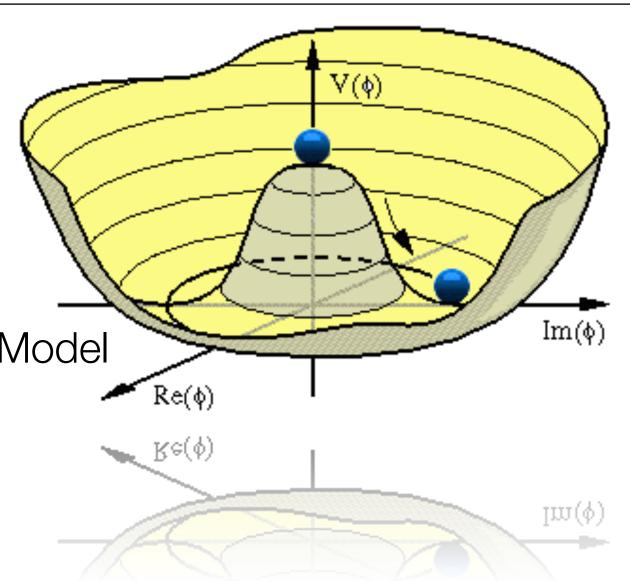


The Discovery of the Higgs at LHC

Collider Physics
Toni Baroncelli
Haiping Peng
USTC

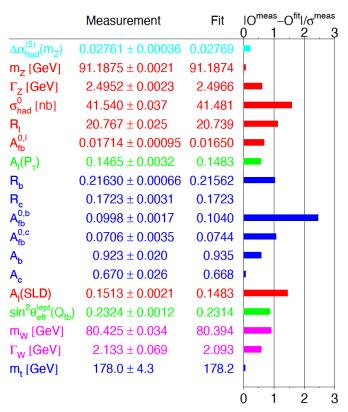


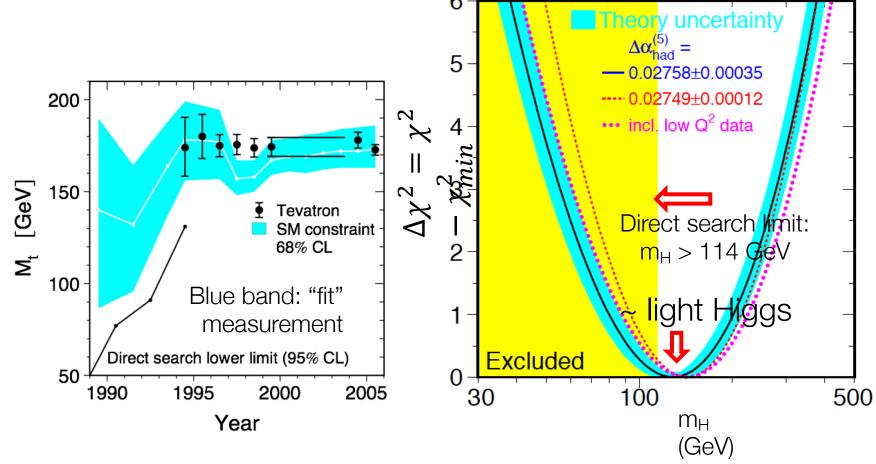
The Discovery of the Higgs at LHC

The Higgs

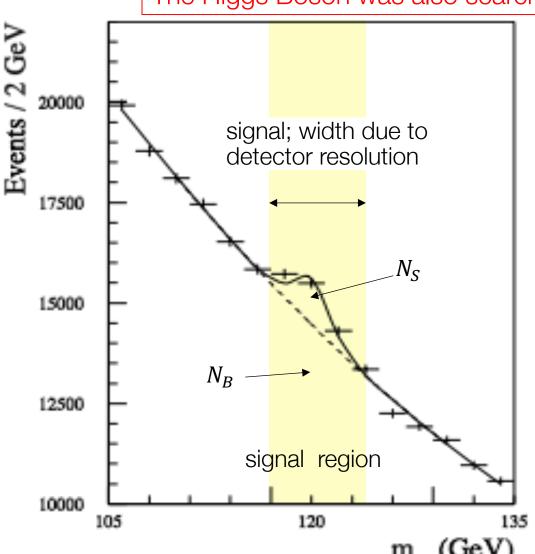
(The "once")

Missing Piece in the Standard Model




m_t and $m_H \rightarrow EW$ fits

There are very many EW measurements: cross sections, asymmetries and many others.


Some diagrams contain loops where top and Higgs bosons circulate → slightly modify observables → indication on top mass and Higgs mass before their discoveries

Higgs and the Tevatron: Reminder on Discoveries

The Higgs Boson was also searched for at the Tevatron. Without success! Why?

Signal significance:

$$S = \frac{N_S}{\sqrt{N_B + N_S}}$$

N_S: # signal events

N_B: # background events

In the "signal region"

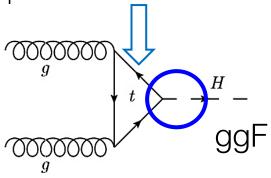
Kinematically out of reach?

By "convention" a discovery is claimed when the significance S > 5:

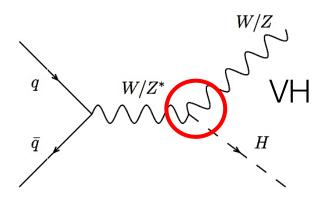
This means that the signal

$$Ns = N_{tot} - N_{B}$$

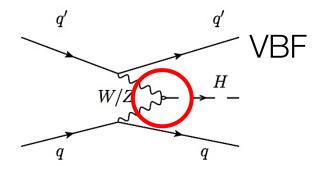
is 5 times larger than statistical uncertainty on N_B+N_S \rightarrow the probability of a fluctuation is very small: the Gaussian probability that upward fluctuation by more than 5 σ is observed is

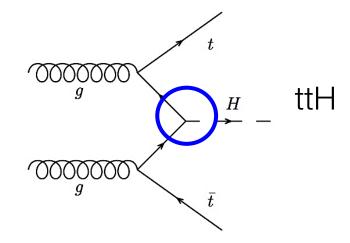

$$P_{5\sigma} = 10^{-7}$$

The sensitivity to a signal increases with increasing statistics

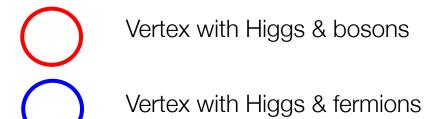


Higgs Production Mechanisms at Hadron Colliders

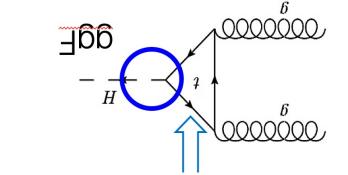

Loop with circulating tops, other quarks contribute much less


Gluon-gluon fusion

Associated production

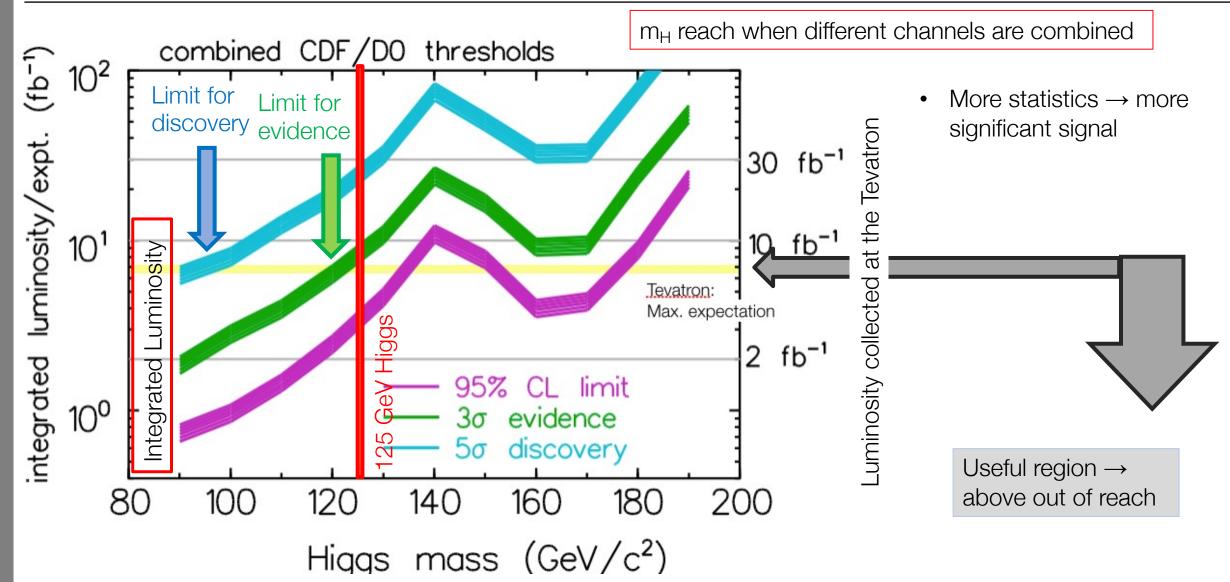


Vector bosons fusion



 $t\bar{t}$ fusion

Higgs couples to massive particles, cannot couple directly to gluons and photons



Higgs Search at the Tevatron

 $WH + ZH \rightarrow jjb\bar{b}$ $2\times (\text{TDT,LDT})$

 $H \rightarrow \gamma \gamma$

Higgs Decay Channels Investigated by CDF & D0

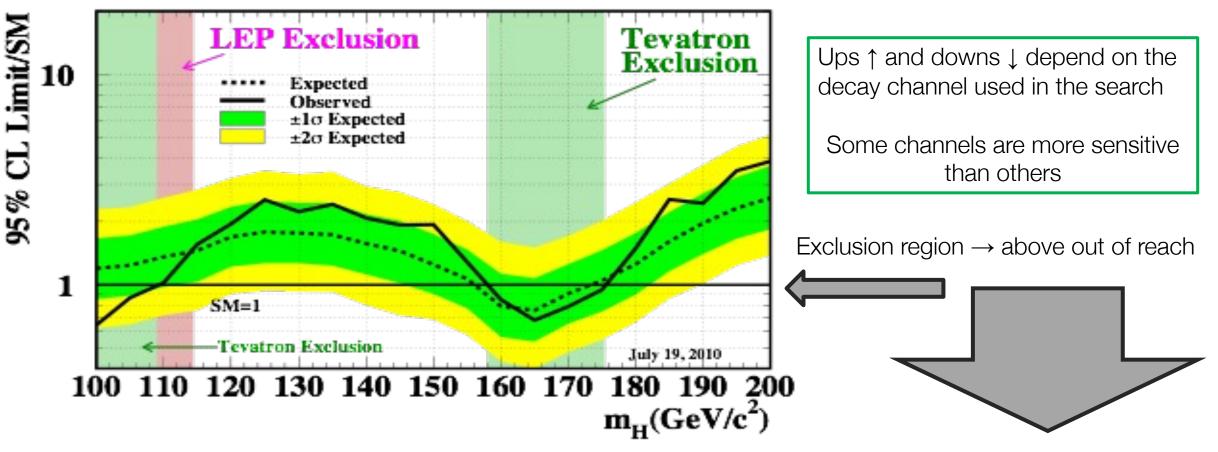
Channel	Luminosity (fb^{-1})	m_H range (GeV/ c^2	Reference
$WH \rightarrow \ell \nu b b (ST,DT,2,3 \text{ jet})$	5.3 Sensitiv	rity range 100-150	[14]
$VH ightarrow au^+ au^- bar{b}/qar{q} au^+ au^-$	$\frac{4.9}{5.2\text{-}6.4}$ of the c	105-145	[15, 16]
$ZH ightarrow u ar{ u} b ar{b} ext{(ST,TLDT)}$	5.2- 6.4	100-150	[17, 18]
$ZH \to \ell^+\ell^-b\bar{b}$ (ST,DT, $ee,\mu\mu,ee_{ICR},\mu\mu_{trk}$)	4.2 - 6.2	100-150	[19]
$VH \to \ell^{\pm}\ell^{\pm} + X$	5.3	115-200	[20]
$H \to W^+W^- \to e^{\pm}\nu e^{\mp}\nu, \mu^{\pm}\nu\mu^{\mp}\nu$	5.4 At hig	$\text{Jh m}_{\text{H}} \rightarrow 115-200$	[21]
$H \to W^+W^- \to e^{\pm}\nu\mu^{\mp}\nu$ (0,1,2+ jet)	6.7 decay	/ to WW 115-200	[22]
$H o W^+W^- o \ell \bar{\nu} jj$	5.4	130-200	[23]
$H o \gamma \gamma$	4.2	100-150	[24]
$t\bar{t}H \to t\bar{t}b\bar{b}$ (ST,DT,TT,4,5+ jets)	2.1	105-155	[25]
Channel	Lun	minosity (fb ⁻¹) m_H range	$e (GeV/c^2)$ Reference
$\overline{WH} \rightarrow \ell \nu b \bar{b}$ 2-jet channels $4 \times (\text{TDT,LDT,ST,LDTX})$, ,	[5]
$WH \rightarrow \ell \nu b \bar{b}$ 3-jet channels $2 \times (\text{TDT,LDT,ST})$,	5.6 100	-150 [6]
$ZH ightarrow u ar{ u} b ar{b} ext{(TDT,LDT,ST)}$		5.7 100	-150 [7]
$ZH \rightarrow \ell^+\ell^-b\bar{b} 4\times ({\rm TDTLDTST})$		5 7 100	[8, 9]
$H \to W^+W^- = 2 \times (0.1 \text{ jets}) + (2 + \text{ jets}) + (\text{low-}m_{\ell\ell}) + (\epsilon + \text{ jets})$	$-\tau_{had})+(\mu-\tau_{had})$	5.9 At high m 110	
$WH \to WW^+W^-$ (same-sign leptons 1+ jets)+(tri		5.9 At high $m_{\text{H}} \rightarrow 110$	-200 [10]
$ZH \to ZW^+W^-$ (tri-leptons 1 jet)+(tri-leptons 2+		$_{5.9}^{5.9}$ At high m _H $ ightarrow_{110}^{110}$ $_{5.9}$ decay to WW $_{110}^{110}$	[10]
$H + X \rightarrow \tau^+\tau^-$ (1 jet)+(2 jets)	,		-150 [11]
			L J

4.0

5.4

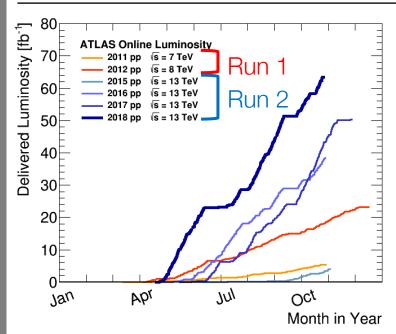
100-150

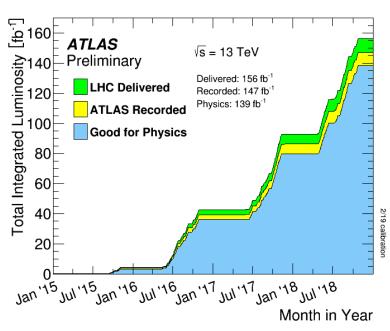
100-150

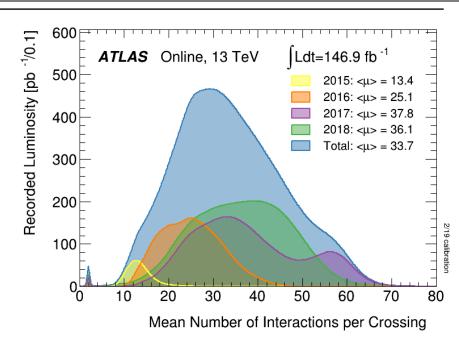


Tevatron Upper Limits on Higgs Mass

Observed and expected 95% C.L. upper limits on the ratios to the SM cross section, as functions of the Higgs boson mass for the combined CDF and D0 analyses:


If the experiments could be repeated 100 times, 95% of times they would get the same 'exclusion' result

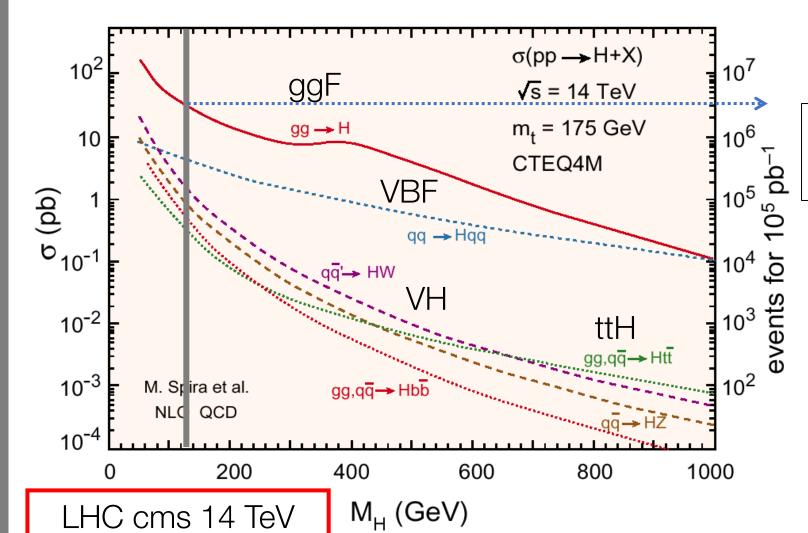

Tevatron Run II Preliminary, <L> = 5.9 fb⁻¹



Delivered Luminosity by LHC in Run 1& 2

Integrated luminosity in LHC (fb⁻¹)

- Run 1 (7 and 8 TeV)
- Run 2 (13 TeV)


Delivered by LHC in Run 2: 156 fb⁻¹ Recorded by ATLAS: 147 fb⁻¹

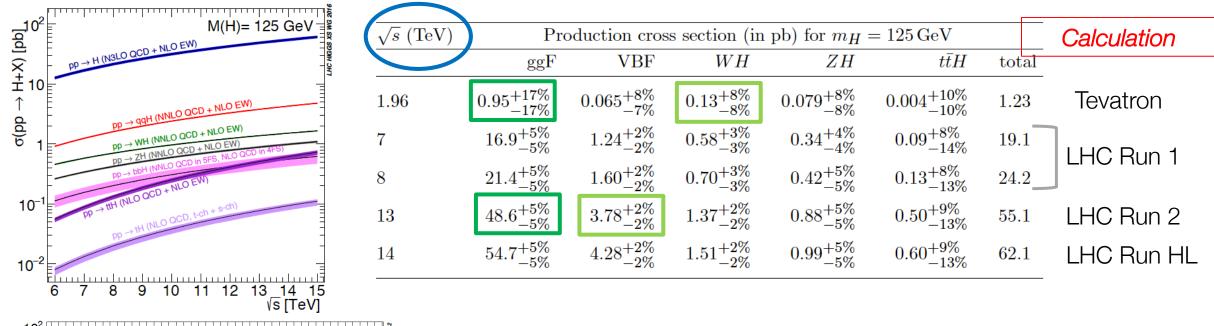
Year	2010	2011	2012	2015	2016	2017	2018
Luminosity delivered (fb ⁻¹)	0.05	6.1	23.3	4.2	41	50	68
CMS Energy	7	7	8		1	3	

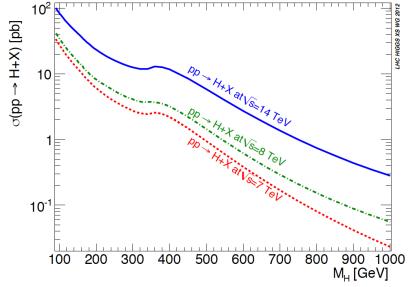
Higgs Search at the LHC

Higgs production cross-section at centre-of-mass energies of 14 TeV, as a function of m_{H.}

Different production mechanisms are shown

$$10^5 \text{ pb}^{-1} = 100 \text{ fb}^{-1}$$

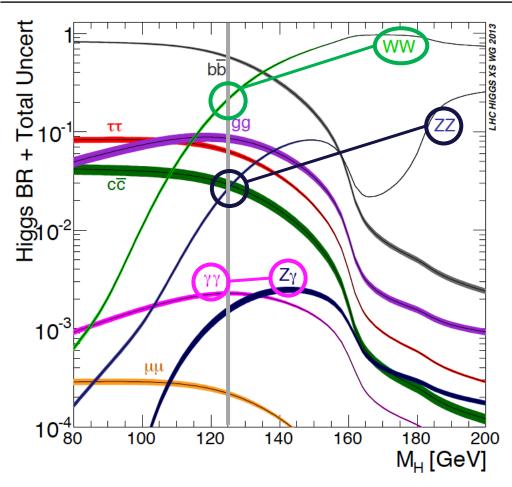

'Millions' of 125 GeV Higgs produced by the ggF mechanism at 14 TeV for 100 fb⁻¹ total luminosity



Acceptance and efficiency reduces this number drastically!

Cross Section vs √s for a 125 GeV Higgs

- Relative ratios between different production modes is ~ constant at LHC energies: ggF → VBF → VH → ttH
- The total cross section for the production of an Higgs of 125 GeV increases significantly with centre-of-mass energy


$$\frac{\sigma_{Higgs(125 \ GeV)}^{\sqrt{s}=1.96 \ TeV}}{\sigma_{Higgs(125 \ GeV)}^{\sqrt{s}=13 \ TeV}} = 2.2\%$$

Tevatron: ggF then WH

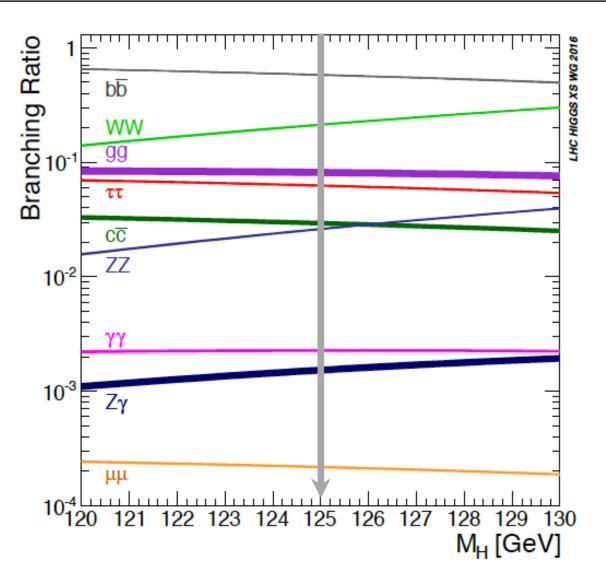
LHC: ggF then VBF

Higgs Decay Branching Fractions

For $m_H = 125$ GeV: $H \rightarrow bb$, WW, gg, $\tau\tau$

For $m_H > 160$ GeV: $H \rightarrow WW$, ZZ dominant

Discovery driven by significance of different channels


What really counts is how well one can distinguish an Higgs signal from the background

Example: the decay of the Higgs into a pair of photons is very small (H \rightarrow WW is ~ 100 times larger that H $\rightarrow \gamma \gamma$), however the distinct topology it generates made it very important in the Higgs discovery

- -H_ +,w
- Channels used for the Higgs discovery:
 - ZZ to 4 leptons
 - Two photons
 - Two WW to leptons and neutrinos (a bit late!)

Zooming the Branching Ratios of the Higgs

 $m_H = 125 \text{ GeV}$

	uncertainty
$H \to \gamma \gamma$ 2.27×10^{-3}	$+5.0\% \\ -4.9\%$
$H \to ZZ$ 2.62×10^{-2}	$^{+4.3\%}_{-4.1\%}$
$H \to W^+W^-$ 2.14 × 10 ⁻¹	$^{+4.3\%}_{-4.2\%}$
$H \to \tau^+ \tau^-$ 6.27 ×10 ⁻²	$+5.7\% \\ -5.7\%$
$H \to b\bar{b} \qquad 5.84 \times 10^{-1}$	$+3.2\% \\ -3.3\%$
$H \to Z \gamma$ 1.53×10^{-3}	$^{+9.0\%}_{-8.9\%}$
$H \to \mu^+ \mu^ 2.18 \times 10^{-4}$	$^{+6.0\%}_{-5.9\%}$

The Story of the Higgs (Discovery) in one Slide

Indirect bounds on m_H from global EW fits: two decades at LEP, SLC, Tevatron suggest a ~light Higgs

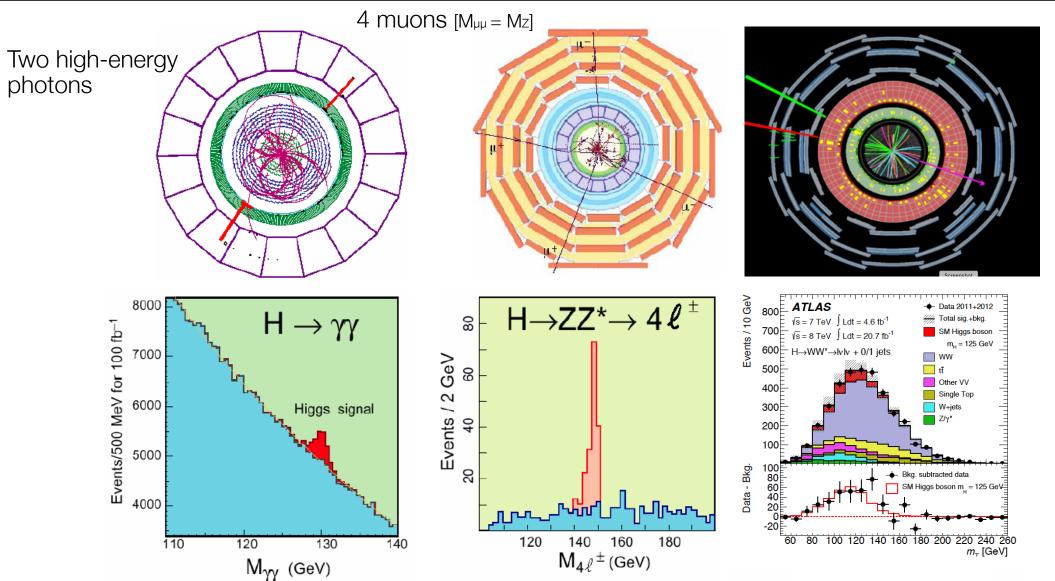
$$m_H = 89^{+35}_{-26} \, \text{GeV}$$

Direct and model-independent search at LEP up to 209 GeV cms gave a 95% CL lower bound on m_H

$$m_H > 114.4 \text{ GeV } 95\% \text{ CL}$$

Direct search after LEP shutdown in 2000 at Tevatron ppbar collider using 10fb-1 gave

- a] excluded intervals 90-109 GeV and 149-182 GeV b] broad excess at the level of 3 σ in the interval 115<m_H<140 GeV with a maximum at 125 GeV
- LHC run in 2011 (7 TeV, 5 fb⁻¹), 2012 (8 TeV, 20 fb⁻¹) gave evidence for a new particle decaying to $\gamma\gamma$ and ZZ with rates as predicted by SM. Evidence for decays to W+W- but no evidence for bbar and $\tau^+\tau^-$
- LHC July 2012: ATLAS & CMS claim a discovery of a new particle with a mass of about 125 GeV



Most Promising Higgs Decay Channels

Channel	LHC Potential
gg → H → bb	Huge QCD background (gg → bb); extremely difficult
gg → H → ττ	Higgs with low p⊤, hard to discriminate from background; problematic
gg → H → γγ	Small rate, large combinatorial background, but excellent determination of m _H (CMS: crystal calorimeter)
gg → H → WW	Large rate, but 2 neutrinos in leptonic decay, Higgs spin accessible via lepton angular correlations
gg → H → ZZ	ZZ → 4µ: "gold-plated" channel for high-mass Higgs (ATLAS: muon spectrometer)

Topologies!

Electron + muon + MET

Complications of Real Life: Background

1. Choose channels with low SM background

not possible: H → bb ... without associated production ...(VH mode,V=W,Z)

possible: H → γγ ... despite of small branching ratio ...

H → ZZ ... with at least one Z decaying leptonically ...

H → WW ... large signal and large background ...

2. Optimize detector resolution

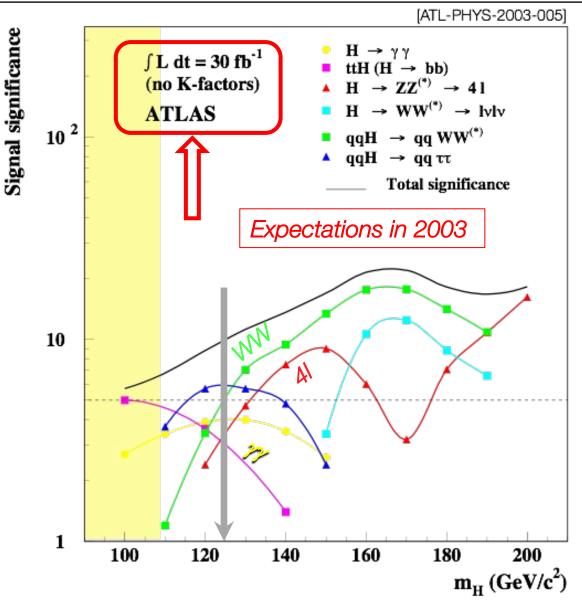
Example:mass resolution σ_m increases by a factor of 2; thus: peak region has to be increased by a factor 2 and number NB of background events increases by factor of 2

$$S = Ns/\sqrt{N_B}$$
 decreases by $\sqrt{2}$

$$S \sim \frac{1}{\sqrt{\sigma_m}}$$

3. Recorded luminosity \mathcal{L}

Signal: Ns ~ £


Background: $N_B \sim \mathcal{L}$

$$S \sim \frac{1}{\sqrt{\mathcal{L}}}$$

Decay channel	Mass resolution
$\overline{H o \gamma \gamma}$	1-2%
$H \rightarrow ZZ \rightarrow \ell^+\ell^-\ell'^+\ell'^-$	12%
$H \to W^+W^- \to \ell^+\nu_\ell\ell'^-\bar{\nu}_{\ell'}$	20%
$H o b ar{b}$	10%
$H \to \tau^+ \tau^-$	15%

Pre-Discovery Discovery Potential

Statement in 2003

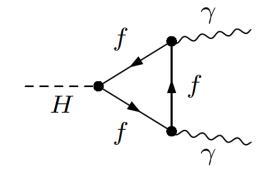
- Full mass range can already be covered after a few years at low luminosity
- Several channels available over a large range of masses
- Low mass discovery requires combination of three of the most demanding channels
- Comparable situation for the CMS experiment

Prediction almost correct:

- γγ, ZZ to 4 leptons, WW to lvlv (higgs to qqττ not used)
- Combination of channels

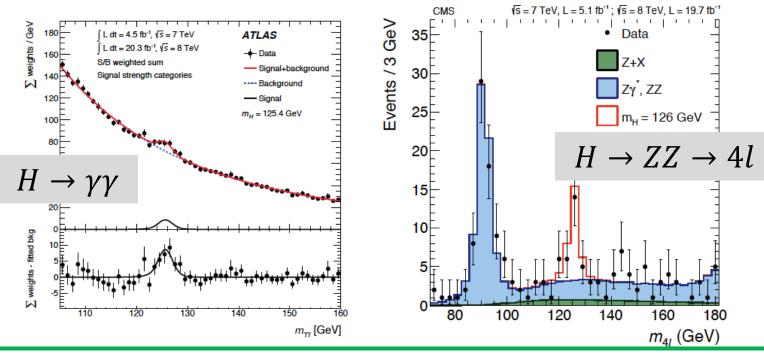
Higgs Terms in the Lagrangian

$$\mathcal{L} = -\frac{1}{2} g_{Hff} \bar{f} f H + \frac{g_{HHH}}{6} H^3 + \frac{g_{HHHH}}{24} H^4 + \delta_V V_\mu V^\mu \left(g_{HVV} H + \frac{g_{HHVV}}{2} H^2 \right)$$
linear quadratic
$$g_{Hf\bar{f}} = \frac{m_f}{v}, \quad g_{HVV} = \frac{2m_V^2}{v} \quad g_{HHVV} = \frac{2m_V^2}{v^2}$$


$$g_{HHH} = \frac{3m_H^2}{v}, \quad g_{HHHH} = \frac{3m_H^2}{v^2}$$

$$V = W^{\pm} \text{ or } Z$$
 $\delta W = 1, \, \delta Z = 1/2$

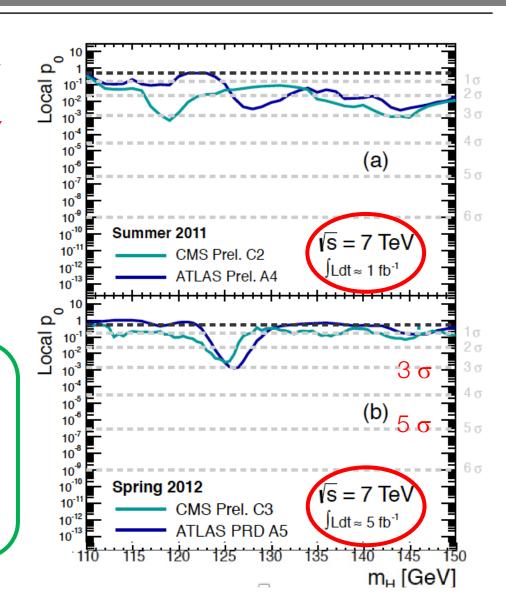
 The dominant mechanisms for Higgs boson production and decay involve the coupling of H to W, Z and/or the third generation quarks and leptons.


Coupling to bosons (W or Z) $\propto m_V^2$ Coupling to fermions $\propto m_f$

- The Higgs coupling to photons is generated by loops
- > virtual W+W- pair provides the dominant contribution
- > virtual tt pair is subdominant.
- The Higgs coupling to gluons, is induced by a one-loop graph: H couples to a virtual tt pair.

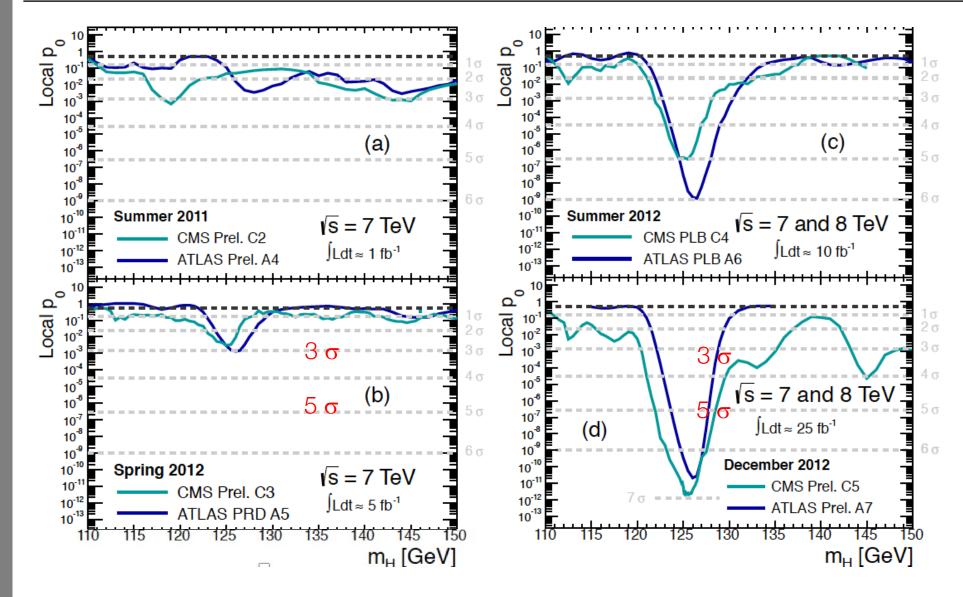
Summary of LHC Run-1 Results (7 TeV + 8 TeV)

- $ATLASH \rightarrow WW^*$ \sqrt{s} =8 TeV, 20.3 fb⁻¹ \sqrt{s} =7TeV, 4.5fb⁻¹ (a) $n_i \le 1$, $e\mu + ee/\mu\mu$ Obs±stat Higgs ■ ww Misid 200 (b) Background-subtracted Obs-Bka Higgs $H \rightarrow W^+W^$ m_T [GeV]
- In the H → γγ and H → ZZ → 4l channels, all final state particles can be very precisely measured and the reconstructed m_H resolution is excellent (typically 1-2%).
- the $H \to W^+W^- \to l^+\nu_l l^-\overline{\nu_l}$ channel has relatively large branching fraction, but the m_H resolution is poor (approximately 20%) due to the presence of neutrinos.



Past History: a Few Important Facts

- On July 4, 2012 the observation at the LHC of a narrow resonance with a mass of about 125 GeV was announced.
- Initial strategy: integrate all production modes for one decay channel
- The observed decay channels indicated → is a boson.
- Decays rates to γγ and ZZ consistent with the Standard Model (SM) Higgs boson.
- There were indications that the new particle also decays to W+W-.


The significance of these observations are quantified by a p-value, the probability for an experiment to give a result compatible with background only.

ATLAS / CMS observed a significance of 5.9 /4.9 σ at a mass m_H = 126.5GeV / 125.5

Recent History: a Few Important Facts

p₀ = probability that the excess can be described by background only

A p₀ of 2.87x10⁻⁷ corresponds to 5σ excess over the background-only prediction.

Topologies of Production Mechanisms

ggf, gluon-fusion process:

- largest cross section
- Loop with heavy top quark. No very distinctive feature in the topology!

VBF, vector boson fusion:

- second-largest cross section
- scattering of $qq'(q\bar{q})$, mediated by the exchange of a W or Z boson.
- The scattered quarks give two hard jets in the forward and backward regions with a large dijet mass (≥ 400GeV) and separated by Δη_{ij} ≥ 3.5 → one jet very forward + 1 jet very backward.

VH, associated production with W and Z gauge bosons:

- Third cross-section
- W and Z leptonic decay(s) \rightarrow MET & high p_T leptons \rightarrow clean signatures.

ttH: Higgs radiation off top quarks

• High p_T leptons, MET, b-tagged jets. Complex topology with many decay channels

Improve Initial Discovery

Is the observed resonance the Higgs boson predicted by the SM?

→ more analysis

Higgses p	roduced in ATL	AS & CMS	in LHC Runl	
Production Mode	ggF	VBF	WH+ZH	ttH
Higgs events	500.000	40.000	20.000	3.000

Production →
Five modes;
ggF vbf WH ZH ttH

Higgs

Three main modes

Decay

You see this!

There are three main decay channels: the γγ, ZZ, WW

 $3 \times 5 = 15$ combinations \rightarrow too many for an (initial) search, not enough statistics!

Strategy was:

- define categories for each production mode and for each decay mode (→ check with SM!)
- optimise the search using characteristics of the (production-decay) topology of the event
- then integrate over all production modes and give results for 3 decay channels only (WW arrived a bit later)

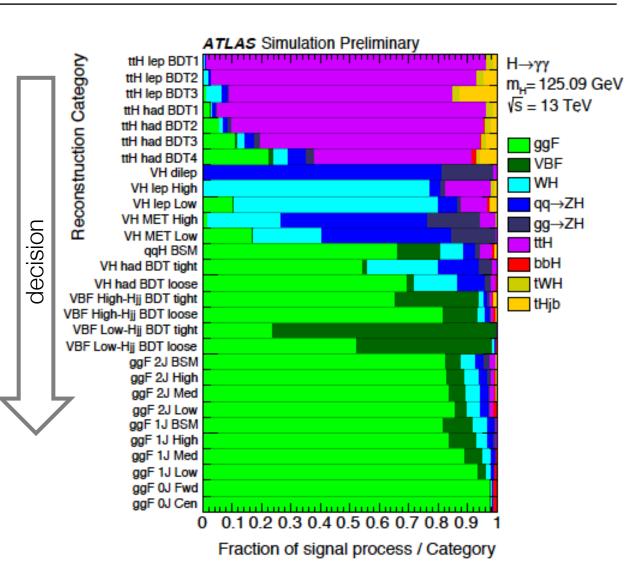
Events selected for the discovery were very few: between 1 and 100 for each production-decay category.

Categorisation

Example: $H \rightarrow \gamma \gamma$

Several production modes:

- Consider one production mode at a time (from the most distinct, ttH, to the least distinct, ggf)
- 2. Is the topology / kinematics of that event compatible with that production?

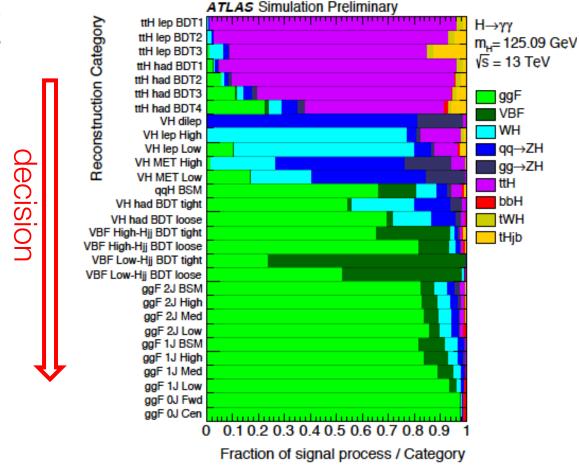

No

Yes

Go to next production

Go to next event

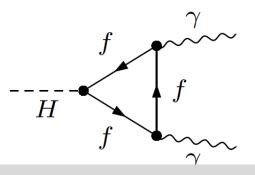
- Attribution to one category is exclusive!
- There is some wrong attribution
- Composition of one category studied by MC

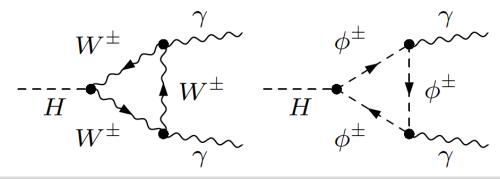

Of the Categorisation

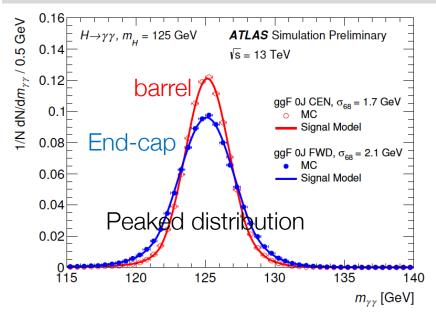
Initial discovery was based on a low sample of events → limited sensitivity to SM Higgs predictions

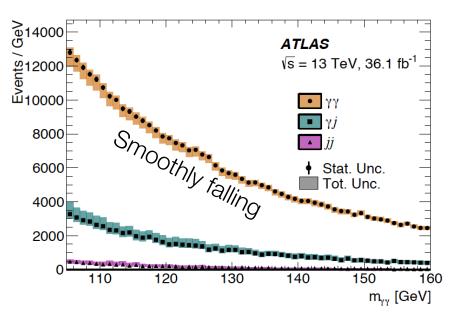
- Selection: decay modes only, integrate production modes
- Peak in the mass \rightarrow a resonance, not necessarily a Higgs
- Later in time → more statistics → Need to check if also production modes are in agreement with SM

Start with most distinctive and finish with least distinctive


- Separate production processes with topological characteristics → categorisation.
- One category ~ mostly one production mode (but also others) → not a measurement of that production crosssection.


 Simulations are used to determine the relative contributions of the various Higgs production modes in a particular category.

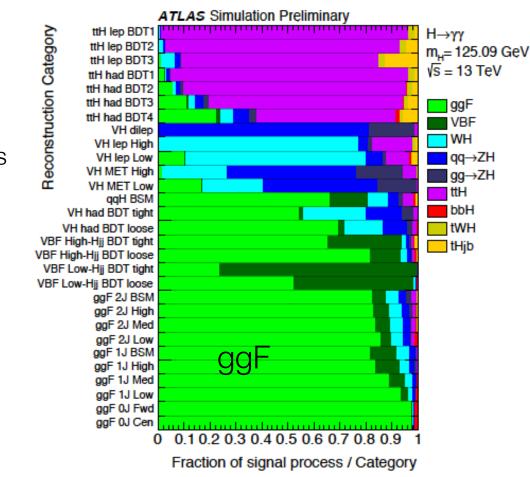

Higgs Decay to Two Photons


~Only top quarks contribute, contributions from light fermions negligible

Method: look for a peak in the invariant mass of two high p_T photons over a smoothly falling background distribution.

Gaussian central part + power law tails on both sides.

Fits to large control samples of data or simulated background events

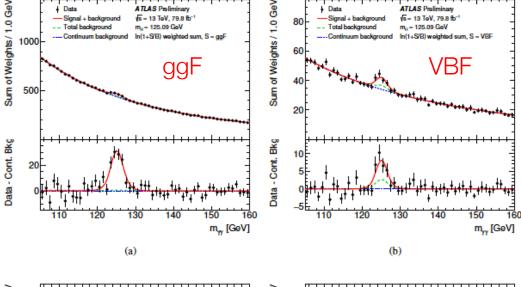


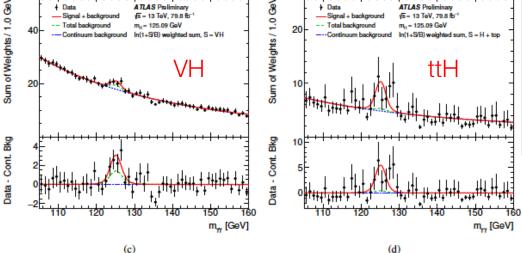
29 Categories in Higgs $\rightarrow \gamma\gamma$

Summary of the 29 event reconstruction categories for the measurement of production mode cross sections.

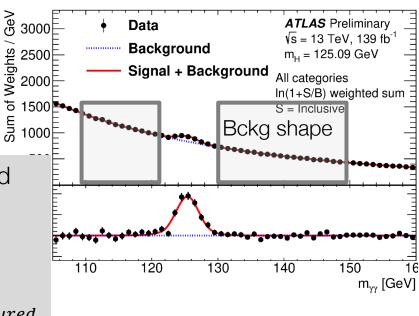
Each event is assigned to the first category whose requirements are satisfied, using the descending order given in the table.

As a result, the event populations of categories are mutually exclusive.

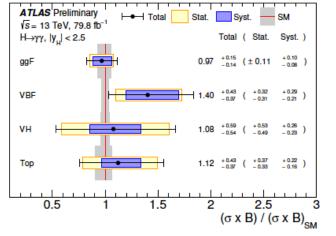



Category label	Selection
ttH lep BDT1	$N_{\text{lep}} \ge 1$, $N_{b-\text{jet}} \ge 1$, BDT _{ttHlep} > 0.987
ttH lep BDT2	$N_{\text{lep}} \ge 1, \ N_{b-\text{jet}} \ge 1, \ 0.942 < \text{BDT}_{\text{ttHlep}} < 0.987$
ttH lep BDT3	$N_{\text{lep}} \ge 1, \ N_{b-\text{jet}} \ge 1, \ 0.705 < \text{BDT}_{\text{ttHlep}} < 0.942$
ttH had BDT1	$N_{\text{lep}} = 0, \ N_{\text{jets}} \ge 3, \ N_{b-\text{jet}} \ge 1, \ \text{BDT}_{\text{ttHhad}} > 0.996$
ttH had BDT2	$N_{\text{lep}} = 0, \ N_{\text{jets}} \ge 3, \ N_{b-\text{jet}} \ge 1, \ 0.991 < \text{BDT}_{\text{ttHhad}} < 0.996$
ttH had BDT3	$N_{\text{lep}} = 0, \ N_{\text{jets}} \ge 3, \ N_{b-\text{jet}} \ge 1, \ 0.971 < \text{BDT}_{\text{ttHhad}} < 0.991$
ttH had BDT4	$N_{\text{lep}} = 0, \ N_{\text{jets}} \ge 3, \ N_{b-\text{jet}} \ge 1, \ 0.911 < \text{BDT}_{\text{ttHhad}} < 0.971$
VH dilep	$N_{\text{lep}} \ge 2$, $70 \text{GeV} \le m_{\ell\ell} \le 110 \text{GeV}$
VH lep High	$N_{\text{lep}} = 1, m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}, p_{\text{T}}^{\ell + E_{\text{T}}^{\text{miss}}} > 150 \text{GeV}$
VH lep Low	$N_{\text{lep}} = 1$, $ m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}$, $p_{\text{T}}^{\ell + E_{\text{T}}^{\text{miss}}} < 150 \text{GeV}$, $E_{\text{T}}^{\text{miss}}$ significan e
VH MET High	150 GeV $< E_{\rm T}^{\rm miss} < 250$ GeV, $E_{\rm T}^{\rm miss}$ significance > 9 or $E_{\rm T}^{\rm miss} > 250$ GeV
VH MET Low	$\begin{split} N_{\text{lep}} &= 0, \ N_{\text{jets}} \geq 3, \ N_{b-\text{jet}} \geq 1, \ 0.911 < \text{BDT}_{\text{ttHhad}} < 0.971 \\ N_{\text{lep}} \geq 2, \ 70 \text{GeV} \leq m_{\ell\ell} \leq 110 \text{GeV} \\ N_{\text{lep}} &= 1, \ m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}, \ p_{\text{T}}^{\ell+E_{\text{miss}}^{\text{miss}}} > 150 \text{GeV} \\ N_{\text{lep}} &= 1, \ m_{e\gamma} - 89 \text{GeV} > 5 \text{GeV}, \ p_{\text{T}}^{\ell+E_{\text{miss}}^{\text{miss}}} < 150 \text{GeV}, \ E_{\text{T}}^{\text{miss}} = 150 \text{GeV}, \ E_{$
qqH BSM	$N_{\text{jets}} \ge 2, \ p_{\text{T,jl}} > 200 \text{GeV}$
VH had BDT tight	$60 \text{GeV} < m_{jj} < 120 \text{GeV}, \ \text{BDT}_{VH} > 0.78$
VH had BDT loose	$60 \text{GeV} < m_{jj} < 120 \text{GeV}, \ 0.35 < \text{BDT}_{VH} < 0.78$
VBF high- p_{T}^{HJJ} BDT tight	$ \Delta \eta_{JJ} > 2$, $ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5$, $p_{T}^{HJJ} > 25 \text{ GeV}$, BDT $_{VBF}^{high} > 0.47$
VBF high- $p_{T}^{H ff}$ BDT loose	$ \Delta \eta_{JJ} > 2$, $ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5$, $p_{T}^{HJJ} > 25 \text{ GeV}$, $-0.32 < \text{BDT}_{VB}^{\text{higl}} < 0.47$
VBF low- $p_{T_{-}}^{Hjj}$ BDT tight	$ \Delta \eta_{ff} > 2$, $ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5$, $p_{T}^{Hff} < 25 \text{GeV}$, $BDT_{VBF}^{low} > 0.87$
VBF low- $p_{\rm T}^{H_{ff}}$ BDT loose	$ \Delta \eta_{ff} > 2$, $ \eta_{\gamma\gamma} - 0.5(\eta_{j1} + \eta_{j2}) < 5$, $p_{\rm T}^{\dot{H}ff} < 25{\rm GeV}$, $0.26 < {\rm BDT_{VBF}^{low}} < 0.87$
ggF 2J BSM	$N_{\rm jets} \ge 2, \ p_{\rm T}^{\gamma\gamma} \ge 200 {\rm GeV}$
ggF 2J High	$N_{\text{jets}} \ge 2, \ p_{\text{T}}^{\gamma\gamma} \in [120, 200] \text{ GeV}$
ggF 2J Med	$N_{\text{jets}} \ge 2, \ p_{\text{T}}^{\gamma\gamma} \in [60, 120] \text{ GeV}$
ggF 2J Low	$N_{\text{jets}} \ge 2, \ p_{\text{T}}^{\gamma\gamma} \in [0,60] \text{ GeV}$
ggF 1J BSM	$N_{\text{jets}} = 1, \ p_{\text{T}}^{\gamma \gamma} \ge 200 \text{GeV}$
ggF 1J High	$N_{\text{jets}} = 1, \ p_{\text{T}}^{\gamma\gamma} \in [120, 200] \text{ GeV}$
ggF 1J Med	$N_{\text{jets}} = 1, \ p_{\text{T}}^{\gamma \gamma} \in [60, 120] \text{ GeV}$
ggF 1J Low	$N_{\text{jets}} = 1, \ p_{\text{T}}^{\gamma\gamma} \in [0,60] \text{ GeV}$
ggF 0J Fwd	$N_{\rm jets} = 0$, one photon with $ \eta > 0.95$
ggF 0J Cen	$N_{\text{jets}} = 0$, two photons with $ \eta \le 0.95$

The $m_{\gamma\gamma}$ distribution with ~80fb⁻¹

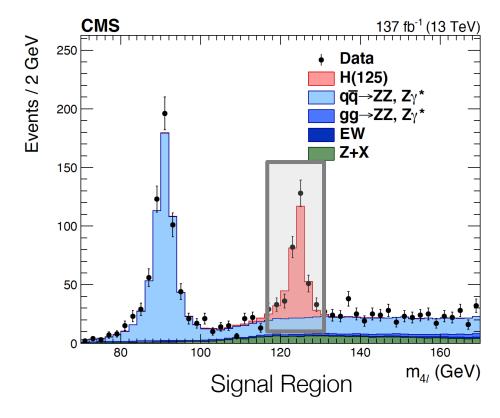

Cumulated $m_{\gamma\gamma}$ distribution for the H $\rightarrow \gamma\gamma$ decay

Signal-strength is defined as the ratio between observed and the SM expected cross section


$$\mu = \frac{\sigma^{measured} \times BR^{measured}}{\sigma^{SM} \times BR^{SM}}$$

This observables tells how well data are in agreement with SM

Signal consists of between 150 and 200 H→ γγ decay candidates



Higgs decay to $ZZ \rightarrow 4$ leptons (80 fb⁻¹)

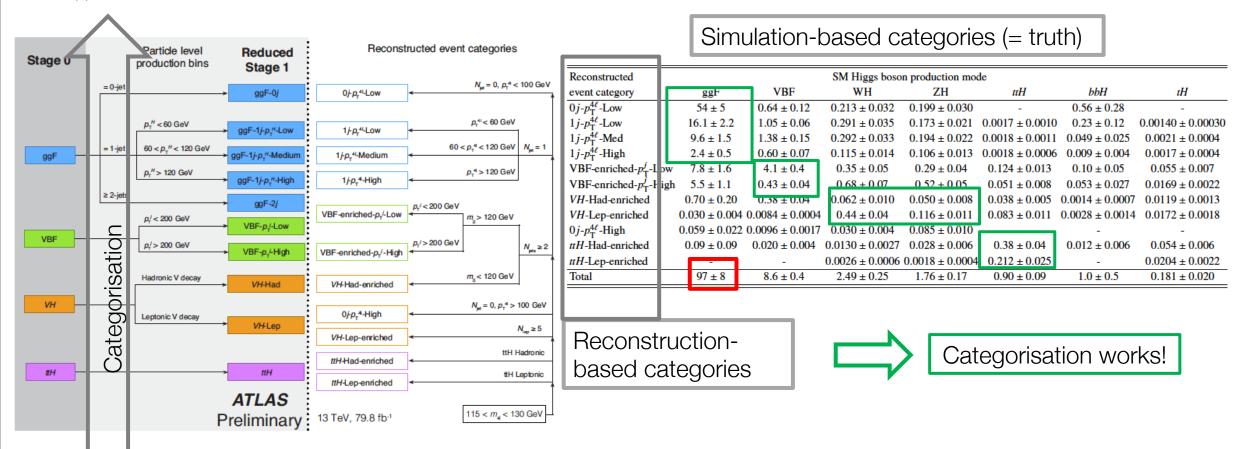
Method: $H \to ZZ^* \to l^+ l^- l'^+ l'^-$ look for a narrow mass peak over a continuous background.

$$H \rightarrow ZZ^* \rightarrow 4\ell \text{ decay } (4\mu, 2e2\mu, 2\mu2e, 4e)$$

Different event-observables → the probability for the event to be signal-like or background-like Event selection to magnify the ratio S/B

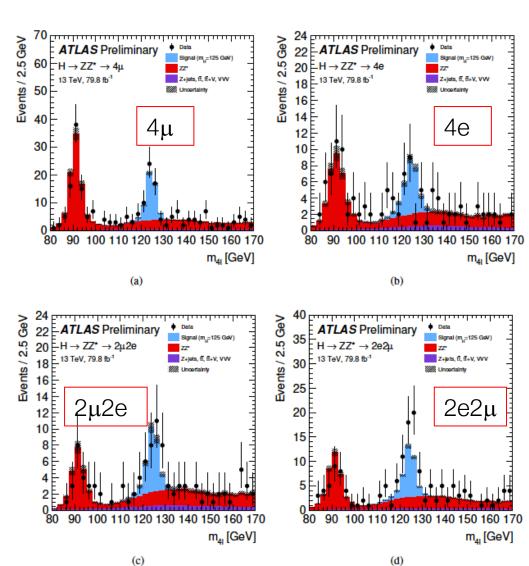
Number of expected and observed events in the four decay channels after the event selection, in the mass range $115 \text{ GeV} < m_{4l} < 130 \text{ GeV}.$

The sum of the expected number of SM Higgs boson events and the estimated background yields is compared to the data.

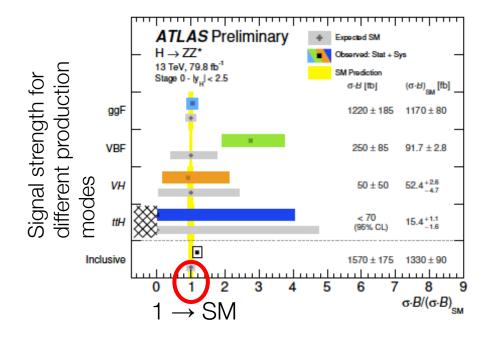

Final	Signal	ZZ*	Other	Total	Observed
state		background	backgrounds	expected	
-4μ	40.5 ± 1.7	19.0 ± 1.1	1.71 ± 0.10	61.2 ± 2.0	64
$2e2\mu$	28.2 ± 1.2	13.3 ± 0.8	1.38 ± 0.10	42.8 ± 1.4	64
$2\mu 2e$	22.1 ± 1.4	9.2 ± 0.9	2.99 ± 0.09	34.3 ± 1.7	39
4 <i>e</i>	21.1 ± 1.4	8.6 ± 0.8	2.90 ± 0.09	32.5 ± 1.6	28
Total	112 ± 5	50 ± 4	8.96 ± 0.12	171 ± 6	195

Composition of the Signal

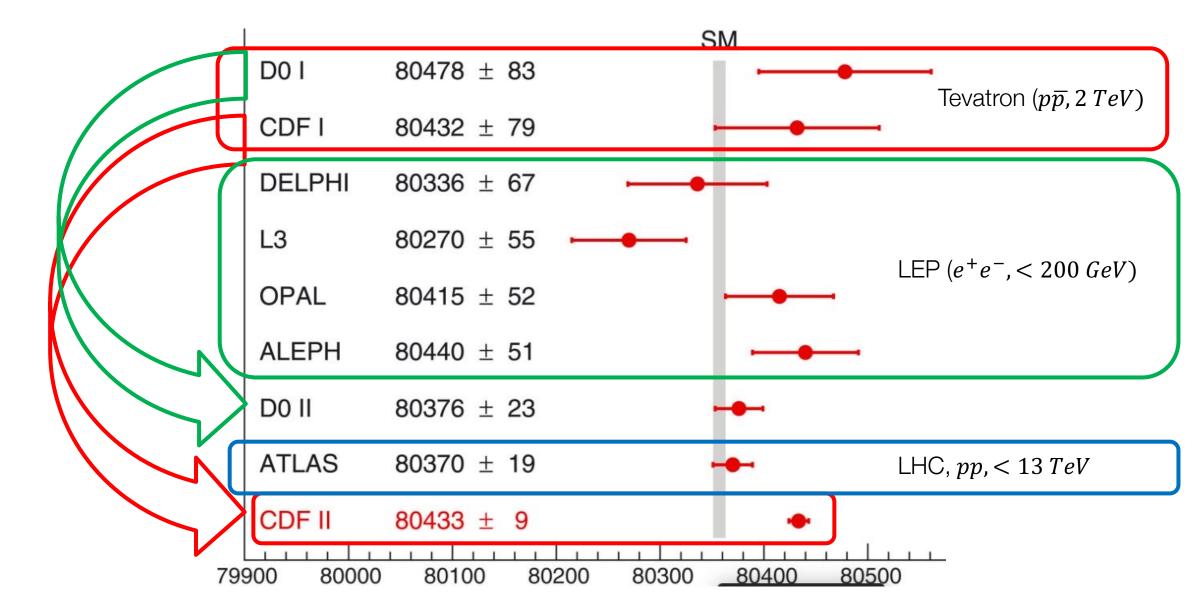
A categorisation ~similar to what was used for the $H \rightarrow \gamma \gamma$ decay is also used for the $H \rightarrow 4I$ decay


Simulated signal composition for ~80 fb-1 of luminosity at 13 TeV: The ggF component, as expected, dominates.

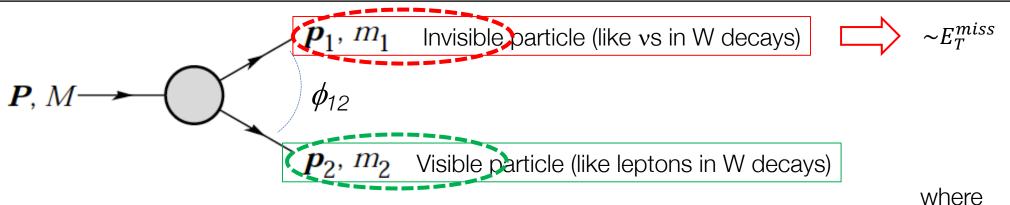
A correspondence is determined between reconstruction and simulation categories



Details of the Results


Cross section [fb]	Data	(± (stat.)	± (syst.))	Standard Model prediction	p-value [%]
$\sigma_{4\mu}$	0.97	±0.17	±0.05	0.886 ± 0.039	62
σ_{4e}	0.61	±0.21	± 0.07	0.886 ± 0.039	25
σ_{2u2e}	0.88	±0.21	± 0.08	0.786 ± 0.035	66
$\sigma_{2e2\mu}$	1.37	±0.22	±0.07	0.786 ± 0.035	0.3

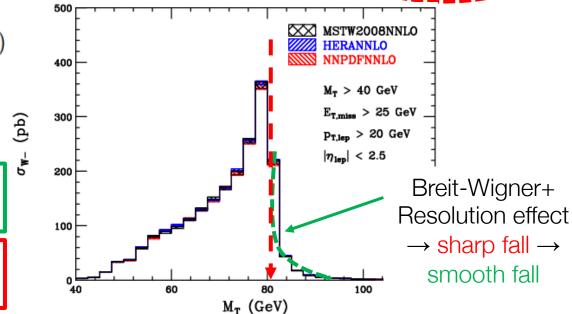
The signal strength μ has also been calculated: Integrated $\mu = 1.19 \pm 0.12 (\text{stat.}) \pm 0.06 (\text{exp.})^{+0.08}_{-0.07} (\text{th.}) = 1.19^{+0.16}_{-0.15}$.



W mass measurement at Colliders

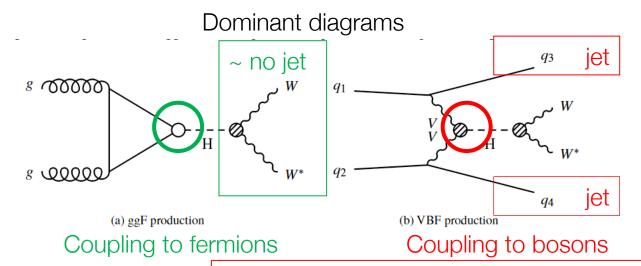
W Mass Measurements at Hadron Colliders

The mass of the parent particle can be constrained with the observable M_T defined by


$$\begin{split} M_T^2 &\equiv [E_T(1) + E_T(2)]^2 - [p_T(1) + p_T(2)]^2 \\ &= m_1^2 + m_2^2 + 2[E_T(1)E_T(2) - p_T(1) \cdot p_T(2)] \end{split}$$

 $p_T(1) = E_T^{miss}$

For m1~m2~0
$$\rightarrow$$
 $M_T^2=2|{m p}_T(1)||{m p}_T(2)|(1-\cos\phi_{12})$


Important characteristic: the end point of this distribution is $M_T^{max} = M$

Also the distribution of the p_T of the lepton has memory of m_W : the end-point is $m_W/2$

$Higgs \rightarrow WW \rightarrow ev \mu v (36 fb^{-1})$

Event selection

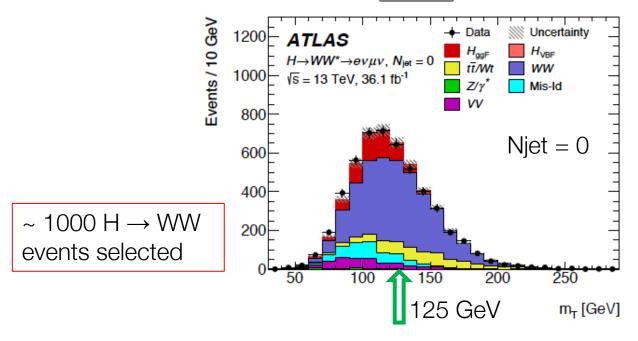
2 OFOS leptons ($e\nu_e \; \mu\nu_\mu$) \rightarrow no Z decay!

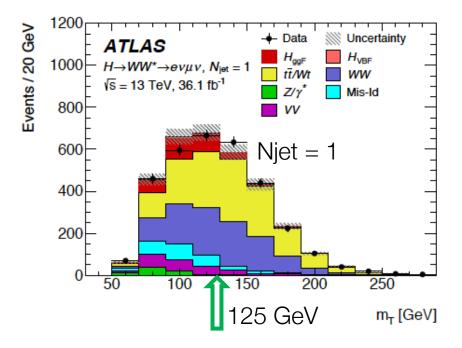
Category	$ N_{\text{jet},(p_T > 30 \text{ GeV})} = 0 \text{ ggF} N_{\text{jet},(p_T > 30 \text{ GeV})} = 1 \text{ ggF} $	$N_{\text{jet,}(p_T > 30 \text{ GeV})} \ge 2 \text{ VBF}$
Preselection	Two isolated, different-flavour lepto $p_{\mathrm{T}}^{\mathrm{lead}} > 22 \; \mathrm{GeV} \;, \; p_{\mathrm{T}}^{\mathrm{lead}} > 10$ $p_{\mathrm{T}}^{\mathrm{miss}} > 20 \; \mathrm{GeV}$	sublead > 15 GeV
Background rejection		
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	$m_{\ell\ell}$ < 55 GeV	central jet veto
topology	$\Delta \phi_{\ell\ell} < 1.8$	outside lepton veto
Discriminant variable	$m_{ m T}$	BDT
BDT input variables		$m_{jj}, \Delta y_{jj}, m_{\ell\ell}, \Delta \phi_{\ell\ell}, m_{\mathrm{T}}, \sum_{\ell} C_{\ell}, \sum_{\ell,j} m_{\ell j}, p_{\mathrm{T}}^{\mathrm{tot}}$

Background is computed using simulation. Control regions in data (orthogonal to the signal region) are used to normalise the MC predictions for most important backgrounds:

- Non resonant WW
- Top pairs production
- Di-bosons (WZ and ZZ) and Drell-Yan

CR	$N_{\text{jet,}(p_T > 30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet,}(p_T>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_T > 30 \text{ GeV})} \ge 2 \text{ VBF}$
WW	$55 < m_{\ell\ell} < 110 \text{ GeV}$ $\Delta \phi_{\ell\ell} < 2.6$ $N_{b\text{-jet},(p_T)}$	$m_{\ell\ell} > 80 \text{ GeV}$ $ m_{\tau\tau} - m_Z > 25 \text{ GeV}$ $ m_{\sigma\tau} - m_Z > 50 \text{ GeV}$ $ m_{\sigma\tau} (m_T^{\ell}) > 50 \text{ GeV}$	
tī/Wt	$N_{b\text{-jet},(20~\text{GeV} < p_{\text{T}} < 30~\text{GeV})} > 0$ $\Delta\phi(\ell\ell, E_{\text{T}}^{\text{miss}}) > \pi/2$ $p_{\text{T}}^{\ell\ell} > 30~\text{GeV}$ $\Delta\phi_{\ell\ell} < 2.8$	$\begin{aligned} N_{b\text{-jet},(p_{\text{T}}>30\text{ GeV})} &= 1\\ N_{b\text{-jet},(20\text{ GeV} < p_{\text{T}}<30\text{ GeV})} &= 0\\ \max\left(m_{\text{T}}^{\ell}\right) &> 50\text{ GeV}\\ m_{\tau\tau} &< m_{\tau}^{2} \end{aligned}$	$N_{b ext{-jet,}(p_T>20 \text{ GeV})} = 1$ central jet veto $z - 25 \text{ GeV}$ outside lepton veto
Z/γ^*	no $p_{ m T}^{ m miss}$ re $\Delta\phi_{\ell\ell}>2.8$	$N_{b ext{-jet},(p_{ ext{T}}>20~\text{GeV})} = 0$ $m_{\ell\ell} < 80~\text{GeV}$ equirement $\max\left(m_{ ext{T}}^{\ell}\right) > 50~\text{GeV}$ $m_{\tau\tau} > m_{Z} - 25~\text{GeV}$	central jet veto outside lepton veto $ m_{\tau\tau} - m_Z \le 25 \text{ GeV}$

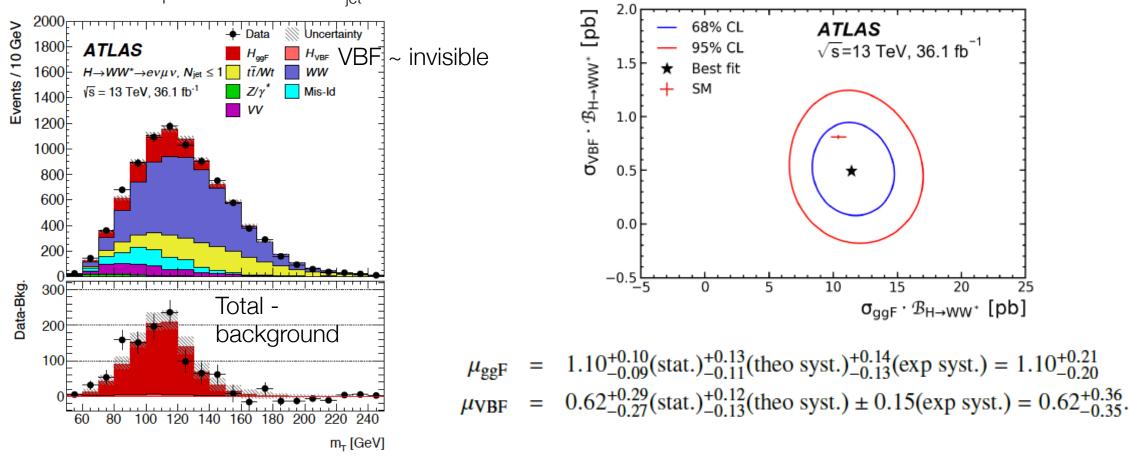



Results: m_T as proxy of m_H

Process N _{jet} = 0 ggF N _{jet} = 1 ggF N _{jet} ≥ 2 VBF Inclusive BDT: [0.86, 1.0] H_{ggF} 639 ± 110 285 ± 51 42 ± 16 6 ± 3 H_{VBF} 7 ± 1 31 ± 2 28 ± 16 16 ± 6 WW 3016 ± 203 1053 ± 206 400 ± 60 11 ± 2 VV 333 ± 38 208 ± 32 70 ± 12 3 ± 1 t̄t̄/Wt 588 ± 130 1397 ± 179 1270 ± 80 14 ± 2 Mis-Id 447 ± 77 234 ± 49 90 ± 30 6 ± 2 Z/γ* 27 ± 11 76 ± 24 280 ± 40 4 ± 1 Total 5067 ± 80 3296 ± 61 2170 ± 50 60 ± 10 Observed 5080 3264 2164 60						
H_{VBF} 7 ± 1 31 ± 2 28 ± 16 16 ± 6 WW 3016 ± 203 1053 ± 206 400 ± 60 11 ± 2 VV 333 ± 38 208 ± 32 70 ± 12 3 ± 1 $t\bar{t}/Wt$ 588 ± 130 1397 ± 179 1270 ± 80 14 ± 2 Mis-Id 447 ± 77 234 ± 49 90 ± 30 6 ± 2 Z/γ^* 27 ± 11 76 ± 24 280 ± 40 4 ± 1 Total 5067 ± 80 3296 ± 61 2170 ± 50 60 ± 10	Process	$N_{\rm jet} = 0 \text{ ggF}$	$N_{\rm jet} = 1 \rm ggF$			86, 1.0]
VV 333 ± 38 208 ± 32 70 ± 12 3 ± 1 $t\bar{t}/Wt$ 588 ± 130 1397 ± 179 1270 ± 80 14 ± 2 Mis-Id 447 ± 77 234 ± 49 90 ± 30 6 ± 2 Z/γ^* 27 ± 11 76 ± 24 280 ± 40 4 ± 1 Total 5067 ± 80 3296 ± 61 2170 ± 50 60 ± 10						
	VV $t\bar{t}/Wt$ Mis-Id	333 ± 38 588 ± 130 447 ± 77	208 ± 32 1397 ± 179 234 ± 49	70 ± 12 1270 ± 80 90 ± 30	3± 1 14± 2 6± 2	7
Observed 5089 5204 2104 00	Total Observed	5067 ± 80 5089	3296 ± 61 3264	2170 ± 50 2164	60 ± 10 60	

ggF populates mostly the Njet=0 and Njet=1 region VBF populates mostly the Njet>1 region

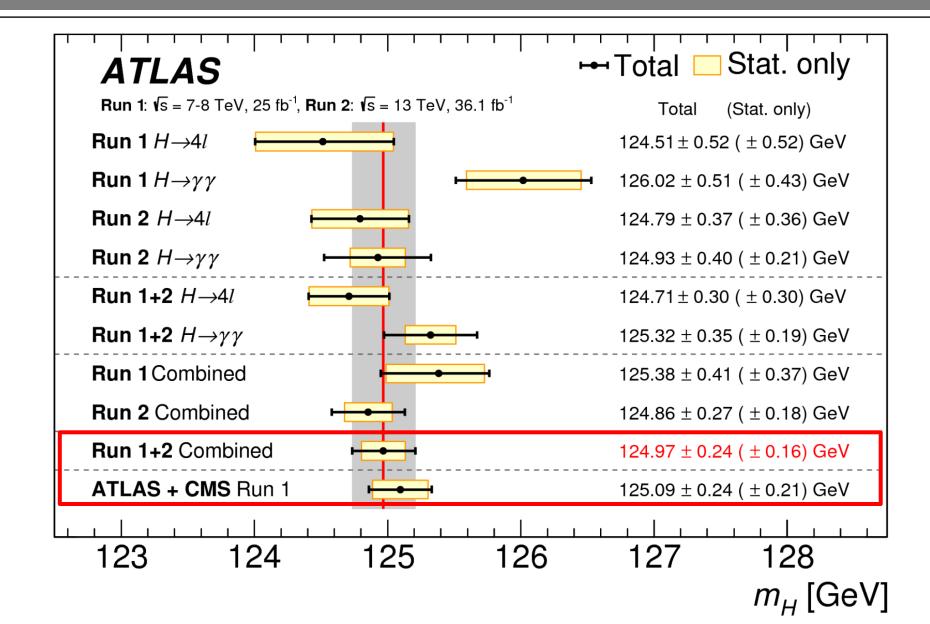
BDT (Boosted Decision Tree) is an analysis technique that combines many different variables in one unique indicator ranging between -1 and 1: the more negative (positive) values are the more background-like (signal-like) is the event



Higgs to WW: Results

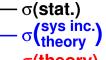
Combined m_T distribution for $N_{iet} < 2$.

Difference between the data and the estimated background for a SM Higgs boson with mH = 125 GeV.


The signal is fitted to the data with a floating signal strength \rightarrow expect $\mu = 1$ for SM Higgs

Higgs mass: Results (@ Run 1& Run 2)

Higgs decays to two photons and four leptons: well reconstructed m_H channels.


ATLAS & CMS

ATLAS

ATLAS

 $m_{H} = 125.36 \text{ GeV}$

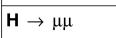
Total uncertainty

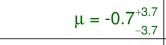
 \pm 1 σ on μ

$$H \to ZZ^*$$
 $y = 1.46^{+0.4}$

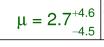
$$\mu = 1.46^{+0.40}_{-0.34}$$

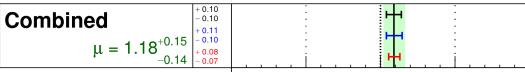
$$\mu = 1.18^{+0.24}_{-0.21}$$


$$\textbf{H}\,\rightarrow\,\tau\tau$$


$$\mu = 1.44^{+0.42}_{-0.37}$$

$H \rightarrow b\bar{b}$


$$\mu = 0.63^{+0.0}$$



+ 3.6

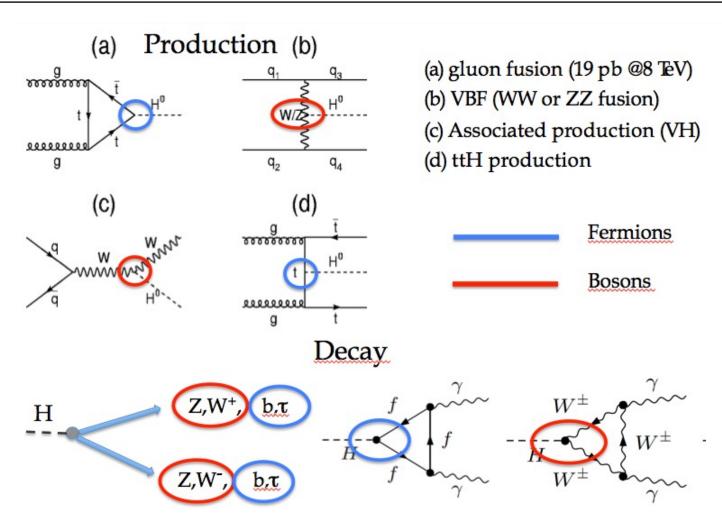
 $\sqrt{s} = 7 \text{ TeV}, 4.5-4.7 \text{ fb}^{-1}$

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

0

2

Signal strength (µ)


3

Toni Baroncelli: The Discovery of the Higgs

Correlation Between Production and Decay of the Higgs

Same vertices in Higgs production and decay → in the SM they are dependent. Use

$$\mu = \frac{\sigma^{measured} \times BR^{measured}}{\sigma^{SM} \times BR^{SM}}$$

→ if one vertex is modified by a correction factor in production the same correction factor has to modify also the corresponding vertex in decay

Use all possible measurements in the different categories and parametrise the correction factor with the signal strengths One unique μ

The combination will give a better indication of how well SM describes data

The Analysis Model

$$n_S^c = \left(\sum_{i,f} \mu_i \cdot \sigma_i^{SM} \cdot A_{if}^c \cdot \varepsilon_{if}^c \cdot \mu_f \cdot BR_f^{SM}\right) \cdot \mathcal{L}^c$$
production
decay

 n_s^c = number of events selected in one category c Category is a sample of events selected by analysis cuts

- μ_i is the ratio between the observed cross section and the one predicted by the SM
- The production index $i \in \{ggH, VBF, VH, ttH\}$ and the decay index $f \in \{\gamma\gamma, WW, ZZ, bb, \tau\tau\}$
- σ_i^{SM} and BR_f^{SM} production cross sections, decay branching fractions for a SM Higgs
- A_{if}^c and ε_{if}^c are the signal acceptance and the reconstruction efficiency for given production and decay mode in the category c.
- \mathcal{L}^c is the integrated luminosity used for that specific category.

Combination = fit μ_i and $\mu_i \rightarrow$ best agreement between data and (modified) SM prediction in different categories.

Includes Signal Regions and Control Regions

There are different ways of combination → different assumptions (~ simplifications)

How Complex is the Fit?

$$n_{S}^{c} = \left(\sum_{i,f} \mu_{i} \cdot \sigma_{i}^{SM} \cdot A_{if}^{c} \cdot \varepsilon_{if}^{c} \cdot \mu_{f} \cdot BR_{f}^{SM}\right) \cdot \mathcal{L}^{c}$$

i ∈ {ggH, VBF, VH, ttH} f ∈ {γγ,WW, ZZ, bb, τ τ} 5 values of i (VH=WH+WZ) 5 values of f

	$\gamma\gamma$	ZZ (4ℓ)	WW $(\ell\nu\ell\nu)$	$\tau^+\tau^-$	$b\overline{b}$	_
ggF (high p_T^H)	A	A	_	A	_	
ggF (incl. or low p_T^H)	A - C	A - C	A - C	A=A	ΓLAS,	C=CMS
ggF 1-jet	_	\mathbf{C}	A - C	C	_	Possik
VBF	A - C	A - C	A - C	A - C	C	_
WH (1- <i>l</i>)	A - C	A	A - C	C	A - C	1. ix
WH (two jets)	A - C	A - C	A - C	_	_	2. Or
ZH (0- <i>l</i>)	A - C	A	_	_	A - C	BR
ZH (2- <i>l</i>)	A - C	Α	A - C	\mathbf{C}	A - C	3. Fu 4. Eff
ZH (two jets)	A - C	A - C	A - C	_	_	4. ∟ II
ttH (1-ℓ)	A - C	_	A - C	A - C	A - C	_
tt H (2- ℓ)	_	_	A - C	A - C	A - C	
ttH (hadronic)	A - C	_	_	_	A	_

Possible ways of fitting:

- 1. ixf makes 25 free parameters
- 2. One reference process (characterised by σ_{ref} and BR_{ref}) + ${\sigma_f}/{\sigma_{ref}}$ + ${gR_f}/{gR_{ref}}$ (\rightarrow 1 + 4 + 4 parameters)
- 3. Further assumptions (see later)
- 4. Effective Lagrangian, introduce vertex modifiers

Signal Strenght (µ)

Production mechanism	ggF	VBF	WH/ZH	ttH
Events produced at the LHC	500 K	40 K	20 K	3 K
Selected events	O(500)	O(500)	O(50)	
Events produced at the Tevatron	10 K		2 K	

For each decay channel "c" we define categories to maximise the sensitivity of the analysis to one particular production mode.

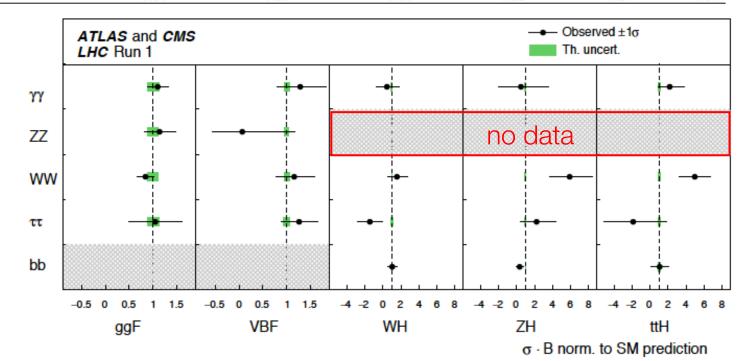
However a mixture of different mechanisms in one category is inevitable.

→ This implies the cross section of one category is not the cross section of only one production mechanism.

$$n_s^c = \left(\sum_{i,f} \mu_i \cdot \sigma_i^{SM} \cdot A_{if}^c \cdot \varepsilon_{if}^c \cdot \mu_f \cdot BR_f^{SM}\right) \cdot \mathcal{L}^c$$

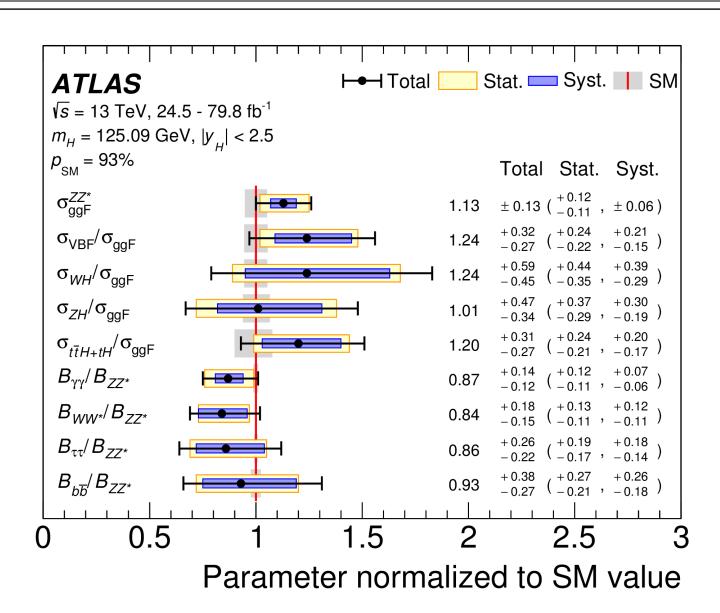
Where m_c is ration between measured & expected events in that category and

Measurement of μ_c gives an indication of how well SM describes data


Fit type 1 most general case

Signal Strenght $\mu =$	$(\sigma \cdot B)_{obs} / (\sigma \cdot B)_{SM}$
-------------------------	--

•	No	significant	deviation	from	the SM
	1 40	oigi iiii oai it	acviation	$\Pi \cup \Pi \Pi$	LITO OIVI


• $25 - \overline{5} = 20$ parameters determined

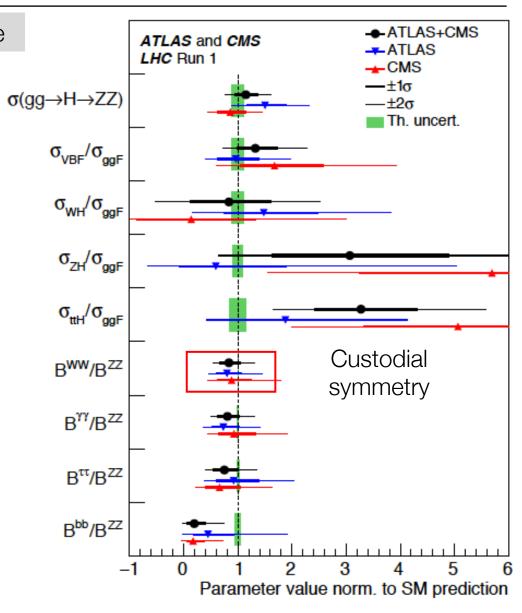
	$\gamma\gamma$	ZZ (4 <i>l</i>)	WW $(\ell\nu\ell\nu)$	$ au^+ au^-$	$b\overline{b}$	Comb.
ggF	$1.10^{+0.22}_{-0.21}^{+0.07}_{-0.05}$	$1.13^{+0.33}_{-0.30}{}^{+0.09}_{-0.07}$	$0.84^{+0.12}_{-0.12}{}^{+0.12}_{-0.11}$	$1.00^{+0.4}_{-0.4}^{+0.4}_{-0.4}$	_	$1.03^{+0.16}_{-0.14}$
\mathbf{VBF}	$1.3 \pm 0.5^{+0.2}_{-0.1}$	$0.1_{-0.6-0.2}^{+1.1+0.2}$	$1.2^{+0.4}_{-0.3}{}^{+0.2}_{-0.2}$	$1.3_{-0.3}^{+0.3}{}^{+0.2}_{-0.2}$	_	$1.18^{+0.25}_{-0.23}$
WH	$0.5_{-1.2-0.1}^{+1.3+0.2}$	_	$1.6^{+1.0}_{-0.9}{}^{+0.6}_{-0.5}$	$-1.4^{+1.2}_{-1.1}{}^{+0.7}_{-0.8}$	$1.0^{+0.4}_{-0.4}{}^{+0.3}_{-0.3}$	$0.89^{+0.40}_{-0.38}$
ZH	$0.5_{-2.5}^{3.0}{}^{+0.5}_{-0.2}$	_	$5.9^{+2.3}_{-2.1}^{+1.1}_{-0.8}$	$2.2_{-1.7-0.6}^{+2.2+0.8}$	$0.4^{+0.3}_{-0.3}{}^{+0.2}_{-0.2}$	$0.79^{+0.38}_{-0.36}$
ttH	$2.2_{-1.3}^{1.6} \substack{+0.2 \\ -0.1}$	_	$5.0^{+1.5}_{-1.5}^{+1.0}_{-0.9}$	$-1.9^{+3.2}_{-2.7}{}^{+1.9}_{-1.8}$	$1.1^{+0.5}_{-0.5}{}^{+0.8}_{-0.8}$	$2.3_{-0.6}^{+0.7}$
Comb.	$1.14^{+0.19}_{-0.18}$	$1.29^{+0.26}_{-0.23}$	$1.09^{+0.18}_{-0.16}$	$1.11^{+0.24}_{-0.22}$	$0.70^{+0.29}_{-0.27}$	$1.09^{+0.11}_{-0.10}$

ATLAS Recent Results: references

Fit Type 2: Fewer Parameters

Take the Higgs produced via ggF and decaying to ZZ as reference

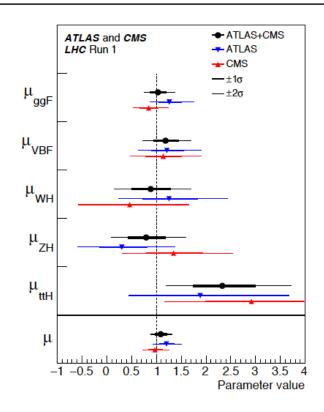
$$\begin{split} \mu_i &= \frac{\sigma_i}{\sigma_{ggF}\sigma_i^{SM}} \times \mu_{gg \to H \to ZZ} \\ \mu_f &= \frac{\text{BR}_i}{\text{BR}_{ZZ} \text{BR}_i^{SM}} \\ \mu_{gg \to H \to ZZ} &= \mu_{ggF} \times \mu_{ZZ} \times \sigma_i^{SM} \times \text{BR}_f^{SM} \end{split}$$

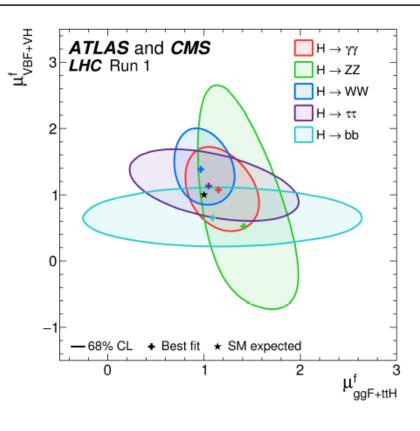

Then, the master formula applies for all i and f indices except when both i = ggF and f = ZZ

 \rightarrow 8 + 1 parameters

Improved precision in the fit, due to fewer parameters, shows no deviation from SM (assumption production and decay independent)

Finally if all deviations are included in a single parameter


$$\mu = 1.09 \pm 0.07 \pm 0.04 (expt) \pm 0.03 (th. bkg) \pm 0.07 (th. sig)$$



More Simplifications.. Fewer Parameters

Assume all production cross sections are SM ones → fit only modifiers of BR's

Assume all BRs are SM ones

→ fit only modifiers of
production cross-sections

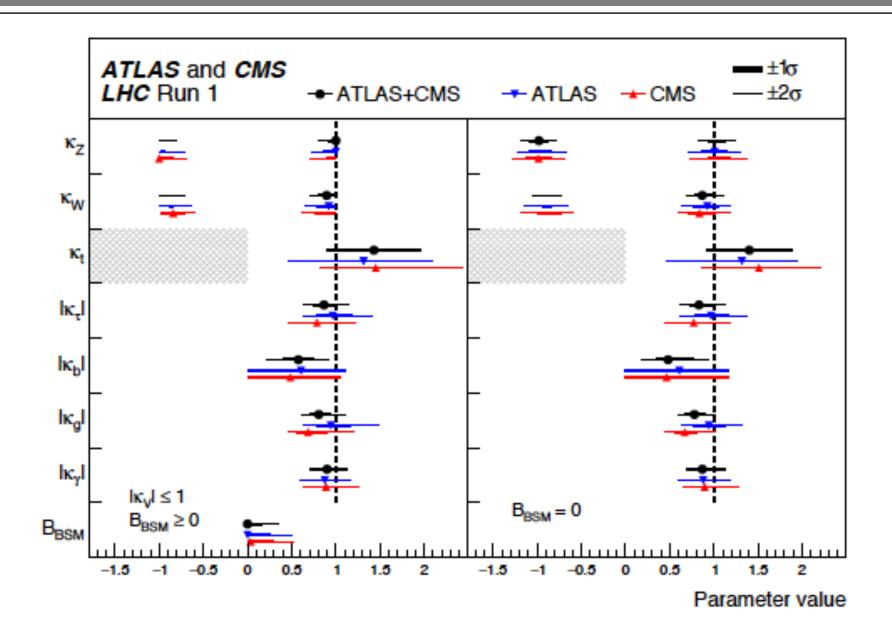
One more assumption: vertices VBF & VH scale with one μ and ggF and ttH with another μ

No (significant) deviation observed so far, need more statistics! → LHC at High Luminosity

A Different Approach

Elaborate even more: introduce modifiers k_x of vertices in the Lagrangian. In this way production and decay vertices are treated in the same way.

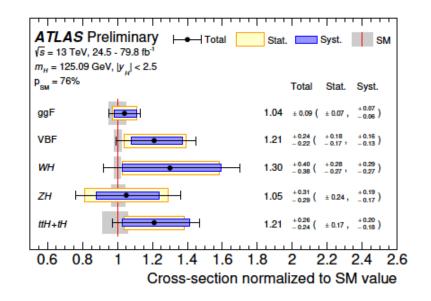
$$\mathcal{L} = \frac{m_H^2}{\sqrt{2}} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu H + \kappa_W \frac{2m_W^2}{v} W_\mu^+ W^{-\mu} H$$

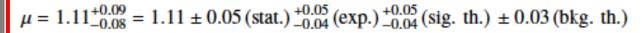

$$+ \kappa_g \frac{\alpha_s}{2\pi v} G_{\mu\nu}^a G^{a\mu\nu} H + \kappa_{\gamma} \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_{Z\gamma} \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H$$

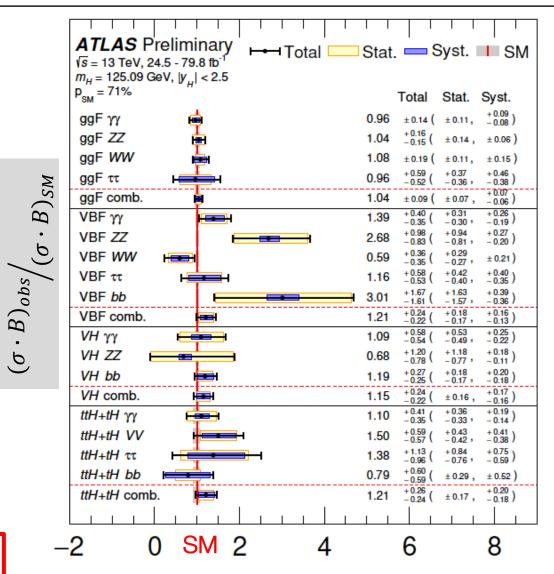
$$+ \kappa_{VV} \frac{\alpha}{2\pi v} \left(\cos^2 \theta_W Z_{\mu\nu} Z^{\mu\nu} + 2 W_{\mu\nu}^+ W^{-\mu\nu} \right) H$$

$$- \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f \overline{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f \overline{f} + \kappa_{\tau} \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \overline{f} \right) H.$$

Final Result

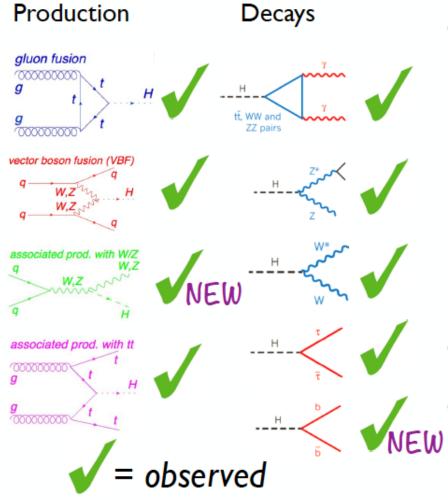


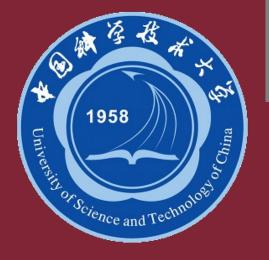



Latest Results by ATLAS

9

Analysis	Integrated luminosity (fb ⁻¹)
$H \rightarrow \gamma \gamma$ (including $t\bar{t}H, H \rightarrow \gamma \gamma$)	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell$ (including $t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell$)	79.8
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1
H o au au	36.1
$VH, H \rightarrow b\bar{b}$	79.8
$VBF, H \rightarrow b\bar{b}$	24.5 - 30.6
$H \rightarrow \mu\mu$	79.8
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1
$H \rightarrow \text{invisible}$	36.1
Off-shell $H \to ZZ^* \to 4\ell$ and $H \to ZZ^* \to 2\ell 2\nu$	36.1


Parameter normalized to SM value


Conclusions by Giacinto Piacquadio – ICHEP 2018

Conclusions

ATLAS and CMS

- Thanks to the first 36-80 fb-1 of Run-2 data:
 - The bosonic decay channels entered a precision era (~3x improvement w.r.t. Run-I)
 - Direct observation achieved for all main production and decay modes!
 - Direct confirmation of coupling to all 3rd generation fermions (top-quark, bottom-quark, taus)
 - Sensitivity to double Higgs production
 approaching 10 x SM Higgs to 2 Higgses
- Higgs physics an important indirect probe for New Physics: so far no deviations from SM...
- Only analyzed <3% of the final LHC luminosity.

Higgs Discovery at LHC Part

Collider Physics
Toni Baroncelli
Haiping Peng
USTC

End of Higgs Discovery at LHC Part