Experimental review of (semi-)leptonic charm decays

Hailong Ma (IHEP&BESIII)

2nd International Workshop on Physics at Future High Intensity Collider @ 2-7GeV in China, March 19-21 2018

UCAS, Beijing, China

- Introduction
- Data sample
- $\blacksquare D_{(s)} \rightarrow l^+ v$
- **D** \rightarrow K(π)e⁺v
- Other topics (D, D_s, Λ_c) at threshold
- Summary

Introduction

Studies of (semi-)leptonic charm decays are important to explore weak and strong effects in charm decays

Precise measurements of decay constants f_{D+}, f_{Ds+}, form factors $f_{+}^{D(s) \rightarrow P}(q^2)$ of semi-leptonic (SL) $D_{(s)}$ decays will calibrate LQCD calculations at higher accuracy. Once they pass experimental tests, the precisely LQCD calculated f_D/f_B , f_{Ds}/f_{Bs} and $f_{+}^{D \rightarrow P}(0)/f_{+}^{B \rightarrow P}(0)$ will be helpful for measurements in B decays

■ Improved LQCD calculations on $f_{D(s)+}[0.5(0.5)\%]$, $f_+^{D \rightarrow K(\pi)}(0)$ [2.4(4.4)%] help to precisely measure the CKM matrix element V_{cs(d)}, which are important for the CKM matrix unitarity test and search for NP beyond SM

Test on lepton flavor universality in charm sector

Recent $D^{0(+)}$, D_s^+ and Λ_c^+ samples

Taking from Longke Li's talk at joint workshop of BESIII/Belle/LHCb at Nankai

Experiment	Machine	C.M	Lumin.	N(<i>D</i>)	efficiency	advantage/disadvantage
CLEO	$\frac{\text{CESR}}{(e^+e^-)}$	3.77 GeV	$0.8 \ {\rm fb}^{-1}$	$2.9 imes 10^{6}\ 2.3 imes 10^{6} (D^{\pm})$		 extremely clean enviroment pure D-beam, almost no bkg
		4.17 GeV	$0.6 \ {\rm fb}^{-1}$	$0.6 imes10^6$	~10-30%	© quantum coherence
ΔζζΠ	$\frac{BEPC-II}{(e^+e^-)}$	3.77 GeV	2.92 fb^{-1}	$10.5 imes 10^{6}$ $8.4 imes 10^{6}$ D ⁰⁽⁺⁾	10-3076	Ino CM boost, no T-dep analyses
		4.18 GeV	3 fb ^{−1} D _s +	3 imes 10~		
		4.6 GeV	0.567 fb⁻¹ <mark>∧</mark> ₅⁺	*	***	
\mathcal{B}	KEKB (e ⁺ e ⁻)	10.58 GeV	1 ab ⁻¹	1.3×10^9		 clear event environment high trigger efficiency
BELLE					~5-10%	high-efficiency detection of neutrals
	PEP-II (e^+e^-)	10.58 GeV	$0.5 \ ab^{-1}$	6.5×10^8	010/0	 many high-statistics control samples time-dependent analysis
				**	**	© smaller cross-section than pp colliders
	Tevatron (<i>p</i> p̄)	1.96 TeV	9.6 fb ⁻¹	1.3×10^{11}		© large production cross-section
		7 7 1/	109-1		<0.5%	Iarge boost: excellent time resolution
LHCD	(pp)	7 TeV 8 TeV	1.0 fb^{-1} 2.0 fb ⁻¹	5.0×10^{12}		equicated trigger required hard to do neutrals and neutrinos
				***	*	

Charm samples (pb⁻¹) at threshold

> D⁰⁽⁺⁾ samples

$$N_{\rm ST}^i = 2 \times N_{\rm D\overline{D}} \times B_{\rm ST}^i \times \varepsilon_{\rm ST}$$

$> D_s^+/D_s^+/\Lambda_c^+$ samples

Earlier searches or measurements of f_{D+}

MARKIII, 9.6 pb⁻¹ at ψ"

BESI, 22.3 pb⁻¹ at 4.03 GeV

2004-2008, CLEO-c, 818 pb⁻¹ at ψ"

Results on B[D+\rightarrowl+v], f_{D+}|V_{cd}|

209.0±9.3±2.6

203.2±5.3±1.8

208.3±3.4

212.6±0.4^{+1.0}

 f_{D^+} (MeV)

190

200

210

Evidence of $D^+ \rightarrow \tau^+ v$

2.93 fb⁻¹ data@ 3.773 GeV

CLEO-c

HPQCD

160

PRD78(2008)052003

PRD89(2014)051104(R)

PRD86(2012)054510

Fermilab Lattice + MILC

170

PRD90(2014)074509

BESIII (2.9 fb⁻¹)

11

7

$B[D^+ \rightarrow \tau^+ \nu] = (1.20 \pm 0.24_{stat}) \times 10^{-3}$

$$R \equiv \frac{\Gamma(D^+ \to \tau^+ \nu)}{\Gamma(D^+ \to \mu^+ \nu)} = \frac{m_{\tau^+}^2 \left(1 - \frac{m_{\tau^+}^2}{M_{D^+}^2}\right)^2}{m_{\mu^+}^2 \left(1 - \frac{m_{\mu^+}^2}{M_{D^+}^2}\right)^2}$$

SM prediction: 2.66 BESIII: 3.21±0.64

BESIII, PRD89(2014)051104R

 $B_{D+ \rightarrow \mu+\nu} = (3.71 \pm 0.19 \pm 0.06) \times 10^{-4}$

 $f_{D+}=(203.2\pm5.3\pm1.8) \text{ MeV}$ $|V_{cd}|=0.2210\pm0.0058\pm0.0047$ 20 fb⁻¹ data can reduce the statistical error of f_{D+} to 1%

180

Earlier measurements of f_{Ds+}

WA75, Fixed target experiment

E653, Fermilab fixed target experiment

CLEOII, 2.13 fb⁻¹ at 10.6 GeV

BESI, 22.3 pb⁻¹ at 4.03 GeV

Earlier measurements of f_{Ds+}

L3, Z→qq, 49.6 pb⁻¹ at 91.2 GeV

■ OPAL, 3.9×10⁶ e⁺e⁻→qq

ALPHA, 3.97×10⁶ Z hadronic decay

Results of f_{Ds+} at CLEO/Belle/BaBar

Belle, 913 fb⁻¹ at 10.58 GeV [2698 l⁺v]

 $e^+e^- \rightarrow DKXD_s^{*-}$

Babar, 521 fb⁻¹ at
 10.58 GeV [1023 l⁺v]

$$e^+e^- \rightarrow DKXD_s^{*-}$$

Results on B[$D_s^+ \rightarrow \mu^+ v$], $f_{Ds+}^{} |V_{cs}|$ at **BESIII**

0.48 fb⁻¹ data@4.01 GeV

3.19 fb⁻¹ data@4.178 GeV

PRD94(2016)072004

 $f_{Ds}|V_{cs}|$ =242.5±3.5±3.7 MeV

LQCD PRD90(2014)074509 249.0±0.3±1.5 CLEO $\tau^+ (e^+ v_{\rho} \overline{v}_{\tau}) v_{\tau}$ 252.8+11.2+5.5 CLEO $\tau^+(\rho^+\overline{\nu}_\tau)\nu_\tau$ 258.0±13.3±5.2 CLEO $\tau^+(\pi^+\overline{\nu}_\tau)\nu_\tau$ 278.3±17.6±4.4 $\tau^+(e^+v_{\rho}\nabla_{\tau})\mu^+v_{\mu}\nabla_{\tau})v_{\tau}$ BABR 244.6+9.1+14.2 $\tau^+(e^+v_e\overline{v}_{\tau})\mu^+v_u\overline{v}_{\tau}\pi^+\overline{v}_{\tau})v_{\tau} = 262.2\pm4.8\pm7.4$ BELL BESIII@4.009 $\mu^+ v_{\mu}, \tau^+ (\pi^+ \nabla_{\tau}) v_{\tau}$ 241.0+16.3+6.6 CLEO μ⁺ν_n 257.6+10.3+4.3 μ⁺ν_u BABR 265.9+8.4+7.7 μ⁺ν_n BELL 249.8±6.6±5.0 , BESIII@4.178 _{µ⁺v_µ} 249.1+3.6+3.8 preliminary 250 -50 100 150 200 300 50 f_{D.} (MeV)

Precision on f_{Ds+} reach 2%. Combining τ^+v can reduce it to 1.5%

Previous measurements of f^{D \rightarrow K(\pi)}(0) |V_{cs(d)}|

In the past 30 years, studies of $D \rightarrow K(\pi)I^+v$ were made by MARKIII, E691, CLEO, CLEOII, BESII, FOCUS, BELLE, Babar and CLEO-c

Babar, 75 fb⁻¹ at 10.58 GeV

Babar, 347.2 fb⁻¹ at 10.58 GeV

Before 2010, the LQCD calculated $f_{+}^{D \rightarrow K(\pi)}(0)$ precision is at 10% level, thus limiting $|V_{cs(d)}|$ measurement 12

Impact of $f^{D \rightarrow K(\pi)}(q^2)$ on LQCD

BESIII, PRD92(2015)072012

Comparisons of $f^{D \rightarrow K(\pi)}(0)$ with LQCD

BESIII, PRD96(2017)012002

HPQCD **BESII** $D^0 \rightarrow K^- e^+ v_e$ $D^0 \rightarrow K^1^+ \nu$ Belle **BABAR D⁰** \rightarrow K⁻e⁺V_e CLEO $D^{0(+)} \rightarrow \overline{K}e^+\nu_o$ **BESIII** $D^0 \rightarrow K^- e^+ V_e$ **BESIII** $D^+ \rightarrow K_L^0 e^+ v_e$ **BESIII** $D^+ \rightarrow K^0_{s} e^+ v_{e}$ 0.6 0.7 0.8 **f**^K₊(**0**)

14

Comparisons of the measured $|V_{cs(d)}|$

Method 1	$\mathbf{f}_{D(s)} \mathbf{V}_{cd(s)} $	$ \mathbf{V}_{\mathbf{cd}(\mathbf{s})} $	
Method 2	f ^{D→K(π)} +(0) V _{cs(d)}	V _{cs(d)}	imited by both
Method 3	f ^{D(s)→η} ₊(0) V _{cd(s)}	$ \mathbf{V}_{\mathbf{cd}(\mathbf{s})} $	_QCD input
CKMFitter		CKMFitterDELPHI $W^+ \rightarrow c\overline{s}$ CLEO/BELL/BABR/BESIII Kl^+v_1	Taken from
CLEO $D \rightarrow \pi e^+ v_e$		$\begin{array}{lll} \textbf{CLEO} & \tau^{+}(e^{+}\nu_{e}\overline{\nu}_{\tau})\nu_{\tau} \\ \textbf{CLEO} & \tau^{+}(\rho^{+}\overline{\nu}_{\tau})\nu_{\tau} \end{array}$	PDG, and the SL method
BABR $D^0 \rightarrow \pi e^+ \nu_e$		CLEO $\tau^{+}(\pi^{+}\overline{\nabla}_{\tau})\nu_{\tau}$ BABR $\tau^{+}(\mathbf{e}^{+}\nu_{\mathbf{e}}\overline{\nabla}_{\tau},\mu^{+}\nu_{\mu}\overline{\nabla}_{\tau})\nu_{\tau}$	2.4% error
BESIII $D^0 \rightarrow \pi^- e^+ \nu_e$		BELL $\tau^{+}(e^{+}\nu_{e}\overline{\nu}_{\tau},\mu^{+}\nu_{\mu}\overline{\nu}_{\tau},\pi^{+}\overline{\nu}_{\tau})\nu_{\tau}$ BESIII@4.009 $\mu^{+}\nu_{\mu},\tau^{+}(\pi^{+}\overline{\nu}_{\tau})\nu_{\tau}$	
CLEO $D^+ \rightarrow \mu^+ \nu_{\mu}$		CLEO $\mu^* \nu_{\mu}$ BABR $\mu^* \nu_{\mu}$	
BESIII $D^+ \rightarrow \mu^+ \nu_{\mu}$		BELL μ ⁺ ν _μ BESIII@4.178 μ ⁺ ν _μ preliminary	+
0.16 0.18	0.2 0.22 V _{cd}	0 0.5 V _{cs}	1

Further improved LQCD calculations on $f_+^{D(s) \rightarrow P}(0)$ will improve the measurement of $|V_{cs(d)}|$ with much improved precision ¹⁵

LFU test in CS decay $D^{0(+)} \rightarrow \pi l^+ v$ at BESIII

Evidence of violation of LFU at 4σ in

 $P(\chi^2) = 71.6$

0.6 R(D)

0.5

0.2

0.2

0.3

0.4

$$R_{\rm LU}^{0(+)} = \frac{B(D^{0(+)} \to \pi^{-(0)} \mu^+ \nu)}{B(D^{0(+)} \to \pi^{-(0)} e^+ \nu)} \sim 0.97$$

BPDG16: $R_{\rm LU}^0 = 0.82 \pm 0.08 ~(\sim 2.0\sigma)$
 $B(D^0 \to \pi^- \mu^+ \nu) = (0.237 \pm 0.024)\%$

BESIII, arXiv:1802.05492

Study of $D^+ \rightarrow \eta^{(2)}e^+v$ at BESIII

BFs help to constrain gluon component

$$\begin{pmatrix} \eta \\ \eta' \\ G \end{pmatrix} = \begin{pmatrix} \cos \phi' & -\sin \phi' & 0 \\ \sin \phi' \cos \phi_{\rm G} & \cos \phi' \cos \phi_{\rm G} & \sin \phi_{\rm G} \\ -\sin \phi' \sin \phi_{\rm G} & -\cos \phi' \sin \phi_{\rm G} & \cos \phi_{\rm G} \end{pmatrix} \begin{pmatrix} \eta_q \\ \eta_s \\ g \end{pmatrix}$$

Combing CLEO's BFs and taking input value by EPJC69,133 and NPPS162, 312, the $\eta-\eta$ ' mixing angle is determined to be $\phi_P = (40\pm3_{experiment}\pm3_{theory})^0$ 17

Other topics: $D \rightarrow Ve^+v$ at BESIII

BESIII,PRD94(2016)032001

BESIII,PRD92(2015)071101(RC)

 $D^+ \rightarrow \omega e^+ v$

 $r_2 = A_2(0)/A_1(0) = 1.06 \pm 0.15 \pm 0.05$ 18

(c)

cosθ,

Observation of D→Se+v at BESIII

Explore the nontrivial internal structure of light hadron mesons, traditional qq states, tetra quark system.

With chiral unitarity approach in the coupled channels, BF is predicted to be order of 5(6)×10⁻⁵ for D⁰⁽⁺⁾ decays

Improve understanding of classification of light scalar mesons

$$R \equiv \frac{B(D^+ \to f_0 l^+ \nu) + B(D^+ \to \sigma l^+ \nu)}{B(D^+ \to a_0 l^+ \nu)}$$

R=1(3) if traditional qq (tetra quark) system

$$\begin{split} \mathcal{B}(D^+ \to a_0(980)^0 e^+ \nu_e) &\times \mathcal{B}(a_0(980)^0 \to \eta \pi^0) & \mathsf{M}_{\mathrm{nn}}(\mathsf{GeV/c^2}) \\ &= (1.66^{+0.81}_{-0.66} \pm 0.11) \times 10^{-4}, &< 3.0 \times 10^{-4} \text{ at the } 90\% \text{ C.L.} \end{split}$$

$$\begin{split} \mathcal{B}(D^0 \to a_0(980)^- e^+ \nu_e) \times \mathcal{B}(a_0(980)^- \to \eta \pi^-) \\ &= (1.33^{+0.33}_{-0.29} \pm 0.09) \times 10^{-4} \end{split} \qquad \qquad \\ \frac{\Gamma(D^0 \to a_0(980)^- e^+ \nu_e)}{\Gamma(D^+ \to a_0(980)^0 e^+ \nu_e)} = 2.03 \pm 0.95 \pm 0.06 \end{split}$$

Evidence of $D \rightarrow Ae^+v$ at CLEO

EPJC77(2017)587/863

~ `	/		· ·
D ⁺ decay	$D \rightarrow K_1(1270)$	$D \rightarrow$	$K_1(1400)$
Theory (10^{-1})	⁵) 320 ± 40	{0.5,	2.0}

20

BFs of SL D_s⁺ decays at CLEO

CLEO, PRD80(2009)052007 with 310 pb⁻¹ data@4.17 GeV

$$\frac{\Gamma(D_s \to \eta' e\nu)}{\Gamma(D_s \to \eta e\nu)} = R_D \cot^2 \phi$$

$$\frac{\Gamma(D_s \to \eta' e\nu) / \Gamma(D_s \to \eta e\nu)}{\Gamma(D^+ \to \eta' e\nu) / \Gamma(D^+ \to \eta e\nu)} = \cot^4 \phi$$

J. Hietala,^{1,*} D. Cronin-Hennessy,^{1,†} T. Pedlar,² and I. Shipsey³ with 600 pb⁻¹ data@4.17 GeV

Signal mode	BABAR (%)	CLEO-c (%)	This analysis (%)
$D_s \rightarrow \phi e \nu$	$2.61 \pm 0.03 \pm 0.08 \pm 0.15$	$2.36 \pm 0.23 \pm 0.13$	$2.14 \pm 0.17 \pm 0.08$
$D_s \rightarrow \eta e \nu$		$2.48 \pm 0.29 \pm 0.13$	$2.28 \pm 0.14 \pm 0.19$
$D_s \rightarrow \eta' e \nu$		$0.91 \pm 0.33 \pm 0.05$	$0.68 \pm 0.15 \pm 0.06$
$D_s \to f_0 e \nu, f_0 \to \pi \pi$	Seen	$0.20 \pm 0.03 \pm 0.01$	$0.13 \pm 0.03 \pm 0.01$
$D_s \to K_S e \nu$		$0.19 \pm 0.05 \pm 0.01$	$0.20 \pm 0.04 \pm 0.01$
$D_s \to K^* e \nu$		$0.18 \pm 0.07 \pm 0.01$	$0.18 \pm 0.04 \pm 0.01$

 $\theta(\eta-\eta' \text{ mixing angle })=(42\pm2\pm2)^0$

 $\theta(f_0 - ss mixing angle) = (20^{+32} - 20)^0$

21

First study of $D_s^+ \rightarrow K^{(*)0}e^+v$ dynamics at BESIII

Four dimensional un-binned likelihood fit is performed. K* paramters are fixed

 $r_{\rm V}$ =1.67±0.34±0.16 r_2 =0.77±0.28±0.07

Taking |V^{CKMfitter}_{cd}| as input

First absolute BF of $\Lambda_c^+ \rightarrow \Lambda l^+ v$ at BESIII

> Λ_c^+ was observed in 1979

> All decays of Λ_c^+ were measured with high energy data and relative to pK⁻ π^+ , which suffers an error of 25%. No absolute measurement using threshold Λ_c^+ data before BESIII

> Only about 60% decays are known

Theory: (1.4-9.2)%

Theoretical Models	predicated branching fraction for $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$
MBM [1]	1.9%
NRQM [1]	2.6%
SU(4)-symmetry limit [2]	9.2%
RSQM [3]	4.4%
QCM [4]	5.62%
SQM [5]	1.96%
NRQM2 [6]	2.15%
NRQM3 [7]	1.42%
QCD SR1 [8]	$(3.0 \pm 0.9)\%$
QCD SR2 [9]	$(2.6 \pm 0.4)\%$
QCD SR3 [9]	$(5.8 \pm 1.5)\%$
STSR [10]	2.22% for $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$
STNR [10]	1.58% for $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$
HOSR [10]	4.72% for $\Lambda_o^+ \rightarrow \Lambda l^+ \nu_l$
HONR [10]	4.2% for $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$
LCSRs [11]	$(3.0 \pm 0.3)\%$ for $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$ (CZ-type)
PDG 2014 [14]	$(2.1 \pm 0.6)\%$
BESIII	$(3.63 \pm 0.38 \pm 0.20)\%$

$H_{\text{miss}}^{\text{PRL115(2015)221805}}$

3 fb⁻¹ help to explore FF studies

 $B[\Lambda_{c}^{+} \rightarrow \Lambda e^{+}\nu] = (3.63 \pm 0.38 \pm 0.20)\% \qquad B[\Lambda_{c}^{+} \rightarrow \Lambda \mu^{+}\nu_{\mu}] = (3.49 \pm 0.46 \pm 0.26)\%$ $\Gamma[\Lambda_{c}^{+} \rightarrow \Lambda \mu^{+}\nu_{\mu}]/\Gamma[\Lambda_{c}^{+} \rightarrow \Lambda e^{+}\nu_{e}] = 0.96 \pm 0.16 \pm 0.04 \qquad 23$

Summary

■ With 2.9/3.2 fb⁻¹ data taken at 3.773/4.178 GeV, BESIII has obtained the most precise measurements of $D_{(s)}^+ \rightarrow I^+ v$, $D \rightarrow PI^+ v$ and other SL decays

Improved measurements of $f_{D(s)+}$ and $f_{+}^{D \rightarrow K(\pi)}(q^2)$, which are important to calibrate LQCD calculations

Improved measurements of $|V_{cs(d)}|$, which is important for unitarity test of the CKM matrix

Other studies of D SL decays (form factor measurements, new decay modes) are ongoing and will be ready soon

■ With 0.567 fb⁻¹ data taken at 4.6 GeV, BESIII reported the first absolute BFs of $\Lambda_c^+ \rightarrow \Lambda I^+ v$

In the near future, more 10 fb⁻¹ data at 3.773 GeV and 3 fb⁻¹ data at ~4.65 GeV at BESIII will further benefit all measurements

Prospects at HIEPA

If 300 fb⁻¹ data can be collected at 3.773, 4.18 and 4.65 GeV, respectively

	Systematic error	Statistical error		
		~3 fb ⁻¹	12 fb ⁻¹	300 fb ⁻¹
∆f _{D+} /f _{D+}	~0.9%	2.6%	1.3%	0.26%
∆f _{Ds+} /f _{Ds+}	~1.5%	1.1%	0.6%	0.11%
∆f _{D→K} /f _{D→K}	~0.5%	0.35%	0.18%	0.04%
$\Delta f_{D \to \pi} / f_{D \to \pi}$	~0.7%	1.26%	0.63%	0.13%
V _{cs} ^{Ds+→I+v}	~1.5%	1.8%	0.9%	0.18%
V _{cs} ^{D0→K-e+v}	2.5% <mark>(2.4%^{LQCD})</mark>	0.35%	0.18%	0.04%
V _{cd} ^{D+→μ+v}	2.1%(1.9→0.5% ^{LQCD})	2.6%	1.3%	0.26%
V _{cd} ^{D0→π-e+v}	4.5% <mark>(4.4%^{LQCD})</mark>	1.26%	0.63%	0.13%

■ LQCD calculation uncertainties in the FFs of D \rightarrow PI⁺v are expected to reduce to (0.5-1.0)% to better measure $|V_{cs(d)}|$ using D SL decays

• Precise FF studies, especially for D \rightarrow S/Ae⁺v and Λ_c^+ SL decays, as well as other suppressed SL decays

Thank you!

Study of $D^+ \rightarrow K_L e^+ v$ at BESIII

➢ Regardless of long flight distance, K_L interact with EMC and deposit part of energy, thus giving position information

> After reconstructing all other particles, K_L can be inferred with position information and constraint $U_{miss} \rightarrow 0$

$\overline{B}(D^+ \rightarrow K_L e^+ v) = (4.482 \pm 0.027 \pm 0.103)\%$

$$A_{CP} \equiv \frac{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) - \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}{\mathcal{B}(D^+ \to K_L^0 e^+ \nu_e) + \mathcal{B}(D^- \to K_L^0 e^- \bar{\nu}_e)}$$
$$\mathbf{A_{CP}}^{\mathbf{D}+ \mathbf{\to} \mathbf{KL} e+\mathbf{v}} = (-0.59 \pm 0.60 \pm 1.50)\%$$

Simultaneous fit to event density I(q²) with 2-par. series Form Factor

 $f_{+}^{K}(0)|V_{cs}| = 0.728 \pm 0.006 \pm 0.011$

 $r_1 = a_1/a_0 = -1.91 \pm 0.33 \pm 0.24$

Absolute BF for $D^+ \rightarrow \overline{K}^0 e^+ v$ via $\overline{K}^0 \rightarrow \pi^0 \pi^0$

Taking
$$\underline{\tau}_{D^+}, \tau_{D0}, B[D^0 \rightarrow K^-e^+v]$$
 and $B[D^+ \rightarrow \overline{K}^0 e^+v]$ from the PDG as input

 $\frac{\Gamma[D^0 \to K^- e^+ v]}{\overline{\Gamma}[D^+ \to \overline{K}^0 e^+ v]} = 0.969 \pm 0.025$

Agrees with isospin conservation within 1.2σ

Improved BF for $D^+ \rightarrow \bar{K}^0 \mu^+ v$ at BESIII

Taking B[D⁰→K[•]μ⁺v] and B[D⁺→K⁰e⁺v] from the PDG as input

$$\frac{\Gamma[D^0 \to K^- \mu^+ \nu]}{\overline{\Gamma}[D^+ \to \overline{K}^0 \mu^+ \nu]} = 0.963 \pm 0.044$$
$$\frac{\Gamma[D^+ \to \overline{K}^0 \mu^+ \nu]}{\Gamma[D^+ \to \overline{K}^0 e^+ \nu]} = 0.988 \pm 0.033$$

Support isospin conservation in these two decays within errors

Consistent with theory prediction 0.97 within error ²⁹

BFs of $D_s^+ \rightarrow \eta^{(')}e^+v$ at BESIII

Benefit the understanding of the source of difference of inclusive decay rates of D⁰⁽⁺⁾ and D_s⁺

Complementary information to understand η-η' mixing

482 pb⁻¹ data@4.009 GeV, PRD94(2016)112003

Much improved LQCD calculations

Taking from Aida X. El-Khadra's talk at Beauty2014

errors (in %) comparison: FLAG-2 averages vs. new results

review by C. Bouchard @ Lattice 2014