

Short Recap Lecture 1 Wednesday March 8th 2023

> Collider Physics Toni Baroncelli Haiping Peng USTC

Prologue: the Quest for High Energy

To study the intimate structure of matter we have to use probes with wave-lengths as small as possible \rightarrow Collide two beams against each other

Quantum Mechanics (in 1 Table...)

	Equation	Derivatives	Comment
Schröedinger	$i\frac{\partial\psi(\boldsymbol{x},t)}{\partial t} = -\frac{1}{2m}\frac{\partial^2\psi(\boldsymbol{x},t)}{\partial x^2}$	1 st order time, 2 nd order space	Low energy approx., non relativistic invariant
Klein-Gordon	$\left(\partial^{\mu}\partial_{\mu}+m^{2}\right)\psi(\textbf{\textit{x}},t)=0$	2 nd order space & time	Negative energy solutions
Dirac	$i\frac{\partial}{\partial t}\psi = \left(-i\alpha_x\frac{\partial}{\partial x} - i\alpha_y\frac{\partial}{\partial y} - i\alpha_z\frac{\partial}{\partial z} + \beta m\right)\psi$ $\psi = \begin{pmatrix}\psi_1\\\psi_2\\\psi_3\\\psi_4\end{pmatrix} \hat{S}_z u_1(E, 0.0, \pm p) =$ $+ \frac{1}{2} u_1(E, 0.0, \pm p)$ $\hat{S}_z u_2(E, 0.0, \pm p) = - \frac{1}{2} u_2(E, 0.0, \pm p)$ $\hat{S}_z v_1(E, 0.0, \pm p) = + \frac{1}{2} v_1(E, 0.0, \pm p)$ $\hat{S}_z v_2(E, 0.0, \pm p) = -\frac{1}{2} v_2(E, 0.0, \pm p)$	1 st order space & time	Spin & anti- particles Fermions, spin up, down Antifermions, spin up, down

Back

'Ultimate' point-like Constituents of Matter

Table 1 : Fundamental fermions and bosons in the standard model of the microcosm

Fermior	ıs			Bosons			First family			
$\begin{pmatrix} u \end{pmatrix}$	$\begin{pmatrix} c \end{pmatrix}$	$\begin{pmatrix} t \end{pmatrix}$	Quarks	Fundamental	Mediators	- 	Symbol	Q	L_e	В
$\begin{pmatrix} d \end{pmatrix}$ $\begin{pmatrix} s \end{pmatrix}$	(b)	Quarks	Interactions	Leptons	Ve	0	1	_		
$\binom{\nu_e}{e^-}$	$\begin{pmatrix} \nu_{\mu} \\ \mu^{-} \end{pmatrix}$	$\begin{pmatrix} \nu_{\tau} \\ \tau^{-} \end{pmatrix}$	Leptons	Strong Electromagnetic	8 gluons γ	_	e-	-1	1	_
			_	Weak	W^+, W^-, Z^0	Ouarks	u	+2/3	_	+1/3
First family	Second family	Third family		Gravitational	Graviton	2		1 - / 2		
5	5	5		Higgs Boson	H^0		d	-1/3	_	+1/3
						• O is the	electric charge	e in unit	of the	proton charge, L_a is the

Q is the electric charge in unit of the proton charge, L_e is the electronic lepton number, B the baryonic number.

The Standard Model

Force Carrier	Photon	W & Z Boson	Gluons	Graviton
	EM	Weak	Strong	Gravitational
Quarks		\checkmark		\checkmark
Leptons		\checkmark		
Neutrinos				

The *hadrons* may be baryons constituted by three quarks or mesons quark-antiquark pair

the total number of baryons and leptons must be conserved.

 \rightarrow If an electron is produced, it must be created in association with a positron (its antiparticle, with electric charge and leptonic number of opposite sign) as expected from the Dirac theory.

Each of these three interactions is associated with a charge: electric charge, weak charge and strong charge.

A particle is subject to an interaction if and only if it carries the corresponding charge:

- Leptons and quarks carry weak charge.
- Quarks are electrically charged, so are some of the leptons (e.g., electrons).
- Strong (Colour) charge is only carried by quarks (not by leptons).