Possible *CP* symmetry tests in semileptonic hyperon decays

Varvara Batozskaya

Institute of High Energy Physics, Beijing, China National Centre for Nuclear Research, Warsaw, Poland

> Semileptonic meeting 19 January 2021

CP violation in non-leptonic decays

$$A_{\Lambda} = \frac{\alpha_{\Lambda} + \alpha_{\bar{\Lambda}}}{\alpha_{\Lambda} - \alpha_{\bar{\Lambda}}}$$

- BESIII result: $A_{\Lambda} = -0.006 \pm 0.012 \pm 0.007$ [NaturePhys.15(2019)631]
- CKM: $-3 \cdot 10^{-5} \le A_{\Lambda} \le 4 \cdot 10^{-5}$ [PRD67(2003)056001] Extensions of SM: $A_{\Lambda \to p\pi^{-}} \sim (0.05 - 1.2) \cdot 10^{-4}$ [Chin.Phys.C42(2018)013101]

Experiment	Nevt	$\sigma(A_{\Lambda})$					
BESIII (2018)	$4.2 \cdot 10^{5}$	$1.2 \cdot 10^{-2}$	$N_{J/\psi} = 1.31 \cdot 10^9$				
	Some estimations						
BESIII	$3\cdot 10^6$	$5 \cdot 10^{-3}$	$ \begin{array}{c} {\rm N}_{J/\psi} = 10^{10} \\ {\cal L} = 0.47 \cdot 10^{33} / {\rm cm}^2 / {\rm s}, \Delta {\rm E} {=} 0.9 {\rm MeV} \end{array} $				
SuperTauCharm	$6 \cdot 10^8$	$3 \cdot 10^{-4}$	${f N}_{J/\psi} = 2 \cdot 10^{12}$ ${\cal L} = 10^{35}/{ m cm}^2/{ m s}, \ \Delta { m E}{=}0.9 \ { m MeV}$				
$\begin{array}{l} {\rm SuperTauCharm} \\ + \ {\rm reduced} \ \Delta {\rm E} \end{array}$	$3\cdot 10^9$	$1.4 \cdot 10^{-4}$	${ m N}_{J/\psi} = 10^{13}$ ${\cal L} = 10^{35}/{ m cm}^2/{ m s}, \Delta { m E}{ m <}0.9 { m MeV} (?)$				

CP symmetry test A^{av}_{Λ}

$$A_{\Lambda}^{av} = \frac{g_{av}^{\Lambda}(0) + g_{av}^{\bar{\Lambda}}(0)}{g_{av}^{\Lambda}(0) - g_{av}^{\bar{\Lambda}}(0)}$$

• $g_{av}(0) = \frac{F_1^A(0)}{F_1^V(0)}$

- Determination of $F_1^V(0)$ value by CVC hypothesis: $F_1^V(0) < 0$
- No determination of $F_1^A(0)$ value by any general theoretical arguments
- Some assumptions:
 - $F_1^A(0) \leq 0$ then $g_{av}(0) \geq 0$
 - ? Naïve assumption $g_{av}^{\Lambda} = -g_{av}^{\bar{\Lambda}}$ \implies Need to be care with sign of g_{av}

Experiment	N _{evt}	Result	Reference	
E555 (Fermilab)	37286	$g_{av}(0) = 0.719 \pm 0.016 \pm 0.012$	[PPD41(1000)780]	
		constrain on $g_w(0) = 0.97$	[11041(1550)160]	
SPS (CERN)	7111	$g_{av}(0) = 0.70 \pm 0.03$	[7DC91(1082)1]	
SI S (OEIUV)	1111	measured $F_2^V(0) = 1.32 \pm 0.81$	[21 021(1965)1]	
AGS (BNL)	104	$ g_{av}(0) = 0.734 \pm 0.031$	[DI D09(1091)199]	
	10	used $g_w(0) = 0.97$	[F LD90(1981)123]	

$g_{av}(0)$ and ϕ_{av} parameters

$$\langle B_f | \gamma_\mu (F_1^V(0) + F_1^A(0)\gamma_5) + \frac{F_2^V(0)}{M_1} \sigma_{\mu\nu} q^\nu | B_i \rangle,$$

$$g_{av}(0) = |g_{av}(0)|e^{i\phi_{av}} = \left|\frac{F_1^A(0)}{F_1^V(0)}\right|e^{i\phi_{av}}$$

- $\phi_{av} = (0 + n\pi)$ [PR106(1957)517] \implies If time-reversal invariance holds
- Experiments on leptonic baryon decays other than $n\beta$ decay assume $\phi_{av} = 0$ or $\pi \implies$ measurement of magnitude and sign of g_{av}
- Experiments on $n \to p e^- \bar{\nu}_e$ are sensitive to measure ϕ_{av} more precisely

 $\phi_{av} = 180.017 \pm 0.026^{\circ}$ [PDG2020]

 \implies consistent with time-reversal invariance, then $g_{av}(0) < 0$

CP symmetry test A^w_{Λ}

$$A^w_{\Lambda} = \frac{g^{\Lambda}_w(0) + g^{\bar{\Lambda}}_w(0)}{g^{\Lambda}_w(0) - g^{\bar{\Lambda}}_w(0)}$$

• $g_w(0) = \frac{F_2^V(0)}{F_1^V(0)}$

• Assumption of $F_2^V(0)$ value from CVC hypothesis and SU(3) [PRL10(1963)531]

CP symmetry test A^w_{Λ}

$$A^w_{\Lambda} = \frac{g^{\Lambda}_w(0) + g^{\bar{\Lambda}}_w(0)}{g^{\Lambda}_w(0) - g^{\bar{\Lambda}}_w(0)}$$

• $g_w(0) = \frac{F_2^V(0)}{F_1^V(0)}$

• Assumption of $F_2^V(0)$ value from CVC hypothesis and SU(3) [PRL10(1963)531]

- $(\Lambda \to p)$ -transition: $g_w(0) = \frac{M_\Lambda}{M_p} \frac{\mu_p}{2}$
- Differences between particle and anti-particle [PDG2020]:

$$\frac{M_{\Lambda} - M_{\bar{\Lambda}}}{M_{\Lambda}} = (-0.1 \pm 1.1) \cdot 10^{-5}; \quad \frac{M_p - M_{\bar{p}}}{M_p} < 7 \cdot 10^{-10}; \quad \frac{\mu_p + \mu_{\bar{p}}}{\mu_p} = (2 \pm 4) \cdot 10^{-9}$$
$$\frac{M_{\Lambda}}{M_p} = \frac{M_{\bar{\Lambda}}}{M_{\bar{p}}} \implies \quad A^w_{\Lambda} \approx \frac{\mu_p + \mu_{\bar{p}}}{\mu_p - \mu_{\bar{p}}}$$

• Sign of g_w is predicted by μ_p value

Experiment	N_{evt}	Result	Reference
E555 (Fermilab)	37286	$g_w(0) = 0.15 \pm 0.30$ for $g_{av}(0) = 0.731 \pm 0.016$	[PRD41(1990)780]
SPS (CERN)	7111	$g_w(0) = 1.32 \pm 0.81$	[ZPC21(1983)1]
AGS (BNL)	10^{4}	used $g_w(0) = 0.97$	[PLB98(1981)123]

Varvara Batozskaya

Corrections in the SLH helicity formalism

Decay chain: $\frac{1}{2} \to \frac{1}{2} + \{0, \pm 1\}$ (1)

• Relation between helicity amplitudes and decay parameters

$$\begin{split} \text{normalization } &\frac{1}{4}(1-\cos\theta_l)^2|H_{\frac{1}{2}1}|^2 + \frac{1}{4}(1+\cos\theta_l)^2|H_{-\frac{1}{2}-1}|^2 + \frac{1}{2}\sin^2\theta_l(|H_{-\frac{1}{2}0}|^2 + |H_{\frac{1}{2}0}|^2) = 1\\ &\alpha_D^{sl} = \frac{1}{4}(1-\cos\theta_l)^2|H_{\frac{1}{2}1}|^2 - \frac{1}{4}(1+\cos\theta_l)^2|H_{-\frac{1}{2}-1}|^2 + \frac{1}{2}\sin^2\theta_l(|H_{-\frac{1}{2}0}|^2 - |H_{\frac{1}{2}0}|^2),\\ &\beta_D^{sl} = \frac{1}{\sqrt{2}}\sin\theta_l\sin\chi((1+\cos\theta_l)\mathfrak{I}(H_{-\frac{1}{2}0}^*H_{-\frac{1}{2}-1}) + (1-\cos\theta_l)\mathfrak{I}(H_{\frac{1}{2}1}^*H_{\frac{1}{2}0})),\\ &\gamma_D^{sl} = \frac{1}{\sqrt{2}}\sin\theta_l\cos\chi((1+\cos\theta_l)\mathfrak{R}(H_{-\frac{1}{2}0}^*H_{-\frac{1}{2}-1}) + (1-\cos\theta_l)\mathfrak{R}(H_{\frac{1}{2}1}^*H_{\frac{1}{2}0})),\\ &\text{where } &\beta_D^{sl} = \sqrt{1-(\alpha_D^{sl})^2}\sin\phi_D^{sl} \text{ and } \gamma_D^{sl} = \sqrt{1-(\alpha_D^{sl})^2}\cos\phi_D^{sl} \end{split}$$

• Corrected relation:

$$\begin{split} \text{normalization } &\frac{1}{4}(1-\cos\theta_l)^2|H_{\frac{1}{2}1}|^2 + \frac{1}{4}(1+\cos\theta_l)^2|H_{-\frac{1}{2}-1}|^2 + \frac{1}{2}\sin^2\theta_l(|H_{-\frac{1}{2}0}|^2 + |H_{\frac{1}{2}0}|^2) = 1\\ &\alpha_D^{sl} = \frac{1}{4}(1-\cos\theta_l)^2|H_{\frac{1}{2}1}|^2 - \frac{1}{4}(1+\cos\theta_l)^2|H_{-\frac{1}{2}-1}|^2 + \frac{1}{2}\sin^2\theta_l(|H_{-\frac{1}{2}0}|^2 - |H_{\frac{1}{2}0}|^2),\\ &\beta_D^{sl} = \frac{1}{\sqrt{2}}\sin\theta_l\widehat{\exp((1+\cos\theta_l)}\mathfrak{S}(H_{-\frac{1}{2}0}^*H_{-\frac{1}{2}-1}) + (1-\cos\theta_l)\mathfrak{S}(H_{\frac{1}{2}1}^*H_{\frac{1}{2}0})),\\ &\gamma_D^{sl} = \frac{1}{\sqrt{2}}\sin\theta_l\widehat{\exp((1+\cos\theta_l)}\mathfrak{R}(H_{-\frac{1}{2}0}^*H_{-\frac{1}{2}-1}) + (1-\cos\theta_l)\mathfrak{R}(H_{\frac{1}{2}1}^*H_{\frac{1}{2}0}))\\ &\text{where } &\beta_D^{sl} = \sqrt{1-(\alpha_D^{sl})^2}\sin\phi_D^{sl} \text{ and } \gamma_D^{sl} = \sqrt{1-(\alpha_D^{sl})^2}\cos\phi_D^{sl} \end{split}$$

Decay chain: $\frac{1}{2} \to \frac{1}{2} + \{0, \pm 1\}$ (2)

• Non-zero elements of the decay matrix $b_{\mu\nu}$:

$$\begin{aligned} b_{00} &= 1, & b_{21} &= -\gamma_D^J \cos\theta\sin\phi - \beta_D^J \cos\phi, \\ b_{03} &= \alpha_D^J, & b_{22} &= \beta_D^J \cos\phi\sin\phi - \gamma_D^J \cos\phi, \\ b_{10} &= \alpha_D^J \cos\phi\sin\theta, & b_{23} &= \sin\theta\sin\phi, \\ b_{11} &= -\gamma_D^J \cos\theta\cos\phi + \beta_D^J \sin\phi, & b_{30} &= \alpha_D^J \cos\phi, \\ b_{12} &= \beta_D^J \cos\theta\cos\phi + \gamma_D^J \sin\phi, & b_{31} &= \gamma_D^J \sin\theta, \\ b_{13} &= \sin\theta\cos\phi, & b_{32} &= -\beta_D^J \sin\theta, \\ b_{20} &= \alpha_D^J \sin\theta\sin\phi, & b_{33} &= \cos\theta \end{aligned}$$

• Corrected elements:

$$\begin{split} b_{00} &= 1, & b_{21} &= -(\gamma_D^J \cos \chi + \beta_D^J \sin \chi) \cos \theta \sin \phi \\ b_{03} &= \alpha_D^M, & -(\gamma_D^J \sin \chi - \beta_D^J \cos \chi) \cos \theta, \\ b_{10} &= \alpha_D^J \cos \phi \sin \theta, & b_{22} &= (\gamma_D^J \sin \chi - \beta_D^J \cos \chi) \cos \theta, \\ b_{11} &= -(\gamma_D^J \cos \chi + \beta_D^J \sin \chi) \cos \theta \cos \phi & -(\gamma_D^J \cos \chi + \beta_D^J \sin \chi) \cos \theta, \\ +(\gamma_D^J \sin \chi - \beta_D^J \cos \chi) \sin \phi, & b_{23} &= \sin \theta \sin \phi, \\ b_{12} &= (\gamma_D^J \sin \chi - \beta_D^J \cos \chi) \cos \theta \cos \phi & b_{23} &= \alpha_D^J \sin \theta, \\ b_{12} &= (\gamma_D^J \sin \chi - \beta_D^J \cos \chi) \cos \theta \cos \phi & b_{23} &= \alpha_D^J \sin \phi, \\ b_{13} &= \sin \theta \cos \phi, & b_{31} &= (\gamma_D^J \cos \chi + \beta_D^J \sin \chi) \sin \theta, \\ b_{13} &= \sin \theta \cos \phi, & b_{32} &= -(\gamma_D^J \sin \chi - \beta_D^J \cos \chi) \sin \theta, \\ b_{23} &= \alpha_D^J \sin \theta \sin \phi, & b_{33} &= \cos \theta \end{split}$$

Main parameters: θ ≡ θ_p, φ ≡ φ_p, α^{sl}_D = α^{sl}_Λ(θ_l, 𝔅, q²), φ^{sl}_D = φ^{sl}_D(θ_l, 𝔅, q²)
Each element of b_{µν} is multiplied by q²p where p = √M₊(q²)M₋(q²)/(2M₁)

Varvara Batozskaya

Intermediate step (1)

- $\bullet \ \alpha^{sl}_{\Lambda}(\theta_l, q^2, g^{\Lambda}_{av}, g^{\Lambda}_w) \Rightarrow \{\alpha, \alpha', \alpha'', \beta_{1,2}, \gamma_{1,2}\}(q^2) \colon g^{\Lambda}_{av}, g^{\Lambda}_w$
- Introduce the intermediate parameters:

$$\begin{split} \text{normalization} \quad & 1 = |H_{\frac{1}{2}1}|^2 + |H_{-\frac{1}{2}-1}|^2 + 2(|H_{-\frac{1}{2}0}|^2 + |H_{\frac{1}{2}0}|^2), \\ & \alpha = |H_{\frac{1}{2}1}|^2 - |H_{-\frac{1}{2}-1}|^2 + 2(|H_{-\frac{1}{2}0}|^2 - |H_{\frac{1}{2}0}|^2), \\ & \alpha' = |H_{\frac{1}{2}1}|^2 + |H_{-\frac{1}{2}-1}|^2 - 2(|H_{-\frac{1}{2}0}|^2 + |H_{\frac{1}{2}0}|^2), \\ & \alpha'' = |H_{\frac{1}{2}1}|^2 - |H_{-\frac{1}{2}-1}|^2 - 2(|H_{-\frac{1}{2}0}|^2 - |H_{\frac{1}{2}0}|^2), \\ & \beta_{1,2} = 2(\Im(H_{-\frac{1}{2}0}^*H_{-\frac{1}{2}-1}) \pm \Im(H_{\frac{1}{2}1}^*H_{\frac{1}{2}0})), \\ & \gamma_{1,2} = 2(\Re(H_{-\frac{1}{2}0}^*H_{-\frac{1}{2}-1}) \pm \Re(H_{\frac{1}{2}1}^*H_{\frac{1}{2}0})), \end{split}$$

where $\beta_{1,2} = \frac{1}{2}\sqrt{1 - \alpha^2 - (\alpha')^2 + (\alpha'')^2} \sin \phi_{1,2}$ and $\gamma_{1,2} = \frac{1}{2}\sqrt{1 - \alpha^2 - (\alpha')^2 + (\alpha'')^2} \cos \phi_{1,2}$

- $\alpha^2 + (\alpha')^2 (\alpha'')^2 + 2(\gamma_1^2 + \gamma_2^2 + \beta_1^2 + \beta_2^2) = 1$
- Using the definition of helicity amplitudes the main parameters to describe semileptonic hyperon decays are:

Intermediate step (2)

• Relations between intermediate and decay parameters:

$$\begin{split} &\alpha = 2\sqrt{(M_-M_+)^2 - 2q^2(M_1^2 + M_2^2) + q^4} \left[g^D_{av}(q^2)(q^2 - M_-M_+) + 2g^D_{av}(q^2)g^D_w(q^2)q^2\frac{M_2}{M_1} \right] \\ &\alpha' = (M_-^2 - q^2)(M_+^2 - q^2) \left[-(1 + (g^D_{av}(q^2))^2) + (g^D_w(q^2))^2\frac{q^2}{M_1^2} \right] \\ &\alpha'' = 2\sqrt{(M_-M_+)^2 - 2q^2(M_1^2 + M_2^2) + q^4} \left[g^D_{av}(q^2)(q^2 + M_-M_+) + 2g^D_{av}(q^2)g^D_w(q^2)q^2 \right] \\ &\text{where } M_- = M_1 - M_2 \text{ and } M_+ = M_1 + M_2 \end{split}$$

Intermediate step (3)

• Non-zero elements of the decay matrix $b_{\mu\nu}$:

$$\begin{array}{ll} b_{00} = 1, \\ b_{00} = 1, \\ b_{03} = \alpha_D^{sl}(\theta_l, q^2), \\ b_{10} = \alpha_D^{sl}(\theta_l, q^2) \cos \phi_p \sin \theta_p, \\ b_{11} = -A \cos \theta_p \cos \phi_p + B \sin \phi_p, \\ b_{12} = B \cos \theta_p \cos \phi_p + B \sin \phi_p, \\ b_{12} = B \cos \theta_p \cos \phi_p + A \sin \phi_p, \\ b_{13} = \sin \theta_p \cos \phi_p, \\ b_{13} = \sin \theta_p \cos \phi_p, \\ b_{20} = \alpha_D^{sl}(\theta_l, q^2) \cos \phi_p, \\ b_{30} = \alpha_D^{sl}(\theta_l, q^2) \cos \theta_p, \\ b_{31} = A \sin \theta_p, \\ b_{33} = \cos \theta_p, \\ b_{33} = \cos \theta_p, \\ b_{33} = \cos \theta_p, \\ \end{array}$$
where $A = \frac{1}{2\sqrt{2}} \sin \theta_l [\cos \chi(\gamma_1 + \cos \theta_l \gamma_2) + \sin \chi(\beta_1 + \cos \theta_l \beta_2)] \\$ and $B = \frac{1}{2\sqrt{2}} \sin \theta_l [\sin \chi(\gamma_1 + \cos \theta_l \gamma_2) - \cos \chi(\beta_1 + \cos \theta_l \beta_2)]$

•
$$\alpha_{\Lambda}^{sl}(\theta_l, q^2) = \alpha + \alpha'' \cos^2 \theta_l - (1 + \alpha') \cos \theta_l$$

Varvara Batozskaya

Joint angular distribution

• Process
$$e^+e^- \to (\Lambda \to p e^- \bar{\nu}_e)(\bar{\Lambda} \to \bar{p}\pi^+)$$

$$\mathrm{Tr}\rho_{pW\bar{p}}\propto\mathcal{W}(\boldsymbol{\xi};\boldsymbol{\omega})=\sum_{\mu,\bar{\nu}=0}^{3}C_{\mu\bar{\nu}}b_{\mu0}^{\Lambda}a_{\bar{\nu}0}^{\bar{\Lambda}}$$

- $C_{\mu\bar{\nu}}(\theta_{\Lambda}; \alpha_{\psi}, \Delta\Phi)$
- $b_{\mu 0}$ matrices for $1/2 \rightarrow 1/2 + \{0, \pm 1\}$ decays $\Leftrightarrow b^{\Lambda}_{\mu 0} \equiv b_{\mu 0}(\theta_p, \varphi_p, \theta_e, \chi, q^2; [g^{\Lambda}_{av}, g^{\Lambda}_w])$
- $a_{\bar{\nu}0}$ matrices for $1/2 \rightarrow 1/2 + 0$ decays $\Leftrightarrow a_{\bar{\nu}0}^{\bar{\Lambda}} \equiv a_{\bar{\nu}0}(\theta_{\bar{p}}, \varphi_{\bar{p}}; \alpha_{\bar{\Lambda}})$

•
$$\boldsymbol{\xi} \equiv (\theta_{\Lambda}, \theta_{p}, \varphi_{p}, \theta_{e}, \chi, q^{2}, \theta_{\bar{p}}, \varphi_{\bar{p}})$$

• $\boldsymbol{\omega} \equiv (\alpha_{\psi}, \Delta \Phi, [g_{av}^{\Lambda}, g_{w}^{\Lambda}, \alpha_{\bar{\Lambda}}])$

• Range of $q^2 \in (m_l^2, (M_1 - M_2)^2)$ is specific for each decay

MC generator (step 1)

• Using YYbar_example package by Patrik, the presented process can be generated

- MC samples: $N_{\text{evt}}^{\text{sig}} = 10^5$ and $N_{\text{evt}}^{\text{phsp}} = 10^6$
- Generate $q^2 \in (\tilde{m}_e^2, (M_\Lambda M_p)^2)$
- Set of input values:

pp[0] =	0.461;	// alpha_J/psi (arxiv:1808.08917)
pp[1] =		<pre>// Delta_Phi (arxiv:1808.08917, equal 42.4deg)</pre>
PP[2] =		// gav Lambda->p e- nu_ebar
pp[3] =		// gw Lambda->p e- nu_ebar
pp[4] = ·		<pre>// alpha_D LambdaBar->pbar pi+ (arxiv:1808.08917)</pre>

- No negative weights are observed
- Maximal weight: ~ 0.26 (old) and ~ 0.34 (new)

Random samples ($N_{sig} = 10^5$, old) (step 1)

Random samples ($N_{sig} = 10^5$, new) (step 1)

Random samples ($N_{phsp} = 10^6$, old) (step 1)

Random samples $(N_{phsp} = 10^6, \text{ new})$ (step 1)

Run through fit method (step 2)

• Set input values in the fit

• Output value of fit method

D ($N_{sig}^{MC} = 10^5, N_{nhen}^{MC} = 10^6$			new∖old				
Parameter	old*	new		α_{Ψ}	$\Delta \Phi$	g_{av}	g_w	$lpha_{ar\Lambda}$
α_{Ψ}	0.4550 ± 0.0142	0.4605 ± 0.0122	α_{Ψ}	1	0.040	-0.033	-0.010	-0.212
$\Delta \Phi$	$1.4397 {\pm} 0.2372$	$0.7952{\pm}0.0315$	$\Delta \Phi$	0.300	1	0.074	0.075	0.563
q_{av}	$0.8917{\pm}0.0727$	$0.7680{\pm}0.1061$	g_{av}	0.012	-0.013	1	0.381	0.182
q_w	-0.1524 ± 0.9170	$0.3106{\pm}1.0044$	g_w	0.022	-0.036	0.594	1	0.004
$\alpha_{ar{\Lambda}}$	-0.4909 ± 0.0244	$-0.7374 {\pm} 0.0153$	$\alpha_{\bar{\Lambda}}$	0.120	0.376	-0.261	-0.239	1

* Significant correlation between $\Delta \Phi$ and $\alpha_{\bar{\Lambda}}$ for "old" formalism

Varvara Batozskaya	CP tests in SLH decays	19 January 2021	18 / 19

ToDo list and next steps

• Test formalism using

- Production of mDIY and MC PhSp for $e^+e^- \to (\Lambda \to p\pi^-)(\bar{\Lambda} \to \bar{p}\pi^+)$ o true and reco mDIY and MC PhSp
 - \circ allow to extract true and reco values of α_{Λ} and $\alpha_{\bar{\Lambda}}$ decay parameters
 - \blacklozenge MC samples are produced \Rightarrow verification is ongoing
- **2** Modification of mDIY to include the semileptonic decay formalism \blacklozenge Done for Λ and $\overline{\Lambda}$ decays
- **3** Production of true and reco mDIY and MC PhSp for $\Lambda \to pe^- \bar{\nu}_e$ \circ extraction of the g^A_{av} and g^A_w decay parameters
 - Production process is running
- If all steps work, consider more difficult scenario, mixed MC samples
- If previous step works, move to the real data

Additional steps:

- Estimate sensitivity to g_{av} and g_w decay parameters
- Detailed study of possible CP tests

Backups

" I ALWAYS BACK UP EVERYTHING."

Semileptonic Λ decay

- Momenta and masses: $\Lambda(p_1, M_1) \rightarrow p(p_2, M_2) + e^-(p_e, m_e) + \bar{\nu}_e(p_{\bar{\nu}_e}, 0)$
- Standard set of invariant FF for weak current-induced baryonic $\frac{1}{2}^+ \rightarrow \frac{1}{2}^+$ transitions:

$$M_{\mu} = M_{\mu}^{V} + M_{\mu}^{A} = \langle p(p_{2}) | J_{\mu}^{V+A} | \Lambda(p_{1}) \rangle =$$

$$= \bar{u}(p_{2}) \left[\gamma_{\mu} \left(F_{1}^{V}(q^{2}) + F_{1}^{A}(q^{2})\gamma_{5} \right) + \frac{i\sigma_{\mu\nu}q^{\nu}}{M_{1}} \left(F_{2}^{V}(q^{2}) + F_{2}^{A}(q^{2})\gamma_{5} \right) + \frac{q_{\mu}}{M_{1}} \left(F_{3}^{V}(q^{2}) + F_{3}^{A}(q^{2})\gamma_{5} \right) \right] u(p_{1})$$
where $q_{\mu} = (p_{1} - p_{2})_{\mu}$

• For
$$\Lambda \to p e^- \bar{\nu}_e$$
 at $\mathcal{O}(\frac{m_e^2}{2q^2}) \to 0 \Rightarrow F_3^{V,A} \to 0$

• Helicity amplitude is $H_{\lambda_2 \lambda_W} = (H^V_{\lambda_2 \lambda_W} + H^A_{\lambda_2 \lambda_W})$ with $(\lambda_2 = \pm \frac{1}{2}; \lambda_W = 0, \pm 1)$:

$$\begin{split} & \underbrace{ \begin{array}{l} & \underbrace{ \mathsf{H}_{\frac{1}{2}1}^{V} = \sqrt{2M_{-}} \left(-F_{1}^{V} - \frac{M_{1} + M_{2}}{M_{1}} F_{2}^{V} \right), \\ & \underbrace{ \mathsf{H}_{\frac{1}{2}1}^{V} = \frac{\sqrt{M_{-}}}{\sqrt{q^{2}}} \left((M_{1} + M_{2}) F_{1}^{V} + \frac{q^{2}}{M_{1}} F_{2}^{V} \right), \\ & \underbrace{ \begin{array}{l} & \underbrace{ \mathsf{H}_{\frac{1}{2}1}^{A} = \sqrt{2M_{+}} \left(F_{1}^{A} - \frac{M_{1} - M_{2}}{M_{1}} F_{2}^{A} \right), \\ & \underbrace{ \mathsf{H}_{\frac{1}{2}0}^{A} = \frac{\sqrt{M_{+}}}{\sqrt{q^{2}}} \left(-(M_{1} - M_{2}) F_{1}^{A} + \frac{q^{2}}{M_{1}} F_{2}^{A} \right), \\ & \underbrace{ \operatorname{where} \ M_{\pm}(q^{2}) = (M_{1} \pm M_{2})^{2} - q^{2}; \ H_{-\lambda_{2}, -\lambda_{W}}^{V,A} = \pm H_{\lambda_{2}\lambda_{W}}^{V,A} \end{split}$$

w

Form factors

$$F_i^{V\!A}(q^2) = F_i^{V\!A}(0) \prod_{n=0}^{n_i} \frac{1}{1 - \frac{q^2}{m_{V\!A}^2 + n\alpha'^{-1}}} \approx F_i^{V\!A}(0) \left(1 + q^2 \sum_{n=0}^{n_i} \frac{1}{m_{V\!A}^2 + n\alpha'^{-1}}\right) \equiv F_i^{V\!A}(0) c_i^{V,A}(q^2)$$

	$F_i^{V,A}(0)(\Lambda \to p)$	$m_{V,A}$	$\alpha' [\text{GeV}^{-2}]$	n_i
$F_1^V(q^2)$	$-\sqrt{\frac{3}{2}}^{1}$	$m_{K^*(892)^0}$		$n_1 = 1$
$F_2^V(q^2)$	$\frac{M_{\Lambda}\mu_p}{2M_p}F_1^V(0)^2$	(J = 1)		$n_2 = 2$
$F_{3}^{V}(q^{2})$	0^{4}	-	0.9	$n_3 = 2$
$F_1^A(q^2)$	$0.719F_1^V(0)^3$	$m_{K^*(1270)^0}$ $(J^P = 1^+)$	0.0	$n_1 = 1$
$F_{2}^{A}(q^{2})$	0^{4}	-		$n_2 = 2$
$F_{3}^{A}(q^{2})$	$\frac{M_{\Lambda}(M_{\Lambda}+M_p)}{(m_{K^-})^2}F_1^A(0)^4$	$m_K (J^P = 0^-)$		$n_3 = 2$

• ¹ [PR135(1964)B1483], [PRL13(1964)264]

• ² $\mu_p = 1.793$ [Lect.NotesPhys.222(1985)1], [Ann.Rev.Nucl.Part.Sci.53(2003)39], [JHEP0807(2008)132]

• ³ [PRD41(1990)780]

 ⁴ Vanish in the SU(3) symmetry limit; Goldberger-Treiman relation [PR110(1958)1178], [PR111(1958)354]

Varvara Batozskaya

CP tests in SLH decays

Helicity amplitudes of the lepton pair $h_{\lambda_l\lambda_\nu}^l$

• Lepton and antineutrino spinors

$$\begin{split} i_{l^-}(\pm\frac{1}{2}, p_{l^-}) &= \sqrt{E_l + m_l} \left(\chi_{\pm}^+, \frac{\pm |\vec{p}_{l^-}|}{E_l + m_l} \chi_{\pm}^{\dagger} \right), \\ v_{\bar{\nu}}(\frac{1}{2}) &= \sqrt{E_v} \begin{pmatrix} \chi_{\pm} \\ -\chi_{\pm} \end{pmatrix}, \end{split}$$
 where $\chi_{\pm} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\chi_{-} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are Pauli two-spinors

• SM form of the lepton current $(\lambda_W = \lambda_{l^-} - \lambda_{\bar{\nu}})$

$$h^{l}_{\lambda_{l^-}=\mp 1/2,\lambda_{\tilde{\nu}}=1/2} = \bar{u}_{l^-}(\mp \frac{1}{2})\gamma^{\mu}(1+\gamma_5)v_{\tilde{\nu}}(\frac{1}{2}) \begin{cases} \epsilon_{\mu}(-1) \\ \epsilon_{\mu}(0) \end{cases}$$

where $\epsilon^{\mu}(0) = (0;0,0,1)$ and $\epsilon^{\mu}(\mp 1) = (0;\mp 1,-i,0)/\sqrt{2}$

• Moduli squared of the helicity amplitudes [EPJ C59 (2009) 27]

$$\begin{split} & \text{nonflip}(\lambda_W = \mp 1) : |h_{\lambda_l = \pm \frac{1}{2}, \lambda_\nu = \pm \frac{1}{2}|}^2 = 8(q^2 - m_l^2), \\ & \text{flip}(\lambda_W = 0) : |h_{\lambda_l = \pm \frac{1}{2}, \lambda_\nu = \pm \frac{1}{2}|}^2 = 8\frac{m_l^2}{2q^2}(q^2 - m_l^2) \end{split}$$

• Upper and lower signs refer to the configurations $(l^-, \bar{\nu}_l)$ $(\lambda_{\nu} = 1/2)$ and (l^+, ν_l) $(\lambda_{\nu} = -1/2)$, respectively

• In case of the e-mode only nonflip transition remains under assumption $\frac{m_e^2}{2a^2} \rightarrow 0$

Varvara Batozskaya

CP tests in SLH decays

Size estimations of helicity amplitudes

Varvara Batozskaya

Two boundary cases: q_{\min}^2 and q_{\max}^2

•
$$q_{\min}^2 = m_e^2 \longrightarrow 0$$
:

$$b_{00} = 1,$$

$$b_{03} = -2g_{av}^{D}(0)\sin^{2}\theta_{l} \equiv -2F_{1}^{V}(0)F_{1}^{A}(0)\sin^{2}\theta_{l},$$

$$b_{10} = b_{03}\sin\theta_{p}\cos\phi_{p},$$

$$b_{13} = b_{00}\sin\theta_{p}\cos\phi_{p},$$

$$b_{20} = b_{03}\sin\theta_{p}\sin\phi_{p},$$

$$b_{23} = b_{00}\sin\theta_{p}\sin\phi_{p},$$

$$b_{30} = b_{03}\cos\theta_{p},$$

$$b_{33} = b_{00}\cos\theta_{p}.$$

$$M \rightarrow 2.$$

•
$$q_{\max}^2 = (M_1 - M_2)^2$$
:

$$\begin{split} b_{00} &= (g_{D}^{2\nu}(q^2))^2 \equiv (F_1^A(q^2))^2 \Longrightarrow 1 & b_{21} = \sqrt{2} \sin \theta_l (-A \cos \theta_p \sin \phi_p - B \cos \phi_p), \\ b_{03} &= -b_{00} \cos \theta_l, & b_{22} = \sqrt{2} \sin \theta_l (B \cos \theta_p \sin \phi_p - A \cos \phi_p), \\ b_{10} &= b_{03} \sin \theta_p \cos \phi_p, & b_{23} = b_{00} \sin \theta_p \sin \phi_p, \\ b_{11} &= \sqrt{2} \sin \theta_l (-A \cos \theta_p \cos \phi_p + B \sin \phi_p), & b_{30} = b_{03} \cos \theta_p, \\ b_{12} &= \sqrt{2} \sin \theta_l (B \cos \theta_p \cos \phi_p + A \sin \phi_p), & b_{31} = \sqrt{2} A \sin \theta_l \sin \theta_p, \\ b_{13} &= b_{00} \sin \theta_p \cos \phi_p, & b_{32} = -\sqrt{2} B \sin \theta_l \sin \theta_p, \\ b_{20} &= b_{03} \sin \theta_p \sin \phi_p, & b_{33} = b_{00} \cos \theta_p, \\ \end{split}$$
where $A = \frac{1}{2} b_{00} [\cos \chi (\cos \phi_1 + \cos \theta_l \cos \phi_2) + \sin \chi (\sin \phi_1 + \cos \theta_l \sin \phi_2)] \end{split}$