K_{S} \rightarrow \pi^{-}\pi^{+},$	$e^+e^- \rightarrow \gamma \gamma p K^+ \pi^+ e^- \pi^- \pi^- \bar{p}$	1	24	622
$\bar{\Lambda}_c^- \bar{\Lambda}_c^+, \ \bar{\Lambda}_c^- \to \bar{p}\pi^- \bar{K}^+, \ \Lambda_c^+ \to \pi^- \pi^+ \Sigma^+, \ \Sigma^+ \to \pi^0 p,$	$e^+e^- \rightarrow \gamma \gamma \gamma_{FSR} p K^+ \pi^+ e^- \pi^- \pi^- \bar{p}$	87	22	644
$\bar{\Lambda}^{-}_{c}\Lambda^{+}_{c}, \ \bar{\Lambda}^{-}_{c} \to \bar{p}\pi^{-}K^{+}, \ \Lambda^{+}_{c} \to \pi^{+}\Lambda, \ \Lambda \to \pi^{-}p,$	$e^+e^- \rightarrow \gamma_{FSR}pK^+\pi^+e^-\pi^-\pi^-\bar{p}$	57	21	665
$\bar{\Lambda}_c^- \to \bar{\Sigma}^- \pi^- \pi^+, \ \Lambda_c^+ \to K^- \pi^+ p, \ \bar{\Sigma}^- \to \bar{p} \pi^0,$	$e^+e^- \rightarrow \gamma \gamma p \pi^+ \pi^+ e^- \pi^- K^- \bar{p}$	45	21	686
$\bar{\Lambda}^{+}, \bar{\Lambda}^{-} \rightarrow \bar{p}\pi^- K^+, \Lambda^+_{+} \rightarrow \pi^- \gamma_{FSB}\pi^+ p,$	$e^+e^- \rightarrow \gamma_{FSR}\gamma_{FSR}pK^+\pi^+e^-\pi^-\pi^-\bar{p}$	110	20	706
$\bar{\Lambda}_{a}^{+}, \bar{\Lambda}_{a}^{-} \rightarrow \bar{\Lambda}\pi^{-}, \Lambda_{a}^{+} \rightarrow K^{-}\pi^{0}\pi^{+}p, \bar{\Lambda} \rightarrow p\pi^{+},$	$e^+e^- \rightarrow \gamma\gamma\gamma_{FSB}p\pi^+\pi^+e^-\pi^-K^-\bar{p}$	21	17	723
$\bar{\Lambda}^{-}_{\alpha}\Lambda^{+}_{\alpha}, \ \bar{\Lambda}^{-}_{\alpha} \to \bar{\Sigma}^{0}\pi^{-}, \ \bar{\Lambda}^{+}_{\alpha} \to K^{-}\pi^{+}p, \ \bar{\Sigma}^{0} \to \bar{\Lambda}\gamma, \ \bar{\Lambda} \to \bar{p}\pi^{+},$	$e^+e^- \rightarrow \gamma \gamma_{FSB} p \pi^+ \pi^+ e^- \pi^- K^- \bar{p}$	2	17	740
$\bar{\Lambda}_c^- \to \bar{p}K^0, \ \Lambda_c^+ \to \bar{K}^0 p, \ \bar{K}^0 \to K_S, \ K^0 \to K_S, \ K_S \to \pi^- \pi^+, \ K_S \to \pi^- \pi^+,$	$e^+e^- \rightarrow p\pi^+\pi^+e^-\pi^-\pi^-\bar{p}$	162	17	757
$\bar{\Lambda}^{-} \to \bar{p}\pi^- K^+, \ \Lambda^+_{+} \to \pi^0 \pi^+ \Sigma^0, \ \Sigma^0 \to \gamma \Lambda, \ \Lambda \to \pi^- p,$	$e^+e^- \rightarrow \gamma \gamma \gamma p K^+ \pi^+ e^- \pi^- \pi^- \bar{p}$	77	16	773
$\bar{\Lambda}_{-}^{-} \rightarrow \bar{p}\pi^{-}K^{+}, \ \Lambda_{+}^{+} \rightarrow \pi^{-}\pi^{+}\Sigma^{+}, \ \Sigma^{+} \rightarrow \pi^{0}p,$	$e^+e^- \rightarrow \gamma\gamma p K^+ \pi^+ e^- \pi^- \pi^- \bar{p}$	170	16	789
$\bar{\Lambda}^{c}\Lambda^+_{c}, \ \bar{\Lambda}^{c} \to \bar{p}\pi^-\gamma_{FSB}\pi^+, \ \Lambda^+_{c} \to K^-\pi^+p,$	$e^+e^- \rightarrow \gamma_{FSR}\gamma_{FSR}p\pi^+\pi^+e^-\pi^-K^-\bar{p}$	92	15	804
$\bar{\Lambda}_{-}^{-}\Lambda_{-}^{+}$, $\bar{\Lambda}_{-}^{-} \rightarrow \bar{\Lambda}\pi^{-}$, $\bar{\Lambda}_{+}^{+} \rightarrow K^{-}\pi^{+}p$, $\bar{\Lambda} \rightarrow \bar{p}\pi^{+}$,	$e^+e^- \rightarrow \gamma_{FSR}p\pi^+\pi^+e^-\pi^-K^-\bar{p}$	79	15	819
$\bar{\Lambda}_c^- \rightarrow \bar{p}\pi^0 K^0, \ \Lambda_c^+ \rightarrow K^- \pi^+ p, \ K^0 \rightarrow K_S, \ K_S \rightarrow \pi^- \pi^+,$	$e^+e^- \rightarrow \gamma \gamma p \pi^+ \pi^+ e^- \pi^- K^- \bar{p}$	38	13	832
$\bar{\Lambda}_c^- \to \bar{p}K^0, \ \Lambda_c^+ \to \pi^-\pi^+\Sigma^+, \ \Sigma^+ \to \pi^0\bar{p}, \ K^0 \to K_S, \ K_S \to \pi^-\pi^+,$	$e^+e^- \rightarrow \gamma \gamma p \pi^+ \pi^+ e^- \pi^- \pi^- \bar{p}$	132	13	845
$\bar{\Lambda}^{c}\bar{\Lambda}^+_{c}, \ \bar{\Lambda}^{c} \to \bar{\Lambda}\pi^-\pi^0, \ \Lambda^+_{c} \to \pi^+\Lambda, \ \Lambda \to \pi^-p, \ \bar{\Lambda} \to \bar{p}\pi^+,$	$e^+e^- \rightarrow \gamma \gamma \gamma_{FSB} p \pi^+ \pi^+ e^- \pi^- \pi^- \bar{p}$	68	13	858

Cut Flow