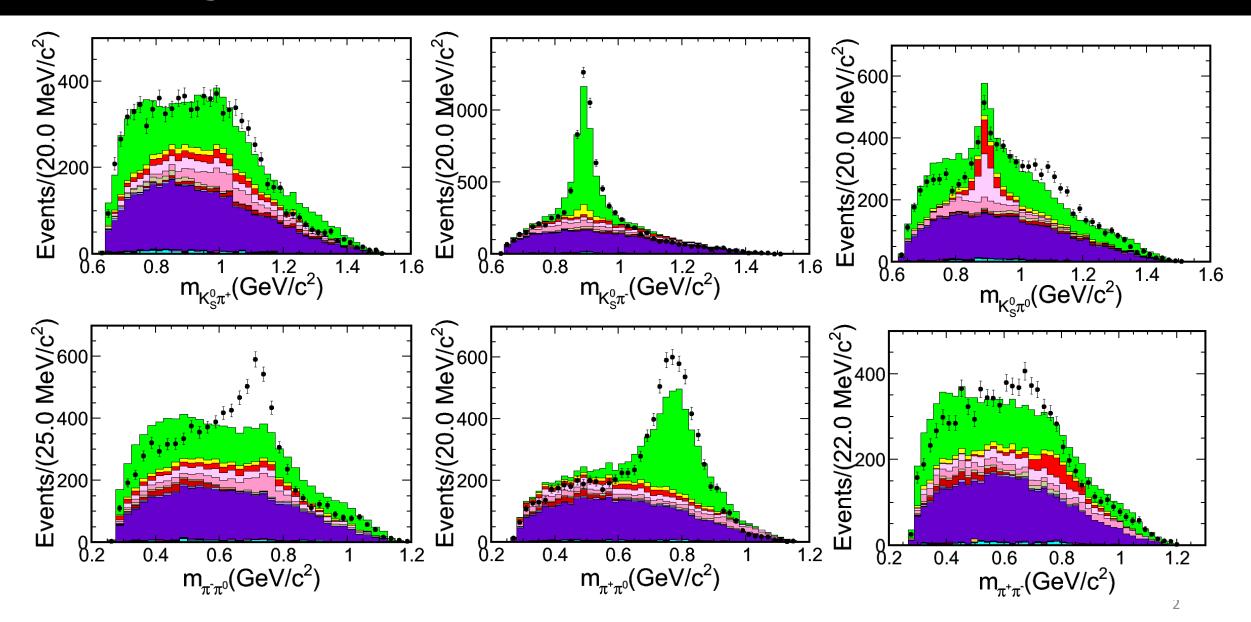
Analysis of $D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$

Pan Yue^{a)} Lu Yu^{b)} Dong Liaoyuan^{b)} Li Haibo^{b)} Peng Haiping^{a)}

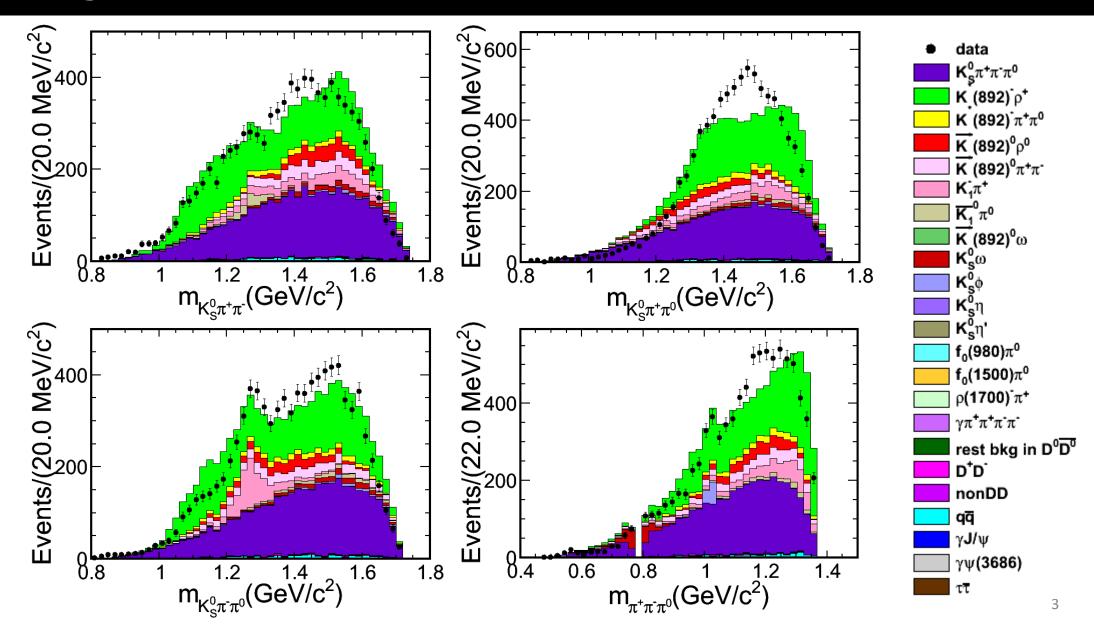
a) University of Science and Technology of China

b) Institute of High Energy Physics Chinese Academy of Sciences

$D^0 \to K_S^0 \; \pi^+ \, \pi^- \, \pi^0$



$D^0 \to K_S^0 \ \pi^+ \ \pi^- \ \pi^0$



Amplitude Analysis

Likelihood Construction

It is a fit method;

MINUIT is used to determined the fit parameters;

Background is subtracted with negative weight method.

$$\ln L = \sum_{i}^{N_{data}} w_i^{data} \ln S(a_i, p_j) - \sum_{i}^{N_{bkg}} w_i^{bkg} \ln S(a_i, p_j)$$

PDF is calculated by

$$S(a_i, p_j) = \frac{\epsilon(p_j)|A(a_i, p_j)|^2 R_4(p_j)}{\int \epsilon(p_j)|A(a_i, p_j)|^2 R_4(p_j) dp_j}$$

4-momentum dependent

 $\epsilon(p_j)$: efficiency; $R_4(p_j)$: four-body phase space; $A(a_i, p_i)$: total amplitudes.

MC integration
$$\frac{1}{N_{mc}} \sum_{j}^{N_{mc}} |A(a_i, p_j)|^2$$

Amplitude Analysis

> Amplitude Construction

Total amplitudes is modeled as the sum over all the partial wave amplitudes;

$$A(a_i, p_j) = \sum_{i} a_i A_i(p_j)$$

 $a_i = \rho_i e^{i\phi_i}$: the complex coefficient;

 $A_i(p_i)$: the ith partial wave amplitude.

$$A_i(p_j) = P_i^1(p_j)P_i^2(p_j)S_i(p_j)F_i^1(p_j)F_i^2(p_j)F_i^D(p_j)$$

- $P_i^1(p_i)$ and $P_i^2(p_i)$ are the propagators of intermediate resonances 1 and 2;
- $F_i^1(p_j)$, $F_i^2(p_j)$ and $F_i^D(p_j)$ are the Blatte-Weisskopf barriers (PRD 86, 010001 (2012));
- $S_i(p_j)$ is the spin factor and constructed with the covariant tensors. (Eur. Phys. J. A16, 537 (1992))

Amplitude Analysis

Component	Amplitude
Сотронен	
$D^0 \to K^{*-} \rho^+$	$D^0[S] \to K^{*-}\rho^+$
	$D^0[P] o K^{*-} ho^+$
	$D^0[D] \to K^{*-}\rho^+$
$D^0 o ar K^{*0} ho^0$	$D^0[S] o ar{K}^{*0} ho^0$
	$D^0[P] o ar K^{*0} ho^0$
	$D^0[D] o ar K^{*0} ho^0$
$D^0 \to K_1^-(1270)\pi^+$	$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to K^{*-}\pi^0$
	$D^0 \to K_1^-(1270)\pi^+, \ K_1^-(1270)[D] \to K^{*-}\pi^0$
	$D^0 \to K_1^-(1270)\pi^+, \ K_1^-(1270)[S] \to \bar{K}^{*0}\pi^-$
	$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[D] \to \bar{K}^{*0}\pi^-$
	$D^0 \to K_1^-(1270)\pi^+, K_1^-(1270)[S] \to \bar{K}^0\rho^-$
	$D^0 \to K_1^-(1270)\pi^+, \ K_1^-(1270)[D] \to \bar{K}^0\rho^-$

