北京谱仪III上奇异介子的研究及一 种基于阈值效应的能散测量方法 (博士开题答辩报告)

- 答辩人:刘栋 (BZ13004003)
- 导 师: 黄光顺
- 专 业:核与粒子物理
- 时间: 2017年10月

- 粒子物理中的标准模型
- 北京谱仪的介绍
- 奇异介子的研究
 - 研究的背景
 - 研究方法与数据来源
 - 截面测量
 - 形状因子的测量
 - 系统误差的研究
 - 小结
- 基于阈值效应的能散测量方法
 - 研究背景
 - 方法介绍
 - 利用含粲重子对实现能散测量
 - 结果对比
 - 小结
- 后续计划

粒子物理中的标准模型

- •标准模型
 - 相互作用
 - 电磁
 - 引力
 - 弱
 - 强
 - 粒子分类
 - 规范矢量玻色子
 - Higgs标量玻色子
 - 轻子
 - 强子
 - QCD
 - 微扰: R值
 - 非微扰: 大多数强作用过程

北京谱仪

- •北京正负电子对撞机与第三代北京谱仪
 - 对撞机: 双环结构, 2-4.6 GeV, 10³³/cm²/s
 - 探测器:
 - 主漂移室: 动量, 能损
 - 飞行时间探测器: 飞行时间
 - 电磁量能器: 能量
 - µ子计数器: 鉴别µ子

北京谱仪上的物理

R Value

北京谱仪上的物理

- 粲偶素谱及其衰变
 - QCD的检验
 - XYZ态
- 轻强子物理
 - 强子谱学
 - •寻找奇特态:胶球,混杂态,四夸克态,...
- 粲物理
 - CKM矩阵,半轻衰变
 - 衰变参数的研究, f_D 和 f_Ds
 - 中性D介子的混合, CP破坏
- R-QCD
 - R值测量
 - τ轻子物理
 - 强子的形状因子

奇异介子的产生截面测量

物理动机 (夸克模型)

- 普通强子
 - 介子: 2夸克组成
 - 重子: 3夸克组成
- QCD允许的其他强子
 - 胶子球
 - 混杂态
 - 多夸克态
 - 分子态
 - 其他

奇异介子的研究--奇特态的寻找

As a normal phi state

	$g^2_{(l_c=0)}$	$g^2_{(l_c=2)}$					Threshold
Channel	$\times 10^{-3}$	$\times 10^{-3}$	l_1	l_2	L	S	(MeV)
KK	27.8	9.26	0	0	1	0	987
KK^*	111	9.26	0	0	1	1	1388
$\eta \phi$	40.8	3.40	0	0	1	1	1567
$\eta'\phi$	70.3	5.86	0	0	1	1	1977
K^*K^*	9.26	3.09	0	0	1	0	1788
K^*K^*	185	0.62	0	0	1	2	1788
$\phi(1020)f_0(980)$	83.3	0	0	1	0	1	1999
$K^*K_0^*(800)$	83.3	0	0	1	0	1	1639
$\phi(1020)f_0(980)$	0	14.7	0	1	2	1	1999
$K^*K_0^*(800)$	0	14.7	0	1	2	1	1639
$\eta h_1(1380)$	10.2	5.67	0	1	0	1	1928
$\eta' h_1(1380)$	17.6	9.76	0	1	0	1	2338
$KK_{1}(1270)$	83.3	20.6	0	1	0	1	1764
$KK_1(1400)$	0	2.57	0	1	0	1	1894
$K^*K_1(1270)$	167	10.3	0	1	0	1	2164
$K^*K_1(1400)$	0	1.29	0	1	0	1	2294
$\phi f_1(1420)$	111	3.86	0	1	0	1	2439

TABLE I: Included two-meson channels, their internal and relative angular momenta and spins, couplings squared for n = 0, and thresholds. See Ref. [3] for properties of listed mesons, except for the $K_0^*(800)$, discussed in the text.

	$^{3}S_{1}$ o	only	$^{3}S_{1} +$	$-{}^{3}D_{1}$	
Pole	Re	$\Im m$	Re	$\Im m$	Type of Pole
1	1027.5	-2.7	1019.5	-2.2	conf., $n = 0, 1 {}^3\!S_1$
2	1537	-13	1516	-23	$ { m conf.}, n=1, 2 {}^3\!S_1 $
3	-	-	1602	-6	conf., $n = 0, 1 {}^{3}D_{1}$
4	1998	-16	1932	-24	conf. $n = 2, 3 {}^{3}S_{1}$
5	_	-	1996	-14	conf. $n = 1, 2^{3}D_{1}$
6	2397	-214	2186	-246	$\operatorname{continuum}$
7	2415	-6	2371	-29	conf., $n = 3, 4 {}^{3}S_{1}$
8	-	-	2415	-8	conf., $n = 2, 3 {}^{3}D_{1}$
9	2501	-236	2551	-193	$\operatorname{continuum}$

TABLE V: Complex-energy poles in MeV, for ${}^{3}S_{1} s\bar{s}$ channel only, and for both ${}^{3}S_{1}$ and ${}^{3}D_{1}$. See text for further details.

Real part: close to m(φ(2170)) by BABAR and BES. Imaginary part: too large than width

奇异介子的研究—精确测量

- 截面的测量 $e^+e^- \rightarrow K^+K^-$
 - 在2GeV以上精度很差>15%
 - 可能存在未知共振态

奇异介子的研究—精确测量

- •形状因子的测量
 - 描述强子内部的荷分布

 $F(q^2) = \int \mathrm{d}^3 \boldsymbol{r} \rho(\boldsymbol{r}) e^{i\boldsymbol{q}\cdot\boldsymbol{r}}$

- 强子内部动力学和强子波函数 的细节
- 在2GeV以上,精度差
 - >15%
- 检测QCD预言

$$F_{K} = 16\pi\alpha_{s}(s)f_{K}^{2} / s$$

PRD 88 (2013) 032013 ։⊾_10⁴ և_ 10^{3} 10² 0.05 10 10- 10^{-2} 10^{-3} 15 2 2.5 3.5 4.5 √s (GeV) Phys. Lett. 87B, 359 (1979) 13

•实验数据

$E_{cm}~({ m GeV})$	runNo	$\mathcal{L}(\text{offline}) \text{ (pb}^{-1}$	$)E_{cm}~({ m GeV})$	runNo	$\mathcal{L}(\text{offline}) \ (\text{pb}^{-1})$
2	41729-41909	10.074	2.5	40771-40776	1.098
2.05	41911-41958	3.343	2.6444	40128-40296	33.722
2.1	41588-41727	12.167	2.6464	40300-40435	34.003
2.125	42004-43253	108.49	2.7	40436-40439	1.034
2.15	41533-41570	2.841	2.8	40440-40443	1.008
2.175	41416-41532	10.625	2.9	39775-40069	105.253
2.2	40989-41121	13.699	2.95	39619-39650	15.942
2.2324	41122-41239	11.856	2.981	39651-39679	16.071
2.3094	41240-41411	21.089	3	39680-39710	15.881
2.3864	40806-40951	22.549	3.02	39711-39738	17.290
2.396	40459-40769	66.869	3.08	39355-39618	126.185

• 模拟数据

1M $e^+e^- \to K^+K^-$, 0.5M $e^+e^- \to \mu^+\mu^-$, 0.5M $e^+e^- \to hadrons$, 0.5M $e^+e^- \to e^+e^-X$, 1M $e^+e^- \to e^+e^-$

14

事件的筛选

- Good charged tracks: (MDC)
 - $|Vr| < 1 \text{ cm}, |Vz| < 10 \text{ cm}, |\cos\theta| < 0.93, N_{+} = N_{-} = 1$
 - cosθ₊<0.8, cosθ₋>-0.8
- E/p: (EMC+MDC)
 - E/p < (E/p)_{cut}, cut optimized with signal to noise ratio S/V(S+N), cut value ~0.6 – 0.8
- Back to back: angle(1,2)>179°
- TOF: |TOF1-TOF2| < 3 ns (TOF)

 $\left(\frac{E}{2}\right)$ m_K^2 $p_{\rm exp}$

信号提取

p of 2 prong process

K和μ在不同质心能量下 预期动量分布 @2.0 GeV 信号: MC⊗ Gaus 本底: MC⊗ Gaus

效率与修正

- 信号过程用ConExc产生子描述
- •利用输入截面谱形计算初态辐射和真空极化修正

$$\sigma_{e^+e^- \to \gamma X_i} = \int d\sqrt{s'} \frac{2\sqrt{s'}}{s} W(s,x) \frac{\sigma^B(s')}{[1 - \Pi(s')]^2}$$

 统计经过筛选的事例 数给出探测效率

截面测量结果

$E_{cm}~({ m GeV})$	ε	$(1+\delta)$	$\mathcal{L}~(\mathrm{pb}^{-1})$	N_{sig}	σ (nb)
2	0.1888	2.7130	$10.074 \pm 0.005 \pm 0.073$	1824.0 ± 43.9	$0.3546 \pm 0.0085 \pm 0.0147$
2.05	0.1810	2.8670	$3.343 \pm 0.003 \pm 0.024$	524.0 ± 22.9	$0.3020 \pm 0.0132 \pm 0.0236$
2.1	0.1565	3.3810	$12.167 \pm 0.006 \pm 0.077$	1418.7 ± 38.2	$0.2203 \pm 0.0059 \pm 0.0140$
2.125	0.1414	3.7170	$^{*108.49} \pm 0.02 \pm 0.92$	11088.7 ± 107.4	$0.1945 \pm 0.0019 \pm 0.0101$
2.15	0.1305	4.0118	$2.841 \pm 0.003 \pm 0.022$	263.0 ± 16.3	$0.1769 \pm 0.0110 \pm 0.0053$
2.175	0.1476	3.5351	$10.625 \pm 0.006 \pm 0.069$	1029.1 ± 33.9	$0.1857 \pm 0.0061 \pm 0.0082$
2.2	0.1773	2.9787	$13.699 \pm 0.007 \pm 0.108$	1697.6 ± 41.4	$0.2346 \pm 0.0057 \pm 0.0145$
2.2324	0.1975	2.6937	$11.856 \pm 0.007 \pm 0.077$	1613.5 ± 40.4	$0.2558 \pm 0.0064 \pm 0.0141$
2.3094	0.1671	3.2601	$21.089 \pm 0.009 \pm 0.156$	2080.3 ± 47.2	$0.1811 \pm 0.0041 \pm 0.0083$
2.3864	0.1177	4.5809	$22.549 \pm 0.010 \pm 0.192$	1269.4 ± 36.1	$0.1044 \pm 0.0030 \pm 0.0085$
2.396	0.1137	4.7256	$66.869 \pm 0.017 \pm 0.461$	3841.7 ± 70.6	$0.1069 \pm 0.0020 \pm 0.0109$
2.5	0.0985	5.6227	$1.098 \pm 0.002 \pm 0.009$	53.4 ± 7.5	$0.0878 \pm 0.0123 \pm 0.0102$
2.6444	0.0892	6.2873	$33.722 \pm 0.013 \pm 0.223$	1107.3 ± 40.2	$0.0585 \pm 0.0021 \pm 0.0066$
2.6464	0.0884	6.2972	$34.003 \pm 0.013 \pm 0.262$	1145.1 ± 42.7	$0.0605 \pm 0.0023 \pm 0.0078$
2.7	0.0855	6.5641	$1.034 \pm 0.002 \pm 0.008$	22.1 ± 5.1	$0.0381 \pm 0.0088 \pm 0.0026$
2.8	0.0797	7.1355	$1.008 \pm 0.002 \pm 0.007$	28.0 ± 6.5	$0.0488 \pm 0.0113 \pm 0.0083$
2.9	0.0738	7.8308	$105.253 \pm 0.025 \pm 0.905$	1997.6 ± 58.5	$0.0328 \pm 0.0010 \pm 0.0039$
2.95	0.0697	8.1982	$15.942 \pm 0.010 \pm 0.108$	265.1 ± 21.5	$0.0291 \pm 0.0024 \pm 0.0058$
2.981	0.0676	8.4299	$16.071 \pm 0.010 \pm 0.108$	287.0 ± 21.0	$0.0314 \pm 0.0023 \pm 0.0063$
3	0.0667	8.5760	$15.881 \pm 0.010 \pm 0.137$	223.7 ± 18.8	$0.0246 \pm 0.0021 \pm 0.0021$
3.02	0.0658	8.7326	$17.290 \pm 0.011 \pm 0.121$	264.6 ± 23.3	$0.0266 \pm 0.0023 \pm 0.0041$
3.08	0.0570	9.2017	$126.185 \pm 0.029 \pm 0.959$	1417.1 ± 70.5	$0.0214 \pm 0.0011 \pm 0.0027$

形状因子的测量

•形状因子的提取 $|F_K|^2(s') = \frac{3s'}{(s')^2} \frac{\sigma_{KK}(s')}{\sigma_{KK}(s')}$

$$| (S) = \frac{1}{\pi \alpha (0)^2 \beta_K^2} \frac{1}{C_{FS}}$$

- 谱形拟合
 - 拟合函数

 $\left|F_{K}\right|^{2} = A\alpha_{s}^{2}(s) / s^{n}$

• 拟合结果 n_{theory} = 2 n = 1.94±0.09

$$\sigma_{KK}(s') = \sigma^{0}_{KK}(s') \left(\frac{\alpha(s')}{\alpha(0)}\right)^{2}$$

形状因子的测量

$E_{cm}~({ m GeV})$	$ F_K ^2$	$E_{cm}~({ m GeV})$	$ F_K ^2$
2	$0.0992 \pm 0.0024 \pm 0.0041$	2.5	$0.0326 \pm 0.0046 \pm 0.0038$
2.05	$0.0868 \pm 0.0038 \pm 0.0068$	2.6444	$0.0236 \pm 0.0009 \pm 0.0027$
2.1	$0.0650 \pm 0.0018 \pm 0.0041$	2.6464	$0.0244 \pm 0.0009 \pm 0.0031$
2.125	$0.0582 \pm 0.0006 \pm 0.0030$	2.7	$0.0158 \pm 0.0036 \pm 0.0011$
2.15	$0.0537 \pm 0.0033 \pm 0.0016$	2.8	$0.0215 \pm 0.0050 \pm 0.0037$
2.175	$0.0572 \pm 0.0019 \pm 0.0025$	2.9	$0.0153 \pm 0.0004 \pm 0.0018$
2.2	$0.0732 \pm 0.0018 \pm 0.0045$	2.95	$0.0139 \pm 0.0011 \pm 0.0028$
2.2324	$0.0813 \pm 0.0020 \pm 0.0045$	2.981	$0.0152 \pm 0.0011 \pm 0.0030$
2.3094	$0.0601 \pm 0.0014 \pm 0.0028$	3	$0.0121 \pm 0.0010 \pm 0.0010$
2.3864	$0.0362 \pm 0.0010 \pm 0.0029$	3.02	$0.0132 \pm 0.0012 \pm 0.0020$
2.396	$0.0373 \pm 0.0007 \pm 0.0038$	3.08	$0.0110 \pm 0.0006 \pm 0.0014$

系统误差—截面测量

$\sqrt{s} \; (\text{GeV})$	L	ε	$1+\delta$	p	E/p	Angle	Tracking	Fit	Sig. shape	Bck. shape	Total
2.0000	0.9	0.2	0.2	0.7	0.6	0.8	0.9	0.0	0.2	0.4	1.8
2.0500	0.9	0.2	0.1	< 0.1	0.7	0.7	0.2	0.7	0.2	0.4	1.6
2.1000	0.9	0.2	0.3	0.2	0.5	0.8	0.1	0.1	0.2	0.4	1.5
2.1250	0.8	0.2	0.3	< 0.1	0.6	0.7	0.5	0.3	0.2	0.4	1.5
2.1500	0.9	0.3	0.5	< 0.1	0.6	0.7	0.5	0.1	0.3	0.4	1.5
2.1750	0.9	0.2	0.3	0.3	0.6	0.7	0.6	0.1	0.4	0.4	1.6
2.2000	0.9	0.2	0.3	0.4	0.6	0.8	0.6	0.5	0.4	0.4	1.7
2.2324	0.9	0.2	0.5	0.1	0.5	0.8	0.5	0.2	0.5	0.4	1.6
2.3094	0.9	0.2	0.2	< 0.1	0.6	0.7	0.1	0.6	0.7	0.5	1.7
2.3864	0.9	0.3	0.4	0.2	0.4	0.9	0.7	0.5	1.0	0.5	2.0
2.3960	0.9	0.3	0.4	0.3	0.4	1.0	0.8	0.4	1.0	0.6	2.1
2.5000	0.9	0.3	0.2	1.4	0.6	0.8	2.1	0.3	1.3	0.6	3.2
2.6444	0.9	0.3	0.3	0.4	0.6	0.9	1.1	2.7	1.7	0.7	3.8
2.6464	0.9	0.3	0.3	0.5	0.6	0.8	1.2	0.8	1.7	0.8	2.8
2.7000	0.9	0.3	0.3	0.5	0.4	0.9	1.5	1.0	2.0	1.2	3.3
2.8000	0.9	0.3	0.3	0.5	0.7	1.3	1.4	1.0	2.5	2.1	4.1
2.9000	0.9	0.4	0.3	0.1	0.4	0.8	1.0	1.1	3.0	3.0	4.7
2.9500	0.9	0.4	0.3	0.1	0.4	0.9	1.3	0.3	3.3	3.5	5.2
2.9810	0.9	0.4	0.3	0.5	0.5	1.2	1.6	0.2	3.4	3.8	5.6
3.0000	0.9	0.4	0.3	1.6	0.4	0.9	1.7	0.7	3.5	3.9	6.0
3.0200	0.9	0.4	0.3	1.1	0.5	0.9	1.7	0.7	3.6	4.1	6.1
3.0800	0.9	0.4	0.3	1.1	0.4	1.0	1.9	0.8	3.9	4.6	8.8

系统误差—共振态参数提取

- BW参数化
- 引用PDG的参数

小结

- 已完成截面和形状因子的测量
- 谱形拟合结果还需进一步完善

能散测量

- •能量信息在对撞实验中至关重要
- •能散信息可以提高实验精度
- •能散可以修正对物理过程的描述

4.6

测量方法

- 对窄共振态的扫描
- •利用能散随能量的变化

利用阈值效应测能散

- 利用反应过程,可利用末态粒子的四动量信息重 建初态质心能量
- 当质心能量接近反应过程的阈值时,质心能量的 平均值随能散变化
- •利用MC模拟,找到平均 质心能量与能散的关系, 从而测量能散

•
$$e^+e^- \to \Lambda_c^+ \bar{\Lambda}_c^-$$

MC模拟

- 模拟重现能散造成的质心能量偏移
- 低于阈值的对撞实例不会贡献到 $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$
- 探测器的响应用高斯分布模拟
- •当能散与 $E_{cm} E_{th}^{\Lambda_c^+\bar{\Lambda}}$ 接近时,质心能量偏移明显

数据实测1

- •利用BESIII在4575 MeV取的数据
- $e^+e^- \rightarrow \mu^+\mu^-$ 过程测得的能量作为实际质心能量
- $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$ 过程测能散造成的质心能量偏移
 - $\Pi \Lambda_c^+ \rightarrow p K^- \pi^+$ 及共轭过程重建中间粒子
 - •利用单标记方法测Ac对中的一个,提高统计量
 - •修正可能的动量偏移,要求 $M(pK\pi) = m(\Lambda_c)$

数据实测2

•利用4600 MeV的数据

能散与质心能量偏移的关系

- •利用MC
- •假设:
 - 阈值附近截面阶跃
 - 质心能量按高斯展宽
 - 初态辐射:

 $p(k) \sim \beta k^{\beta - 1} (1 - k^{1 - \beta} + 0.5k^{2 - \beta})$

- Ac参数的不确定性按PDG抽样
- 高斯分布描述探测器响应
- δE = 0.78 MeV, σE = 2.1 MeV

小结

- 已完成方法的模拟与实验验证
- 进一步完善

后续工作计划

- •完成奇异介子产生截面谱形拟合的误差分析
- 完善能散测量的结果
- 准备文章
- 完成毕业论文的撰写
- 完成一些其他工作