

- 研究吨量级探测器屏蔽系统,降低环境本底,同时研究屏蔽体材料本底,并进行优化控制;
- 研究探测器核心构件铜的原生和**宇生放射性**,评估其本底 并进行优化控制;
- 分析和测量各种本底来源,建立CDEX-1T本底模型,给出 不同本底贡献,并对未来实验进行指导,以达到预期本底 水平;

吨量级探测器屏蔽系统

吨量级探测器概念图

液氮屏蔽的优势:

- ▶ 液氮放射性相对铜(U/Th)、液氩
 (³⁹Ar、⁴²K、²²²Rn)更干净;
 ▶ 液氮造价更低,结构简单;
- > 液氮纯化比电解铜更有效率;
- 液氮作为探测器制冷介质;
- > 液氮可做切伦科夫探测器;

针对液氮屏蔽系统,需要解决的问题:

- 1. 给出液氮厚度, 屏蔽外部环境本底 (<10⁻⁴ cpkkd@1keV)
- 2. 研究液氮自身放射性及其产生的本底;

本底来源及控制

/ 为了达到目标本底~10⁻³ cpkkd@1keV,需要分析探测器各种本底来
源、进行优化控制;

CJPL-II 环境放射性测量 🦻

(1) CJPL-II宇宙线及其次级粒子

运行时间: 2016年10月23日-2017年12月23日;

探测器:塑料闪烁体探测器;

分析方法: 通过三重符合甄别缪子;

宇宙线通量率(300 day)

位置与核素	通量率(10 ⁻¹⁰ cm ⁻² s ⁻¹)
CJPL-I µ	2.0±0.4 ^[1]
CJPL-II µ	2.2±0.5
CJPL-II µ	3.17 (模拟值)
CJPL-II µ->n	0.84 (模拟值)
CJPL-II μ->γ	157 (模拟值)

✓ CJPL-II的缪子及其次级粒子通量率极低,本底相对其他本底影响小,本研究 不考虑;

(2) 多球谱仪研制及中子能谱测量

- ✓ 研制一套多球中子谱仪, 能量响应0.025eV~10GeV中子;
- ✓ 首次给出了CJPL-II 实验大厅中子能谱,主要来源于混凝土中的(α,n)和sf中子;

(3) 地下实验室环境γ测量

✓ 实验室墙壁中含有²³⁸U/²³²Th/⁴⁰K,利用就地伽马谱仪测量其含量;

就地γ谱仪角响应

墙壁混凝土中U/Th/K含量

核素	含量 (Bq/kg)
²³⁸ U	8.2±4.9
²³² Th	2.9±1.1
⁴⁰ K	47.2±9.1
	Contract of the State of the St

辐射防护研究室 胡庆东

液氮对中子衰减效果

液氮厚度与中子通量率、本底

液氮厚度 (<i>m</i>)	中子通量率 (<i>cm⁻²s⁻¹</i>)	在探测器内的本底 <i>cpkkd</i> @1keV
1	~10 ⁻⁹	< 10 ⁻⁶
2	~10-11	< 10 ⁻⁸
3	~10 ⁻¹³	< 10 ⁻¹⁰

> 每增加1m液氮,可将中子通量降低100倍;

- ▶ 根据前人研究,单位通量中子锗本底为<10³cpkkd@1keV/(cm⁻²s⁻¹);
- ➤ 1m液氮,环境中子本底 <10⁻⁶ cpkkd@1keV;

屏蔽系统自身本底

> 液氮中可能存在的放射性核素:

- 液氮被高能宇宙线照射后, 会产生⁷Be等**宇生核素**;
- 液氮在生产、运输、使用过程中会引入²²²Rn、⁸⁵Kr;
- 液氮罐壁(不锈钢)会逸出²²²Rn进入液氮中;
- ≻ 液氮中宇生核素: Geant4+CRY

核素	半衰期	衰变模式及能量	子体	放射性活度(Bq/kg)
¹⁰ Be	1.39×10 ⁶ years	$\beta^{-} 100 \%$ (556.0 keV)	$^{10}\mathrm{B}$	8.33×10 ⁻¹¹
⁷ Be	53.2 d	EC 10.52% (477.595 keV)	⁷ Li	6.77×10 ⁻⁵
¹⁴ C	5730 years	β ⁻ 100 % (156.475 keV)	^{14}N	2.57×10-7
			辐射防护研	穷室 胡庆东

液氮被海平面宇宙线照射1年

▶ 锦屏山处宇宙线轰击液氮30~50 d,可产生⁷Be ~0.1*mBq/kg*,其在探测器内的本 底为 ~10⁻³ cpkkd@1keV;

基于CDEX-10测试能谱,分析液氮中⁷Be含量

吨量级探测器屏蔽系统

- ▶ 测量时间 2015.07-2015.10, 有效数据 19 day*kg;
- ▶ 测量地点 CJPL-I; 探测器: 下方Ge-3探测器, 1kg;

辐射防护研究室 胡庆东 🗕

液氮中宇生本底

▶ 7Be的半衰期只有53天,液氮在地下实验室循环使用,会自行衰减;

地下实验室 放置时间	活度 (<i>µ Bq/kg</i>)	本底 (<i>cpkkd@1keV</i>)	本底上限 (<i>cpkkd@1keV</i>)
10 d	100	$1.0 imes 10^{-3}$	1.0×10 ⁻²
30 d	75	$7.5 imes 10^{-4}$	$7.5 imes 10^{-3}$
50 d	58	5.8×10 ⁻⁴	5.8×10 ⁻³
100 d	30	3.0×10 ⁻⁴	3.0×10 ⁻³
200 d	8	$8.0 imes 10^{-5}$	8.0×10 ⁻⁴

✓ 根据模拟计算,液氮中⁷Be为~0.1*mBq/kg*时,液氮在地下实验室**放置30天后**其本 底可达到<10⁻³*cpkkd*@1*keV;*根据液氮中⁷Be上限值~1*mBq/kg*,液氮在地下实验 室**放置最多不超过200天**,其本底可达到<10⁻³ *cpkkd*@1*keV*。

- ▶ 单位活度⁸⁵Kr本底低、活度低, ⁸⁵Kr本底<5×10⁻⁶ cpkkd@1keV;
- ▶ 单位活度²²²Rn本底高, 0.15 cpkkd@1keV;
- ➤ 要求液氮中²²²Rn含量<5 µBq/kg (本底<10⁻³ cpkkd@1keV)

液氮中²²²Rn含量

基于CDEX-10测试能谱,分析液氮中²²²Rn含量

▶ 分析方法:利用各成分模拟谱峰,拟合实验谱峰;

 $H_i(E) = \sum a_i \cdot h_i \quad H_i(E)$ 为实测γ峰面积、 h_i 为不同来源γ峰面积, a_i 为拟合

- > 获取各本底成分模拟谱:
 - 铜砖
 - 液氮
 - 探测器构件
 - 探测器内铅屏蔽

> 拟合前, 设定各拟合系数 (核素含量) 边界

伽马本底来源	主要原生核素	含量上限
铜砖	²³⁸ U, ²³² Th, ⁴⁰ K	<10mBq/kg, <1mBq/kg, <1mBq/kg
液氮	²²² Rn, ⁸⁵ Kr	<10mBq/kg ,<10µBq/kg
探测器铜构件	²³⁸ U, ²³² Th, ⁴⁰ K	<10mBq/kg, <1mBq/kg, <1mBq/kg
探测器内铅屏蔽体	²³⁸ U, ²³² Th, ⁴⁰ K	<1mBq/kg, <1mBq/kg, <10mBq/kg

采用最小二乘法拟合

拟合结果:

- ➤ 液氮中²²²Rn含量为~0.1*mBq/kg*,其在吨量级探测器中产生的本底为 ~2×10⁻² cpkkd@1keV;
- ➢ 液氮需要纯化,需将液氮中²²²Rn含量降低到~µBq/kg,其本底将降到 ~2×10⁻⁴ cpkkd@1keV;

吨量级探测器屏蔽系统

CDEX-1T

屏蔽系统本底构成

E.	本底来源	ROI本底 (<i>cpkkd</i> @1keV)
	液氮外部γ	<10-4
	液氮外部中子	<10-4
	液氮中 ⁷ Be	<10 ⁻⁴ (地下放置200 <i>d</i>)
	液氮中 ²²² Rn	~2×10 ⁻² (未纯化)
	液氮中 ²²² Rn	~2×10 ⁻⁴ (纯化)
	液氮中 ⁸⁵ Kr	~5×10 ⁻⁶

✓ 采用至少4m、纯化的液氮(µBq/kg ²²²Rn)屏蔽系统,可将吨量级探测器环境本底、屏蔽体材料自身本底降低到~2×10⁻⁴ cpkkd@1keV;

> 探测器核心构件分为铜材质和非铜材,铜材质居多;

探测器构件本底研究

CDEX-1T探测单元模型

探测器外壳为铜

- > 铜材质放射性来源:
- ① 高能宇宙线轰击铜产生⁵⁶ Co等宇生核素;
- ② 铜中²³⁸U、²³²Th、⁴⁰K等原生核素;
- ③ 铜中 (α,n) 、sf中子;

- > 非铜材质放射性来源:
- ① 高能宇宙线轰击产生的⁷Be宇生核素;
- ② ²³⁸U、²³²Th、⁴⁰K等原生核素;
- ③ (α,n) 、sf中子;

CDEX-1T探测器构件组成:

探测器构件本底研究

构件	材质	单个质量(g)	总质量(g)
晶体绝缘垫	PTFE	1.2	7.2
电路板	Teflon	5.0	5.0
螺柱(下)	PEEK	0.6	0.6
绝缘片	三氧化二铝	3.1	3.1
弹簧	硅	1.0	1.0
螺柱(上)	铜	5.1	5.1
弹簧座	铜	4.2	4.2
高压片	铜	2.0	2.0
探针	铜	1.0	1.0
连接螺母	铜	2.0	12.0
支架 (下)	铜	73.8	73.8
支撑杆	铜	22.3	66.9
支架 (上)	铜	73.8	73.8
铜包壳	铜	1934. 9	1934. 9

CDEX-1T 单个探测器

利用MC模拟,建立探测器的精细模型,分析不同构件在探测器内产生的本底
 根据不同构件本底贡献,优化自制探测器本底水平;

铜构件宇生本底研究

铜构件宇生本底能谱

- > 海平面照射3年、地下1年,宇生本底~4.5×10⁻³ cpkkd@1keV, 主要来自铜壳(84%),
- ▶ 海平面照射3年、地下1年,主要宇生核素是⁶⁰Co(38%)、⁵⁷Co(35%);
- ➢ 海平面照射3年后,地下放置5年才能达到<1×10⁻³ cpkkd@1keV;

> 含有²³⁸U、²³²Th的构件, 会通过 (α,n) 和sf产生中子;

铜构件中子本底

➢ 铜构件产生的中子通量率(锗晶体附近) <2×10⁻¹¹ cm⁻²s⁻¹;

✓ 探测器铜构件中子产生的本底<2×10⁻⁸ cpkkd@1keV;

非铜构件原生本底能谱

非铜构件活度 (mBq/kg)

- ▶ 非铜构件造成的本底为~0.3 cpkkd@1keV, 远高于铜构件本底;
- ▶ 非铜构件本底主要源于绝缘片 (80%) 和电路板 (10%);
- > 应采用干净的非铜构件降低本底; (无法在探测器内屏蔽);
- mBq/kg的非铜构件,本底可降低为~2×10⁻³ cpkkd@1keV;

PTFE宇生放射性核素产额及活度(海平面放置3年、地下1年)

核素	半衰期	衰变模式及能量	产额(kg ⁻¹ d ⁻¹)	活度(µBq/kg)
⁷ Be	53.2 d	EC 10.52% (477.6 keV)	29.4	2.9
¹⁰ Be	1.39×10 ⁶ years	β ⁻ 100 % (556.0 keV)	22.5	3.6×10 ⁻⁴
¹⁴ C	5730 years	β ⁻ 100 % (156.5 keV)	23.0	9.7×10 ⁻²

构件	材质/质量(g)	构件	材质/质量(g)
绝缘垫	PTFE/7.2	电路板	Teflon/5.0
绝缘片	Al ₂ O ₃ /3.1	弹簧	Si/1.0
螺柱上	PEEK/0.6		

- ▶ 非铜构件主要是PTFE、PEEK等,主要元素是氢、碳和氧,宇生核素种类少;
- > 非铜构件宇生核素活度低、质量小;
- ▶ 非铜构件字生核素本底小于10⁻⁶ cpkkd@1keV;

非铜构件中子本底

> 含有²³⁸U、²³²Th的构件, 会通过 (α,n) 和sf产生中子;

▶ 非铜构件产生的中子通量率 (探测器附近) <6×10⁻¹⁰ cm⁻²s⁻¹;

- ▶ 探测单元的中子主要来自绝缘片和电路板 (95%)
- ✓ 探测器非铜构件中子产生的本底<10⁻⁶ cpkkd@1keV;

CDEX-1T本底模型

CDEX-1T本底优化控制

- ▶ 预期本底降低到~10⁻² cpkkd@1keV 【第1阶段】
 - ① 至少需要4m的液氮;
 - ② 液氮至少在地下放置30天;
 - ③ 液氮中²²²Rn需要纯化(uBq/kg);
 - ④ 探测器内铜构件需要采用电解铜 (uBq/kg);
 - ⑤ 铜构件如果地面放置3年,则地下至少1年;
 - ⑥ 探测器非铜构件材料放射性活度需要优化 (~mBq/kg);
 - ⑦ 地面生产的锗晶体地下至少放置3年;

预期本底降低到~10⁻³ cpkkd@1keV 【第2阶段】 在第1阶段的基础上:

- ① 探测器非铜构件材料放射性活度进一步优化 (~0.1 mBq/kg)
- ② 液氮在地下至少放置200天或者地下生产液氮;
- ③ 在地下生产锗晶体;
- ④ 在地下生产电解铜;