Data Taking Proposal of tau-QCD group

Summarize of proposal

Energy	Physics Highlight	Expect lum.	Time	reference
1.8-2.0 GeV	R, nucleon, resonance	100 pb ⁻¹ at 23 points	66 days	Coll. Talk on June 13,2022
2.26-2.52 GeV	Λ , Resonance,	160pb ⁻¹ at 8 points	51 days	Coll. Talk on June 13,2022
2.56-2.88 GeV	Exotic states	180pb ⁻¹ at 9 points	37 days	Coll. Talk on June 13,2022
2.5 GeV	Hyperon	100 pb ⁻¹	26 days	White paper
J/ψ scan	Phase	1000 pb ⁻¹ at several points	150 days	White paper
χ_{c2} scan	Two-photon production	800 pb ⁻¹ at 3 points	26 days	Riccardo's talk today

Physics Interests

Partner of phi(2175) LamLam threshold Structure in phiKK, phipipi Exclusive processes

Phase in Jpsi scan J/psi->pipi

Proposal of chic2 scan has been introduced by Riccardo ³

Data taking proposal from Uppsala group: 2.512 GeV, 100 pb⁻¹: Hyperon Form Factor

- Complete measurement of hyperon EMFFs
 - Around 2.5 GeV optimal for Σ
 - 380 $\Lambda \overline{\Sigma}$, 180 $\Sigma^0 \overline{\Sigma}^0$, 620 $\Sigma^+ \overline{\Sigma}^-$
 - Test diquark model
 - Nucleon EMFFs
 - Fills the energy "gap" in the distribution
- Landau singularity
 - Pentaquark interpreted by threshold effect of $\chi_{c1}p$
 - Search for strange counterpart

See detailed physics impact in:

https://indico.ihep.ac.cn/event/6113/session/21/contribution/68/material/slides/0.pdf

Data taking proposal from Italy group: J/psi scan, 1500 pb⁻¹: Relative phase in vector charmonium decays

- An intriguing situation has been found in $J/\psi \rightarrow \pi^+\pi^-$, where the EM amplitude is not sufficient to explain partial width of $J/\psi \rightarrow \pi^+\pi^-$
- Possible amplitude of two gluons and one virtual photon could exist, that can be determined from relative phase measurement.

Data taking proposal from USTC-IHEP group: 1.8-2.0 GeV, 23 points, 100 pb⁻¹, 66 days

See detailed physics impact in:

https://indico.ihep.ac.cn/event/16632/session/1/contribution/51/material /slides/0.pdf

Unique

- Extend the lower limit of energy region by 200 MeV, will be a new record for BESIII
- Able to cover all the baryon SU(3) octet ground states production thresholds
- A transition region where exclusive R and inclusive R can applied
- Existence of excited vector resonances

Impact of the Energy Region

Proposal

	Ecm(MeV)	Nobs	σ (pb)	eff.	Lum. (/pb)	time(hr)
	1800	0	0	0	3.85	77.6
A "mysteries" energy region:		0	0	0	3.85	74.3
		0	0	0	3,85	71.1
"dip" structure around 1.0 Call	1860	0	0	0	3.85	68.1
– dip structure around 1.9 Gev	1870	0	0	0	3.85	66.6
	1872	0	0	0	3,85	66.3
 — Threshold enhancement of nucleon EMFFs 	1874	0	0	0	3.85	66.1
	1876	0	0	0	3.85	65.8
- Excited vector resonance $\rho \sigma o(1900)$	1877	1000	800	32.4	3.85	65.6
- Exciled vector resonance, e.g. $p(1)(0)$	1878	1000	800	52.4	3.85	65.5
	1880	1000	800	33.3	3.75	63.6
 Inclusive hadronic measurement 	1882	1000	800	34.8	3.59	60.5
	1884	1000	800	36.3	3.44	57.8
Wide theoretical discussions	1886	1000	800	35.7	3.5	58.5
while theoretical discussions	1888	1000	800	36.2	3.45	57.4
	1890	1000	800	36.7	3.41	56.6
 Below-threshold N/N resonance 	1900	1000	800	34.7	3.6	58.5
	1910	1000	800	24.2	5.15	82
 Strong interaction in virtual NN production 	n ₁₉₂₀	1000	800	8.2	15.2	235.9
	1940	1000	800	28.7	4.35	65.1
	1960	1000	800	43.4	2.87	41.3
	1980	1000	800	51.1	2.44	33.6
	2000	1000	800	55.2	2.27	30

- Involved experiments including: e+e- collider (CMD-3, SND, BaBar, FENICE), photoproduction (E687...), more than 20 physics topics
- Can BESIII give better results?

Competition with other Experiments (I)

- Dynamics of the "dip" behavior near $N\overline{N}$ threshold, observed in 3 $(\pi^+\pi^-)$, $2(\pi^+\pi^-\pi^0)$, 2 $(\pi^+\pi^-)\pi^0$, $K^+K^-\pi^+\pi^-$, $K^+K^-\pi^0\pi^0$, but no in $2(\pi^+\pi^-)$.
 - A threshold effect
 - The rho(1900) resonance

Parameters	BESIII scan	Other Experiment
Energy resolution	0.5 MeV	0.95 MeV (CMD-3)
Inte. Lum. (1.8-2.0 GeV)	100 pb ⁻¹	BESIII(20fb ⁻¹): 62.43 pb ⁻¹ BelleII(50ab ⁻¹):16.93 fb ⁻¹
$3(\pi^{+}\pi^{-})$	33000 (30%)	10155 (<20%) (CMD-3 2019)
$2(\pi^+\pi^-\pi^0)$	62000 (15%)	35499 (from 1.4-4.0GeV) Babar2006
$K^+K^-\pi^+\pi^-$	135120 (35%) PWA can be applied	19500 (CMD-3 2019)

Competition with other Experiments (II)

- Abnormal structure of nucleon form factor near threshold
- Precise result from CMD-3/Babar and SND achieved
- Advantage of BESIII:
 - Better energy resolution
 - Coherent analysis of $p\bar{p}$ and $n\bar{n}$

Competition with other Experiments (III)

- Rich resonances in 1.8-2.0 GeV
 - A narrow structure in $e^+e^- \rightarrow \phi \pi^0$, indicated by $\rho(1900)$

$\phi \pi^0$	BESIII	SND
Detection Efficiency	25%	5%
Signal No.	~3000	~20

Competition with other Experiments (IV)

e⁺e⁻ annihilation into hadrons

- Inclusive data and pQCD calculations agree within uncertainties, disagree with exclusive sum, important for muon g-2
- A narrow structure observed near $N\overline{N}$ threshold by FENICE

	BESIII	Fenice
No. signal	>1e06	10000
Systematic unc.	<3%	6%

Competition with other Experiments

	BESIII scan (1.8-2.0 GeV)	BESIII ISR (20fb ⁻¹ $\psi^{\prime\prime}$)	CMD-3	Belle II (50 ab ⁻¹)
Energy resolution	$\star \star \star$	*	* *	*
Efficiency	$\star \star \star$	*	* *	*
Neutral reconstruction	* * *	* *	* *	*
Purity	$\star \star \star$	*	* * *	*
Statistics	★ ★ ☆	*	* *	$\star \star \star$
Systematic uncertainty	* * *	*	* *	*

Data taking proposal from USTC group: 2.26-2.52 GeV, 8 points, 160 pb⁻¹, 51 days 2.56-2.88 GeV, 9 points, 180 pb⁻¹, 37 days

See detailed physics impact in:

https://indico.ihep.ac.cn/event/16632/session/1/contribution/51/material /slides/0.pdf

Around $\Lambda\overline{\Lambda}/\Sigma\overline{\Sigma}$ thresholds

- Structure around $\Lambda\overline{\Lambda}$ threshold observed in $\phi KK, \phi\pi\pi$
 - Possible partner of $\phi(2170)$,
 - Threshold effect
- Data taking @ [2.26-2.52]GeV: 8 points, 51 days in total

\sqrt{s} (GeV)	2.26	2.34	2.42	2.44	2.46	2.48	2.50	2.52
Int. lumi.	20	20	20	20	20	20	20	20
Time(day)	8.4	7.3	6.4	6.2	6.0	5.8	5.6	5.5

- 3500 signal events for ϕKK and $\phi \pi \pi$ each
- $\Lambda \overline{\Lambda}$ line-shape and complete EMFFs
- Reveal the structure at 2.5 GeV for $\Sigma \overline{\Sigma}$

Around $\Xi\overline{\Xi}$ threshold

- Theoretical prediction of a *ssss* state
 - Counterpart of cccc is observed above
 6.0 GeV
- Hints from *\u03c6KK*
 - Dominant with $\phi f_2(1525)$, with four strange quarks
 - 2200 $\phi f_2(1525)$ signal foreseen at BESIII
 - Data taking @ [2.56-2.88]GeV
 9 points, 37 days in total

\sqrt{s} (GeV)	2.56	2.60	2.64	2.68	2.72
Int. lumi.	20	20	20	20	20
Time(day)	5.1	4.8	4.5	4.3	4.0
\sqrt{s} (GeV)	2.76	2.80	2.84	2.88	
Int. lumi.	20	20	20	20	
Time(day)	3.8	3.6	3.4	3.2	

• With Better resolution, high detection efficiency, low background, BESIII is an ideal place to study the interesting physics (resonance, threshold effects, R) in 1.8-2.8 GeV with scan method.

THANK YOU

BACKUP

Reference 209

TABLE XII: Measurement of the $e^+e^- \rightarrow \phi \pi^0$ cross section as a function of $E_{\rm c.m.}$. Errors are statistical only.

$E_{\rm c.m.}({\rm GeV})$	σ (nb)						
1.20 - 1.30	0.014 ± 0.016	1.55 - 1.60	0.191 ± 0.060	1.75 - 1.80	0.015 ± 0.015	1.95 - 2.10	0.002 ± 0.004
1.30 - 1.40	0.025 ± 0.018	1.60 - 1.65	0.087 ± 0.039	1.80 - 1.85	0.046 ± 0.027	2.10 - 2.30	0.006 ± 0.005
1.40 - 1.50	0.033 ± 0.022	1.65 - 1.70	0.072 ± 0.035	1.85 - 1.90	0.093 ± 0.038	2.30 - 2.60	0.002 ± 0.002
1.50 - 1.55	0.073 ± 0.038	1.70 - 1.75	0.100 ± 0.041	1.90 - 1.95	0.089 ± 0.036		

The cross section parametrization used to fit the data leading to the final state $f, e^+e^- \rightarrow f$, at $s = E_{\text{c.m.}}^2$ is

$$\sigma_f(s) = 12\pi \mathcal{P}_f(s) \left| A_f^{\text{n.r.}}(s) + \sum_R \sqrt{\mathcal{B}_f^R \Gamma_{ee}^R} \frac{\sqrt{\Gamma_R / \mathcal{P}_f(M_R^2)} e^{i\Psi_R}}{M_R^2 - s - i\sqrt{s}\Gamma_R(s)} \right|^2, \quad (11)$$

where $\mathcal{P}_f(s)$ is the phase space of the f final state, $A_f^{\text{n.r.}}(s)$ describes the non-resonant background, mainly due to the tails of resonances below threshold, and the sum runs over all the vector resonances, with mass M_R , width Γ_R and relative phase Ψ_R , assumed to contribute to the cross section. All of the final states analyzed contain a vector and a pseudoscalar meson. The phase space for f = VP has the form:

$$\mathcal{P}_{VP}(s) = \left[\frac{(s + M_V^2 - M_P^2)^2 - 4M_V^2 s}{s}\right]^{\frac{3}{2}}.$$
 (12)

20

where $\mathcal{P}_{4\pi}(s)$ is the four-pion phase space defined in Eq. 19, and $\mathcal{B}_{4\pi}^{\rho''}$ is the branching fraction for $\rho'' \to 4\pi$.

The results of the fit with only the ρ'' are reported in the first column of the Table XVI.

In the second case, where the $\rho(1900)$ is also included, a two step procedure is used to determine the phases of the two quasi-real amplitudes. We find $(\Psi_{\rho''}, \Psi_{\rho(1900)}) =$ $(0, \pi)$ to be the best combination. With these phases we get the results reported in the second and third columns of the Table XVI.

The results of the two fits are shown in Fig. 40, superimposed on the cross section data.

A slightly better χ^2 is obtained by adding this extra resonance. We can not however exclude that the observed accumulation of events at $E_{\rm c.m.} \approx 1.9$ GeV is produced by a statistical fluctuation. In fact, we observe 18 events to be compared to an expectation of 8 events, taking into account both the background and the tail of the ρ'' , and this translates in a Poisson probability of 2×10^{-3} .

Mass, width, and quantum numbers $[I^G(J^{PC}) = 1^+(1^{--})]$ obtained for the $\rho(1900)$ are compatible with those of the so-called "dip" observed in other channels, primarily multi-pion final states [27].

TABLE XVI: Parameters obtained for the $\phi \pi^0$ cross section. First column: with the only ρ'' resonance, second and third columns: including also the $\rho(1900)$. The normalized χ^2 and corresponding C.L. are reported in each case.

$\left(\frac{\chi^2}{n.d.f.}, C.L.\right)$	$\left(\frac{14.36}{16-5}, 0.31\right)$	$(\frac{7.37}{16-8},$	0.50)
R	ho''	$\rho^{\prime\prime}$	$\rho(1900)$
$\Gamma^R_{ee} \mathcal{B}^R_{\phi \pi^0}(\mathrm{eV})$	4.4 ± 1.0	3.5 ± 0.9	$2.0{\pm}0.6$
$(1 - \mathcal{B}_{4\pi}^R)$	$0.67 {\pm} 0.43$	$0.44 {\pm} 0.49$	-
$M_R(\mathrm{MeV})$	$1593{\pm}32$	$1570{\pm}36$	$1909{\pm}17$
$\Gamma_R(MeV)$	203 ± 97	144 ± 75	48 ± 17
$\Psi_R(\mathrm{rad})$	0	0	π
$\sigma^{\rm bkg}_{\phi\pi^0}(M^2_{ ho(1900)})({\rm nb})$	$(0.4 \pm 0.2) \times 10^{-3}$	(0.5 ± 1.5)	$) \times 10^{-3}$

Cover a wide Program

Abnormal structure of nucleon form factor near threshold

- Dynamics of the "dip" behavior near $N\overline{N}$ threshold, observed in 3 $(\pi^+\pi^-)$, $2(\pi^+\pi^-\pi^0)$, 2 $(\pi^+\pi^-)\pi^0$, $K^+K^-\pi^+\pi^-$, $K^+K^-\pi^0\pi^0$, but no in $2(\pi^+\pi^-)$.
 - A threshold effect
 - The rho(1900) resonance
- Rich resonances in 1.8-2.0 GeV
 - A narrow structure in $e^+e^- \rightarrow \phi \pi^0$
- e^+e^- annihilation into hadrons
 - Inclusive data and pQCD calculations agree within uncertainties, disagree with exclusive sum => important for muon g-2
 - A narrow structure observed near $N\overline{N}$ threshold by FENICE