Charmed Baryon Spectroscopy

Hua-Xing Chen

Beihang University

Collaborators: Wei Chen, Atsushi Hosaka, Xiang Liu, Qiang Mao, Shi-Lin Zhu

HIEPA 2018/03/19

CONTENTS

• History of the quark model

Internal structure of heavy mesons

Internal structure of heavy baryons

Phys.Lett. 8 (1964) 214-215

Volume 8, number 3

PHYSICS LETTERS

1 February 1964

A SCHEMATIC MODEL OF BARYONS AND MESONS

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

. .

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: $spin \frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members u^3 , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q \bar{q} \bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while

8419/TH.412 21 February 1964

*)

6)

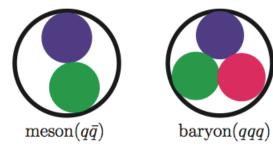
AN SU3 MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING

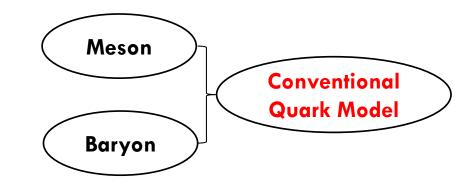
II *)

G. Zweig

CERN ---- Geneva

. . .


Version I is CERN preprint 8182/TH.401, Jan. 17, 1964.


In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAAA, AAAAAAA, etc., where A denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA etc. For the low mass mesons and baryons we will assume the simplest possibilities, AA and AAA, that is, "deuces and treys".

Quark Model


LIGHT UNFLAVORED (S = C = B = 0)			STRAM $(S = \pm 1, C)$		CHARMED, STRANGE $c\overline{c}$ $(C = S = \pm 1)$: ℓ ^G (J ^{PC})	
	$I^{G}(J^{PC})$	- 5 - 0,	$I^G(J^{PC})$	(5 – ±1, 0	$I(J^{P})$	$(U = U = \pm 1)$ $I(J^{P})$	• η _c (1S)	0+(0 - +)
• π^{\pm}	$1^{-}(0^{-})$	 π₂(1670) 	$1^{-}(2^{-+})$	• K±	$1/2(0^{-})$	 D[±]_s 0(0[−]) 	 J/ψ(1S) 	$0^{-}(1^{-})$
 π⁰ 	$1^{-}(0^{-+})$	 φ(1680) 	$0^{-(1^{-})}$	• K ⁰	$1/2(0^{-})$	• $D_s^{*\pm}$ 0(??)	• $\chi_{c0}(1P)$	$0^{+}(0^{++})$
• η	$0^{+}(0^{-+})$	 ρ₃(1690) 	1+(3)	• K_S^0	$1/2(0^{-})$	• $D_{s0}^{*}(2317)^{\pm} 0(0^{+})$	• $\chi_{c1}(1P)$	$0^{+}(1^{++})$
 f₀(600) 	$0^{+}(0^{++})$	 ρ(1700) 	$1^{+}(1^{})$	• K ⁰ _L	$1/2(0^{-})$	• $D_{s1}(2460)^{\pm} = 0(1^{+})$	 <i>h_c</i>(1<i>P</i>) 	??(1+-)
 ρ(770) 	$1^+(1^{})$	$a_2(1700)$	$1^{-}(2^{++})$	K [*] ₀ (800)	$1/2(0^+)$	• $D_{s1}(2536)^{\pm} 0(1^{+})$	• $\chi_{c2}(1P)$	$0^{+}(2^{++})$
 ω(782) 	$0^{-}(1^{-})$	 f₀(1710) 	$0^{+}(0^{+}+)$	• K*(892)	1/2(1-)	 • D_{s2}(2573)[±] 0(??) 	• $\eta_c(2S)$	$0^{+}(0^{-+})$
 η'(958) 	$0^{+}(0^{-+})$	$\eta(1760)$	$0^+(0^{-+})$	 K₁(1270) 	$1/2(1^+)$	$D_{s1}(2700)^{\pm} 0(1^{-})$	 ψ(2S) 	$0^{-}(1^{-})$
 f₀(980) 	$0^{+}(0^{++})$	 π(1800) 	$1^{-}(0^{-+})$	• K ₁ (1400)	$1/2(1^+)$		 ψ(3770) 	$0^{-}(1^{-})$
 a₀(980) 	$1^{-}(0^{++})$	$f_2(1810)$	$0^{+}(2^{++})$	 K*(1410) 	$1/2(1^{-})$	BOTTOM	 X(3872) 	0 [?] (? ^{?+})
 φ(1020) 	0-(1)	X(1835)	$??(?^{-+})$	 K[*]₀(1430) 	$1/2(0^+)$	$(B = \pm 1)$	$\chi_{c2}(2P)$	$0^{+}(2^{++})$
 h₁(1170) 	$0^{-}(1^{+})$	 \$\phi_3\$(1850) 	0-(3)	 K[*]₂(1430) 	$1/2(2^+)$	 B[±] 1/2(0[−]) 	X(3940)	??(???)
 b₁(1235) 	$1^{+}(1^{+})$	$\eta_2(1870)$	$0^{+}(2^{-+})$	K(1460)	1/2(0-)	• B ⁰ 1/2(0 ⁻)	X(3945)	??(???)
 a₁(1260) 	$1^{-}(1^{++})$	• $\pi_2(1880)$	$1^{-}(2^{-+})$	$K_2(1580)$	$1/2(2^{-})$	 B[±]/B⁰ ADMIXTURE 	 ψ(4040) 	$0^{-}(1^{-})$
 f₂(1270) 	$0^{+}(2^{++})$	$\rho(1900)$	$1^{+}(1^{-})$	K(1630)	1/2(??)	 <i>B</i>[±]/<i>B</i>⁰/<i>B</i>⁰_s/<i>b</i>-baryon 	 ψ(4160) 	$0^{-}(1^{-})$
 f₁(1285) 	$0^{+}(1^{++})$	f ₂ (1910)	$0^{+}(2^{++})$	K ₁ (1650)	$1/2(1^+)$	ADMIXTURE	 X(4260) 	??(1)
 η(1295) 	0+(0 - +)	 f₂(1950) 	$0^{+}(2^{++})$	 K*(1680) 	$1/2(1^{-})$	V _{cb} and V _{ub} CKM Ma- trix Elements	X(4360)	??(1)
 π(1300) 	$1^{-}(0^{-+})$	$\rho_3(1990)$	1+(3)	 K₂(1770) 	$1/2(2^{-})$	• B* 1/2(1 ⁻)	 ψ(4415) 	$0^{-}(1^{-})$
 a₂(1320) 	$1^{-}(2^{++})$	 f₂(2010) 	$0^{+}(2^{++})$	 K[*]₃(1780) 	$1/2(3^{-})$	B [*] _J (5732) ?(? [?])	<u> </u>	-
 f₀(1370) 	$0^{+}(0^{++})$	f ₀ (2020)	$0^{+}(0^{+}+)$	 K₂(1820) 	$1/2(2^{-})$	• B ₁ (5721) ⁰ 1/2(1 ⁺)		<u>b</u>
$h_1(1380)$	$?^{-}(1^{+})$	 a₄(2040) 	$1^{-}(4^{++})$	K(1830)	$1/2(0^{-})$	• B [*] ₂ (5747) ⁰ 1/2(2 ⁺)	$\eta_b(1S)$	0+(0 - +)
 π₁(1400) 	$1^{-}(1^{-+})$	 f₄(2050) 	$0^{+}(4^{++})$	K [*] ₀ (1950)	$1/2(0^+)$		 <i>𝔅</i>(1<i>𝔅</i>) 	$0^{-}(1^{-})$
 η(1405) 	0+(0-+)	$\pi_2(2100)$	$1^{-}(2^{-+})$	K [*] ₂ (1980)	$1/2(2^+)$	BOTTOM, STRANGE	• $\chi_{b0}(1P)$	0+(0++)
 f₁(1420) 	$0^{+}(1^{++})$	f ₀ (2100)	$0^{+}(0^{+}+)$	 K[*]₄(2045) 	$1/2(2^{+})$ $1/2(4^{+})$	$(B = \pm 1, S = \mp 1)$	• $\chi_{b1}(1P)$	$0^+(1^{++})$
 ω(1420) 	0-(1)	$f_2(2150)$	$0^{+}(2^{++})$	K ₂ (2043)	$1/2(4^{-})$ $1/2(2^{-})$	• B _s ⁰ 0(0 ⁻)	• $\chi_{b2}(1P)$	0+(2++)
f ₂ (1430)	$0^{+}(2^{++})$	$\rho(2150)$	$1^{+}(1^{})$	K ₂ (2250) K ₃ (2320)	$1/2(2^{-})$ $1/2(3^{+})$	• B [*] _s 0(1 ⁻)	 <i>𝔅</i>(2<i>𝔅</i>) 	0-(1)
 a₀(1450) 	$1^{-}(0^{++})$	$\phi(2170)$	0-(1)	K ₅ (2380)	$1/2(5^{-})$ $1/2(5^{-})$	• B _{s1} (5830) ⁰ 1/2(1 ⁺)	$\Upsilon(1D)$	0-(2)
 ρ(1450) 	$1^{+}(1^{-})$	f ₀ (2200)	$0^{+}(0^{+}+)$	K (2500)	$1/2(3^{-})$ $1/2(4^{-})$	 B[*]₅₂(5840)⁰ 1/2(2⁺) 	 χ_{b0}(2P) 	0+(0++)
 η(1475) 	0+(0-+)	$f_J(2220)$		$4 \frac{K_4(2500)}{K(2100)}$??(???)	$B_{s,I}^{*}(5850)$?(??)	• $\chi_{b1}(2P)$	0+(1++)
 f₀(1500) 	$0^{+}(0^{+}+)$	$\eta(2225)$	0+(0-+)	K(3100)	:(:)		• $\chi_{b2}(2P)$	0+(2++)
$f_1(1510)$	$0^{+}(1^{++})$	$\rho_3(2250)$	1+(3)	CHARM	MED	BOTTOM, CHARMED	 <i>↑</i>(35) 	0-(1)

Categorizations

Categorizations

Theoretical explanations of experimental signals

 $D_{s0}^{*}(2317)$

Resonant

Conventional hadrons

Exotic states

Molecular states:

loosely bound states composed of a pair of mesons/baryons; probab bounded by the pion exchange.

> Multiquark states:

bound states of four/five/six quarks; bounded by colored-force between quarks; there are many states within the same multiplet.

> Hybrids:

bound states composed of a pair of quarks and one valance gluon.

Non-Resonant

Many exotic states lie very close to opencharm threshold; It's quite possible that some threshold enhancements are not real resonances.

Kinematical effect

Opening of new threshold

Cusp effect

- Final state interaction
- Interference between continuum and charmonium states
- Triangle singularity due to the special kinematics

Theoretical methods/models mostly from Quark Level

IOP Publishing

- Various quark models
- Various effective methods
- Lattice QCD

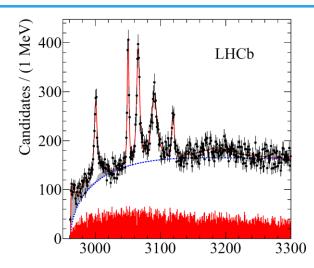
.

QCD sum rules

Rev. Prog. Phys. 80 (2017) 076201 (80pp)
Review
A review of the open charm and open
bottom systems
Hua-Xing Chen¹, Wei Chen², Xiang Liu^{3,4}, Yan-Rui Liu⁵ and Shi-Lin Zhu^{6,7,8}
Frontiers of Physics
December 2015, 10:101406 | <u>Cite as</u>
Charmed baryons circa 2015
Authors Authors and affiliations
Hai-Yang Cheng

Reports on Progress in Physic:

Many methods/models to study productions and decay patterns of exotic hadrons


Theoretical methods/models mostly from Quark Level

- Various quark models
- Various effective methods
- Lattice QCD
- QCD sum rules

.

IOP Publishing	Reports on Progress in Physics
Rep. Prog. Phys. 80 (2017) 076201 (80	https://doi.org/10.1088/1361-6633/aa6420
Review	
A review of	the open charm and open
bottom sys	ems
Hua-Xing Chen ¹ , Wei Ch	² , Xiang Liu ^{3,4} , Yan-Rui Liu ⁵ and Shi-Lin Zhu ^{6,7,8}
Frontiers of Physics	0:101406 <u>Cite as</u>
Charmed	baryons circa 2015
Authors	Authors and affiliations
Hai-Yang Cheng 🖂	

These studies help to understand the internal structure of hadrons

The LHCb Experiment [arXiv:1703.04639]

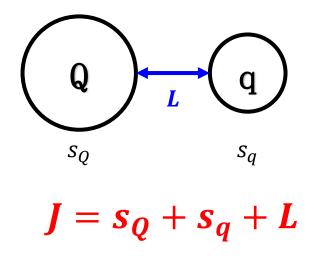
fine structure of QCD?

Internal structure of hadrons

• The internal structure of hadrons is complicated.

• We can construct various interpolating currents to reflect this using the method of

QCD sum rules within


heavy quark effective theory (HQET)

CONTENTS

• History of the quark model

Internal structure of heavy mesons

Internal structure of heavy baryons

heavy meson (Q-q):

• Based on the heavy quark effective theory, the leading order Lagrangian does not depend on m_Q . Hence, the two heavy hadrons with the same light degree of freedom form a degenerate doublet:

heavy meson (Q-q):
$$J = s_Q + (L + s_q)_{j_l}$$

spin of the light degree of freedom

• Based on the heavy quark effective theory, the leading order Lagrangian does not depend on m_Q . Hence, the two heavy hadrons with the same light degree of freedom form a degenerate doublet:

heavy meson (Q-q):
$$J = s_Q + (L + s_q)_{j_l}$$

= 1/2 = 1/2

• Based on the heavy quark effective theory, the leading order Lagrangian does not depend on m_Q . Hence, the two heavy hadrons with the same light degree of freedom form a degenerate doublet:

neavy meson (Q-q):
$$J = s_Q + (L + s_q)_{j_l}$$

= 1/2 = 1/2
 $L = 0 : j_l = 1/2, J^P = (0^-, 1^-)$

• Based on the heavy quark effective theory, the leading order Lagrangian does not depend on m_Q . Hence, the two heavy hadrons with the same light degree of freedom form a degenerate doublet:

> heavy meson (Q-q): $J = s_Q + (L + s_q)_{j_l}$ = 1/2 $L = 0 : j_l = 1/2, J^P = (0^-, 1^-)$ $L = 1 : \begin{cases} j_l = 1/2, J^P = (0^+, 1^+) \\ j_l = 3/2, J^P = (1^+, 1^+) \end{cases}$

• Based on the heavy quark effective theory, the leading order Lagrangian does not depend on m_Q . Hence, the two heavy hadrons with the same light degree of freedom form a degenerate doublet:

> heavy meson (Q-q): $J = s_Q + (L + s_q)_{j_l}$ = 1/2 = 1/2 $L = 0 : i_1 = 1/2, I^P = (0^-, 1^-)$ $L = 1: \begin{cases} j_l = 1/2, J^P = (0^+, 1^+) \\ j_l = 3/2, J^P = (1^+, 1^+) \end{cases}$ $L = 2: \begin{cases} j_l = 3/2, J^P = (1^-, 2^-) \\ j_l = 5/2, J^P = (2^-, 3^-) \end{cases}$

• We can construct relevant interpolating fields with derivatives to well describe the above internal structure:

$$L = 2: \begin{cases} j_{l} = 3/2 \\ J^{\dagger \alpha}_{1,-,3/2} = \sqrt{\frac{3}{4}} \bar{h}_{v}(-i) \left(\mathcal{D}_{t}^{\alpha} - \frac{1}{3} \gamma_{t}^{\alpha} \mathcal{B}_{t} \right) \mathcal{B}_{t} q, \\ J^{P} = (1^{-}, 2^{-}) \\ J^{\dagger \alpha_{1} \alpha_{2}}_{2,-,3/2} = \sqrt{\frac{1}{2}} \bar{h}_{v} \gamma^{5} \frac{(-i)^{2}}{2} \left(\gamma_{t}^{\alpha_{1}} \mathcal{D}_{t}^{\alpha_{2}} \mathcal{B}_{t} + \gamma_{t}^{\alpha_{2}} \mathcal{D}_{t}^{\alpha_{1}} \mathcal{B}_{t} - \frac{2}{3} g_{t}^{\alpha_{1} \alpha_{2}} \mathcal{D}_{t} \cdot \mathcal{D}_{t} \right) q, \\ J^{\dagger \alpha_{1} \alpha_{2}}_{l} = 5/2 \\ J^{P} = (2^{-}, 3^{-}) \\ J^{\dagger \alpha_{1} \alpha_{2}}_{2,-,5/2} = \sqrt{\frac{5}{6}} \bar{h}_{v} \gamma^{5} \frac{(-i)^{2}}{2} \left(\mathcal{D}_{t}^{\alpha_{2}} \mathcal{D}_{t}^{\alpha_{1}} + \mathcal{D}_{t}^{\alpha_{1}} \mathcal{D}_{t}^{\alpha_{2}} - \frac{2}{5} \mathcal{D}_{t}^{\alpha_{2}} \gamma_{t}^{\alpha_{1}} \mathcal{B}_{t} \\ -\frac{2}{5} \mathcal{D}_{t}^{\alpha_{1}} \gamma_{t}^{\alpha_{2}} \mathcal{B}_{t} - \frac{2}{5} g_{t}^{\alpha_{1} \alpha_{2}} \mathcal{D}_{t} \cdot \mathcal{D}_{t} \right) q, \\ J^{\dagger \alpha_{1} \alpha_{2} \alpha_{3}}_{3,-,\frac{5}{2}} = \sqrt{\frac{1}{2}} \bar{h}_{v} \mathcal{S}_{1} [\gamma_{t}^{\alpha_{1}}(-i)^{2} \mathcal{D}_{t}^{\alpha_{2}} \mathcal{D}_{t}^{\alpha_{3}}] q, \end{cases}$$

• Through QCD sum rules, the mass splitting within the same doublet can be evaluated quite well with much less uncertainties.

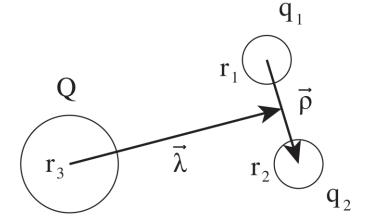
			D mesons (c-q)		Ds mesons (c-s)	
	Multiplets	J^P	Experiments	Ours	Experiments	Ours
S-wave	$L = 0, j_l = \frac{1}{2}$	0-	D		D _s	
		1-	D *		D _s *	
	$L = 1, j_l = \frac{1}{2}$	0+	$D_0^*(2400)$		$D_{s0}^{*}(2317)$	
P-wave		1+	D ₁ (2420)		D _{s1} (2460)	
r-wave	$L = 1, j_l = \frac{3}{2}$	1+	D ₁ (2430)		D _{s1} (2536)	
		2+	$D_2^*(2460)$		$D_{s2}^{*}(2573)$	
D-wave	$L = 2, j_l = \frac{3}{2}$	1-	$D_1^*(2760)$	2.75 GeV	$D_{s1}^{*}(2860)$	2.81 GeV
		2-	D(2750)?	2.78 GeV		2.82 GeV
	$L = 2, j_l = \frac{5}{2}$	2-	D(2750):	2.72 GeV		2.81 GeV
		3-	$D_3^*(2760)$	2.78 GeV	$D_{s3}^{*}(2860)$	2.85 GeV
	$L = 3, j_l = \frac{5}{2}$	2+				3.45 GeV
F-wave		3+				3.50 GeV
	$L = 3, j_l = \frac{7}{2}$	3+				3.20 GeV
		4+				3.26 GeV

			D meso	ns (c-q)	Ds meso	ons (c-s)
	Multiplets	J^P	Experiments	Ours	Experiments	Ours
6	1	0-	D		D _s	
S-wave	$L = 0, j_l = \frac{1}{2}$	1-	D *		D _s *	
	1	0+	$D_0^*(2400)$		$D_{s0}^{*}(2317)$	
P-wave	$L = 1, j_l = \frac{1}{2}$	1+	D ₁ (2420)		D _{s1} (2460)	
r-wave	$L = 1, j_l = \frac{3}{2}$	1+	D ₁ (2430)		D _{s1} (2536)	
	$L = 1, J_l = \frac{1}{2}$	2+	$D_2^*(2460)$		$D_{s2}^{*}(2573)$	
($L = 2, j_l = \frac{3}{2}$	1-	$D_1^*(2760)$	2.75 GeV	$D_{s1}^{*}(2860)$	2.81 GeV
D-wave	$L = 2, J_l = \frac{1}{2}$	2-	D(2750)2	2.78 GeV		2.82 GeV
D -wave	$L = 2, j_l = \frac{5}{2}$	2-	D(2750)?	2.72 GeV		2.81 GeV
	$L = 2, J_l = \frac{1}{2}$	3-	$D_3^*(2760)$	2.78 GeV	$D_{s3}^{*}(2860)$	2.85 GeV
F-wave	$L = 3, j_l = \frac{5}{2}$	2+				3.45 GeV
		3+				3.50 GeV
	7	3+				3.20 GeV
	$L = 3, j_l = \frac{7}{2}$	4+				3.26 GeV

			D mesons (c-q)		Ds mesons (c-s)		
	Multiplets	J^P	Experiments	Ours	Experiments	Ours	
S-wave	$L = 0, j_l = \frac{1}{2}$	0-	D		D _s		
		1-	D *		D _s *		
	$L = 1, j_l = \frac{1}{2}$	0+	$D_0^*(2400)$		$D_{s0}^{*}(2317)$		
P-wave		1+	D ₁ (2420)		D _{s1} (2460)		
r-wave	$L = 1, j_l = \frac{3}{2}$	1+	$D_1(2430)$		D _{s1} (2536)		
		2+	$D_2^*(2460)$		$D_{s2}^{*}(2573)$		
	$L = 2, j_l = \frac{3}{2}$	1-	$D_1^*(2760)$	2.75 GeV	$D_{s1}^{*}(2860)$	2.81 GeV	
D-wave		2-	D(2750)?	2.78 GeV		2.82 GeV	
	$L = 2, j_l = \frac{5}{2}$	2-	D(2730):	2.72 GeV		2.81 GeV	
		3-	$D_3^*(2760)$	2.78 GeV	$D_{s3}^{*}(2860)$	2.85 GeV	
($L = 3, j_l = \frac{5}{2}$	2+				3.45 GeV	
F-wave		3+				3.50 GeV	
	$L = 3, j_l = \frac{7}{2}$	3+				3.20 GeV	
		4+				3.26 GeV	

CONTENTS

• History of the quark model


Internal structure of heavy mesons

Internal structure of heavy baryons

The internal structure of heavy baryons is more complicated than heavy mesons, and more interesting:

 λ -excitation and ρ -excitation

heavy baryon $(Q-q_1-q_2)$:

$$J = s_Q + s_{q1} + s_{q2} + l_\rho + l_\lambda$$

= $s_Q + (s_{q1} + s_{q2} + l_\rho + l_\lambda)_{j_l}$

The Pauli principle can be directly applied to the two light quarks:

$$\succ$$
 color $\longrightarrow \overline{3}_{\mathcal{C}}$ antisymmetric

> orbital
$$\longrightarrow l_{\rho} \begin{cases} symmetric \\ antisymmetric \end{cases}$$

> spin
$$\longrightarrow s_{qq} = \begin{cases} 1 \text{ symmetric} \\ 0 \text{ antisymmetric} \end{cases}$$

> SU(3) flavor $\longrightarrow \begin{cases} 6_F \text{ symmetric} \\ \overline{3}_F \text{ antisymmetric} \end{cases}$

S-wave heavy baryons:

- \succ color $\longrightarrow \overline{3}_{\mathcal{C}}$ antisymmetric
- ightarroworbital \longrightarrow $l_
 ho=0$ symmetric

> spin $\longrightarrow s_{qq} = \begin{cases} 1 \text{ symmetric} \\ 0 \text{ antisymmetric} \end{cases}$ > SU(3) flavor $\longrightarrow \begin{cases} 6_F \text{ symmetric} \\ \overline{3}_F \text{ antisymmetric} \end{cases}$

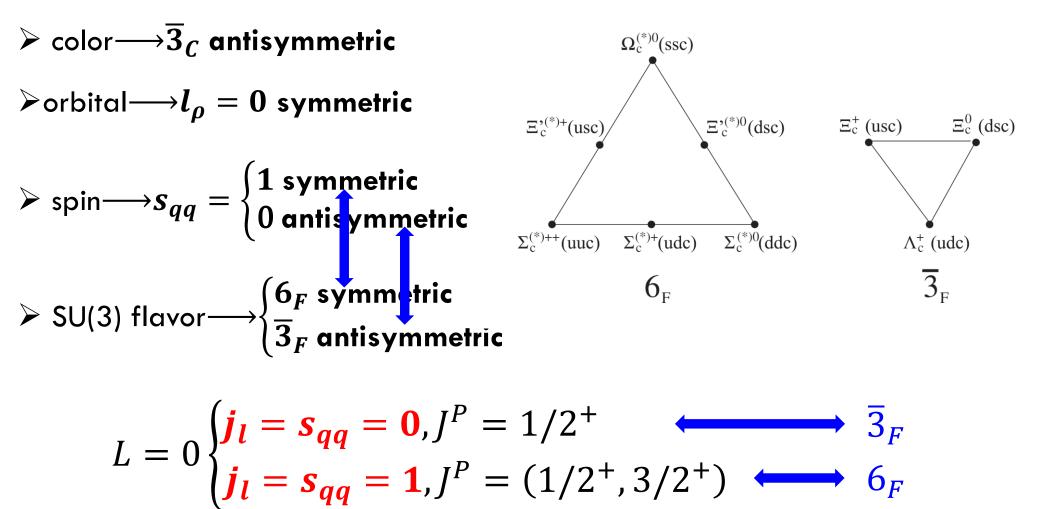
S-wave heavy baryons:

- \succ color $\longrightarrow \overline{3}_{\mathcal{C}}$ antisymmetric
- ightarroworbital \longrightarrow $l_
 ho=0$ symmetric

> spin
$$\rightarrow s_{qq} = \begin{cases} 1 \text{ symmetric} \\ 0 \text{ antisymmetric} \end{cases}$$

> SU(3) flavor $\rightarrow \begin{cases} 6_F \text{ symmetric} \\ \overline{3}_F \text{ antisymmetric} \end{cases}$

S-wave heavy baryons:


 \succ color $\longrightarrow \overline{3}_{\mathcal{C}}$ antisymmetric

ightarroworbital \longrightarrow $l_
ho=0$ symmetric

spin
$$\longrightarrow s_{qq} = \begin{cases} 1 \text{ symmetric} \\ 0 \text{ antisymmetric} \end{cases}$$
 SU(3) flavor $\longrightarrow \begin{cases} 6_F \text{ symmetric} \\ \overline{3}_F \text{ antisymmetric} \end{cases}$

$$L = 0 \begin{cases} \boldsymbol{j_l} = \boldsymbol{s_{qq}} = \boldsymbol{0}, J^P = 1/2^+ & \longrightarrow & \overline{3}_F \\ \boldsymbol{j_l} = \boldsymbol{s_{qq}} = \boldsymbol{1}, J^P = (1/2^+, 3/2^+) & \longleftarrow & \boldsymbol{6}_F \end{cases}$$

S-wave heavy baryons:

heavy baryons well known

S-wave charmed baryons

$$L = 0 \begin{cases} \boldsymbol{j_l} = \boldsymbol{0}, J^P = 1/2^+ & \overline{3}_F: \Lambda_c, \Xi_c \\ \boldsymbol{j_l} = \boldsymbol{1}, J^P = (1/2^+, 3/2^+) & \boldsymbol{6}_F: (\Sigma_c, \Sigma_c^*), (\Xi_c^\prime, \Xi_c^*), (\Omega_c, \Omega_c^*) \end{cases}$$

S-wave bottom baryons

$$L = 0 \begin{cases} \mathbf{j}_{l} = \mathbf{0}, J^{P} = 1/2^{+} & \overline{\mathbf{3}}_{F}: \Lambda_{b}, \Xi_{b} \\ \mathbf{j}_{l} = \mathbf{1}, J^{P} = (1/2^{+}, 3/2^{+}) & \mathbf{6}_{F}: (\Sigma_{b}, \Sigma_{b}^{*}), (\Xi_{b}^{*}, \Xi_{b}^{*}), (\Omega_{b}, \Omega_{b}^{*}) \end{cases}$$

heavy baryons well known

S-wave charmed baryons

$$L = 0 \begin{cases} \mathbf{j}_{l} = \mathbf{0}, J^{P} = 1/2^{+} & \overline{\mathbf{3}}_{F}: \Lambda_{c}, \Xi_{c} \\ \mathbf{j}_{l} = \mathbf{1}, J^{P} = (1/2^{+}, 3/2^{+}) & \mathbf{6}_{F}: (\Sigma_{c}, \Sigma_{c}^{*}), (\Xi_{c}^{\prime}, \Xi_{c}^{*}), (\Omega_{c}, \Omega_{c}^{*}) \end{cases}$$

S-wave bottom baryons

$$L = 0 \begin{cases} \mathbf{j}_{l} = \mathbf{0}, J^{P} = 1/2^{+} & \overline{\mathbf{3}}_{F}: \Lambda_{b}, \Xi_{b} \\ \mathbf{j}_{l} = \mathbf{1}, J^{P} = (1/2^{+}, 3/2^{+}) & \mathbf{6}_{F}: (\Sigma_{b}, \Sigma_{b}^{*}), (\Xi_{b}^{*}, \Xi_{b}^{*}), (\Omega_{b}, \Omega_{b}^{*}) \end{cases}$$

missing

P-wave charmed baryons

 $\mathbf{\overline{3}}_{C}(\mathbf{A}) \begin{pmatrix} l_{\rho} = 1 \ (\mathbf{A}) \\ l_{\lambda} = 0 \end{pmatrix} \xrightarrow{s_{l} = 0} (\mathbf{A}) \longrightarrow \mathbf{6}_{F}(\mathbf{S}) \longrightarrow j_{l} = 1; \ \Sigma_{c1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Xi_{c1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Omega_{c1} \left(\frac{1}{2}, \frac{3}{2}\right) & (1-a) \left[\mathbf{6}_{F}, 1, 0, \rho\right] \\ j_{l} = 0 & \lambda_{c0} \left(\frac{1}{2}\right) & \Xi_{c0} \left(\frac{1}{2}\right) & (1-b) \left[\mathbf{\overline{3}}_{F}, 0, 1, \rho\right] \\ s_{l} = 1 \ (\mathbf{S}) \longrightarrow \mathbf{\overline{3}}_{F}(\mathbf{A}) \begin{pmatrix} j_{l} = 0; \ \Lambda_{c1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Xi_{c1} \left(\frac{1}{2}, \frac{3}{2}\right) & (1-c) \left[\mathbf{\overline{3}}_{F}, 1, 1, \rho\right] \\ j_{l} = 2; \ \Lambda_{c2} \left(\frac{3}{2}, \frac{5}{2}\right) & \Xi_{c2} \left(\frac{3}{2}, \frac{5}{2}\right) & (1-d) \left[\mathbf{\overline{3}}_{F}, 2, 1, \rho\right] \\ l_{\rho} = 0 \ (\mathbf{S}) \\ l_{\lambda} = 1 & s_{l} = 1 \ (\mathbf{S}) \longrightarrow \mathbf{\overline{3}}_{F}(\mathbf{A}) \longrightarrow j_{l} = 1; \ \Lambda_{c1} \left(\frac{1}{2}, \frac{3}{2}\right) & \Xi_{c1} \left(\frac{1}{2}, \frac{3}{2}\right) & (2-a) \left[\mathbf{\overline{3}}_{F}, 1, 0, \lambda\right] \\ s_{l} = 1 \ (\mathbf{S}) \longrightarrow \mathbf{\overline{3}}_{F}(\mathbf{A}) \longrightarrow j_{l} = 0; \ \Sigma_{c0} \left(\frac{1}{2}\right) & \Xi_{c0} \left(\frac{1}{2}\right) & \Omega_{c0} \left(\frac{1}{2}\right) & (2-b) \left[\mathbf{6} \ 0 \ 1 \ 21 \ \mathbf{\overline{3}}_{F}, 1, 0, \lambda\right] \\ s_{l} = 1 \ (\mathbf{S}) \longrightarrow \mathbf{\overline{3}}_{F}(\mathbf{A}) \longrightarrow j_{l} = 0; \ \Sigma_{c0} \left(\frac{1}{2}\right) & \Xi_{c0} \left(\frac{1}{2}\right) & \Omega_{c0} \left(\frac{1}{2}\right) & (2-b) \left[\mathbf{6} \ 0 \ 1 \ 21 \ \mathbf{\overline{3}}_{F}, 1, 0, \lambda\right] \\ s_{l} = 1 \ \mathbf{\overline{3}}_{F} = 1 \ \mathbf{\overline{3}}_{F} = 0 \ \mathbf{\overline{3}}_{F}$

$$I_{l} = 0: \ \Lambda_{c0} \left(\frac{1}{2} \right) \qquad \Xi_{c0} \left(\frac{1}{2} \right)$$
 (1-b) $[\overline{\mathbf{3}}_{\mathbf{F}}, 0, 1, \rho]$

$$s_l = 1 (\mathbf{S}) \longrightarrow \mathbf{\overline{3}}_{\mathbf{F}} (\mathbf{A}) \longleftrightarrow j_l = 1: \ \Lambda_{c1} \left(\frac{1}{2}, \frac{3}{2} \right) \qquad \Xi_{c1} \left(\frac{1}{2}, \frac{3}{2} \right)$$
(1-c) $[\mathbf{\overline{3}}_{\mathbf{F}}, 1, 1, \rho]$

$$\mathbf{J}_{l} = 2: \ \Lambda_{c2} \left(\frac{3}{2}, \frac{5}{2} \right) \quad \Xi_{c2} \left(\frac{3}{2}, \frac{5}{2} \right) \qquad (1-d) \left[\mathbf{\bar{3}}_{\mathbf{F}}, 2, 1, \rho \right]$$

$$s_{l} = 0 (\mathbf{A}) \longrightarrow \overline{\mathbf{3}}_{\mathbf{F}} (\mathbf{A}) \longrightarrow j_{l} = 1: \Lambda_{c1} \left(\frac{1}{2}, \frac{3}{2} \right) \qquad \Xi_{c1} \left(\frac{1}{2}, \frac{3}{2} \right)$$

$$(2-a) [\overline{\mathbf{3}}_{\mathbf{F}}, 1, 0, \lambda]$$

$$I_{c0} = 0: \ \Sigma_{c0} \left(\frac{1}{2} \right) \qquad \Xi_{c0} \left(\frac{1}{2} \right) \qquad \Omega_{c0} \left(\frac{1}{2} \right) \qquad (2-b) \left[\mathbf{6}_{\mathbf{F}}, 0, 1, \lambda \right]$$

$$f_l = 1 (\mathbf{S}) \longrightarrow \mathbf{6}_{\mathbf{F}} (\mathbf{S}) \longleftrightarrow j_l = 1: \Sigma_{c1} \left(\frac{1}{2}, \frac{3}{2} \right) \quad \Xi_{c1} \left(\frac{1}{2}, \frac{3}{2} \right) \quad \Omega_{c1} \left(\frac{1}{2}, \frac{3}{2} \right) \quad (2-c) \left[\mathbf{6}_{\mathbf{F}}, 1, 1, \lambda\right]$$

 $\int j_l = 2: \ \Sigma_{c2} \left(\frac{3^-}{2}, \frac{5^-}{2} \right) \quad \Xi_{c2} \left(\frac{3^-}{2}, \frac{5^-}{2} \right) \quad \Omega_{c2} \left(\frac{3^-}{2}, \frac{5^-}{2} \right) \quad (2-d) \left[\mathbf{6}_{\mathbf{F}}, 2, 1, \lambda \right]$

P-wave charmed baryons

$$L = 1, \mathbf{j_l} = \mathbf{1}, J^P = (1/2^-, 3/2^-) \quad \overline{3}_F \begin{cases} (\Lambda_c(2595), \Lambda_c(2625)) \\ (\Xi_c(2790), \Xi_c(2815)) \end{cases}$$

P-wave bottom baryons

$$L = 1, \mathbf{j_l} = \mathbf{1}, J^P = (1/2^-, 3/2^-) \quad \overline{3}_F \begin{cases} (\Lambda_b(5912), \Lambda_b(5920)) \\ (\Xi_b(?), \Xi_b(?)) \end{cases}$$

P-wave charmed baryons

$$L = 1, \mathbf{j_l} = \mathbf{1}, J^P = (1/2^-, 3/2^-) \quad \overline{3}_F \begin{cases} (\Lambda_c(2595), \Lambda_c(2625)) \\ (\Xi_c(2790), \Xi_c(2815)) \end{cases}$$

P-wave bottom baryons

$$L = 1, \mathbf{j}_{l} = \mathbf{1}, J^{P} = (1/2^{-}, 3/2^{-}) \quad \overline{3}_{F} \begin{cases} (\Lambda_{b}(5912), \Lambda_{b}(5920)) \\ (\Xi_{b}(?), \Xi_{b}(?)) \end{cases}$$

D-wave charmed baryons

$$L = 2, \mathbf{j}_{l} = \mathbf{2}, J^{P} = (3/2^{+}, 5/2^{+}) \quad \overline{3}_{F} \begin{cases} (\Lambda_{c}(2860), \Lambda_{c}(2880)) \\ (\Xi_{c}(3055), \Xi_{c}(3080)) \end{cases}$$

D-wave bottom baryons

$$L = 2, \mathbf{j}_{l} = \mathbf{2}, J^{P} = (3/2^{+}, 5/2^{+}) \quad \overline{\mathbf{3}}_{F} \begin{cases} (\Lambda_{b}(?), \Lambda_{b}(?)) \\ (\Xi_{b}(?), \Xi_{b}(?)) \end{cases}$$

D-wave charmed baryons

$$L = 2, \mathbf{j}_{l} = \mathbf{2}, J^{P} = (3/2^{+}, 5/2^{+}) \quad \overline{\mathbf{3}}_{F} \begin{cases} (\Lambda_{c}(2860), \Lambda_{c}(2880)) \\ (\Xi_{c}(3055), \Xi_{c}(3080)) \end{cases}$$

D-wave bottom baryons

$$L = 2, \mathbf{j}_{l} = \mathbf{2}, J^{P} = (3/2^{+}, 5/2^{+}) \quad \overline{3}_{F} \begin{cases} (\Lambda_{b}(?), \Lambda_{b}(?)) \\ (\Xi_{b}(?), \overline{Z}_{b}(?)) \end{cases}$$

heavy baryons not well known

P-wave charmed baryons

$$L = 1, j_l = 2?, J^P = (3/2^-?, 5/2^-?)$$

$$6_F \begin{cases} \Sigma_c(2800),? \\ \Xi_c(2930), \Xi_c(2980),? \\ \Omega_c(3000), \Omega_c(3050), \Omega_c(3066), \Omega_c(3090), \Omega_c(3119)? \end{cases}$$

heavy baryons not well known

P-wave charmed baryons

$$L = 1, \mathbf{j}_{l} = 2?, J^{P} = (3/2^{-?}, 5/2^{-?})$$
Are there more $\Sigma_{c}(1P)$ and $\overline{\Sigma}_{c}(1P)$ states?
$$6_{F} \begin{cases} \Sigma_{c}(2800), ?\\ \Sigma_{c}(2930), \Sigma_{c}(2980), ?\\ \Omega_{c}(3000), \Omega_{c}(3050), \Omega_{c}(3066), \Omega_{c}(3090), \Omega_{c}(3119)? \end{cases}$$
Which Ω_{c} states are 1P states?

The doubly heavy baryon $\Xi_{cc}^{++}(3621)$

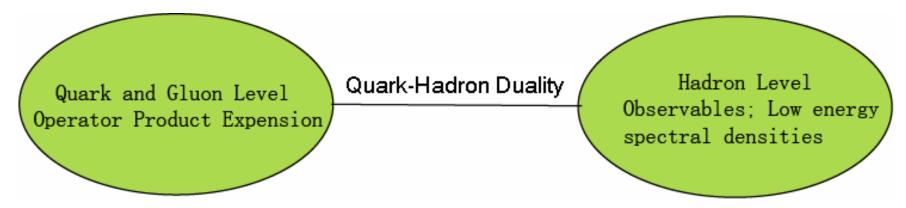
- The heavy quark effective theory may not be very appropriate to study doubly heavy baryons, but their internal structure is still interesting.
- We propose to search for the doubly heavy baryon Ξ_{cc}^* of $J^P = 3/2^+$ via its electromagnetic transition:

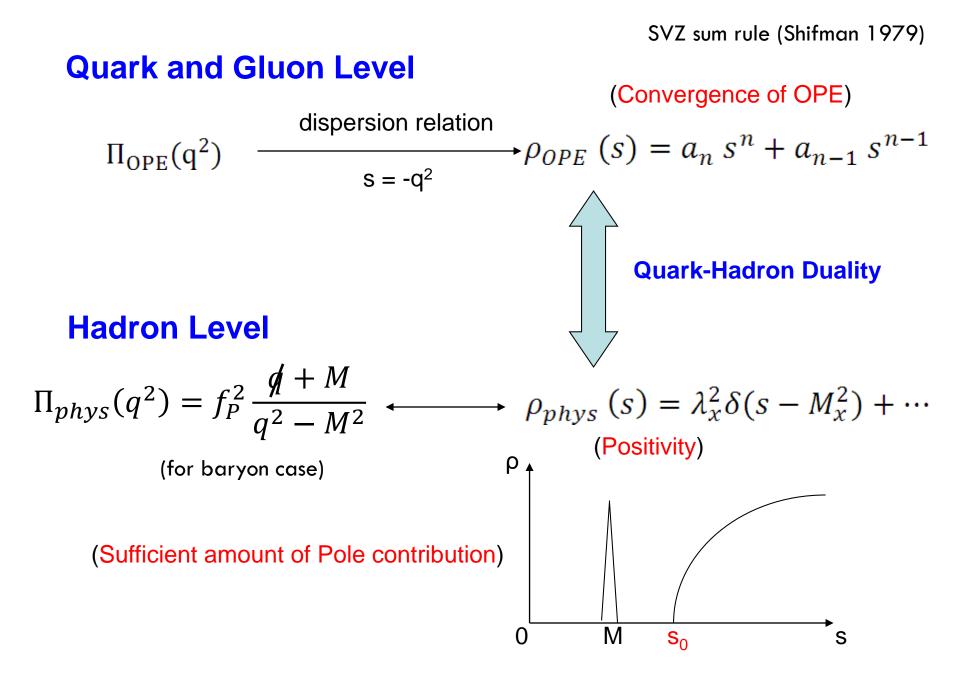
$$\Gamma(\Xi_{cc}^{*++} \to \gamma \Xi_{cc}^{++}) = 13.7_{-7.9}^{+17.7} \ keV.$$

Several Remarks

- Thanks to the efforts of experimentalists, various signals of heavy hadrons as well as exotic hadrons were observed in recent years, making hadron physics popular once more.
- Different from exotic hadrons, it seems that we well know the internal structure of heavy mesons and heavy baryons. Especially, the heavy quark effective theory plays an important role.
- All the above assignments are just possible assignments. We propose to search for higher excited heavy hadrons in future experiments, such as **HIEPA**, to further understand them.

Thank you very much!


QCD SUM RULE


• In sum rule analyses, we consider two-point correlation functions:

$$\begin{split} \Pi(q^2) &\stackrel{\text{\tiny def}}{=} i \int d^4 x e^{iqx} \langle 0 | T\eta(x) \eta^+(0) | 0 \rangle \\ &\approx \sum_n \langle 0 | \eta | n \rangle \langle n | \eta^+ | 0 \rangle \end{split}$$

where η is the current which can couple to hadronic states.

• In QCD sum rule, we can calculate these matrix elements from QCD (OPE) and relate them to observables by using dispersion relation.

QCD Sum Rule

• Borel transformation to suppress the higher order terms:

$$\Pi(M_B^2) \equiv f^2 \, e^{-M^2/M_B^2} = \int_{s_<}^{s_0} e^{-s/M_B^2} \rho(s) ds$$

• Two parameters

M_{B} , s_{0}

We need to choose certain region of (M_B, s_0) .

• Criteria

1. Stability

- 2. Convergence of OPE
- 3. Positivity of spectral density
- 4. Sufficient amount of pole contribution