STCF上 D_s/D 的物理模拟研究

On behalf of the D_s/D group at STCF

李惠静^{1,*} 1. 河南师范大学 2020.08.06

* lihuijing@htu.edu.cn

Outline

1. $D_s^+ \rightarrow l^+ \nu \ (l = \mu, \tau)$ @4.009 GeV• $\mu^+ \nu_\mu$ 刘佳俊等• $\tau^+ \nu_\tau \ (\tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau)$ 李惠静等lihuijing@htu.edu.cn2. $D^0 \rightarrow K_1 (1270)^- e^+ \nu_e$ 范玉兰等2. $D \rightarrow K_{S, L}^0 \ \pi^+ \pi^-$ 侯颖锐等houyingrui16@mails.ucas.ac.cn

Tagging method

 $e^+e^- \rightarrow D_s^+D_s^-$ @4.009 GeV

$$\mathcal{B}_{sig}^{\alpha} = \frac{N_{sig}^{obs,\alpha} \epsilon_{tag}^{\alpha}}{N_{tag}^{obs,\alpha} \epsilon_{tag,sig}^{\alpha} \mathcal{B}_{\tau^+ \to e^+ \nu_e \bar{\nu}_{\tau}}}$$

For tag side: Minimum $|\Delta E|$: to select the best tag $D_{(s)}$ candidate/charge/tag mode/event.

$$\Delta E = E_{tag} - E_{beam}, \qquad M_{BC} = \sqrt{E_{beam}^2 - \left| \overrightarrow{p}_{tag} \right|^2}$$

1.
$$D_s^+ \rightarrow l^+ \nu$$

Improve the measured precisions of :

• branching fraction \rightarrow decay constant $f_{D_s^+}$ and CKM element $|V_{cs}|$;

In the SM:
$$\Gamma(D_{(s)}^+ \to l^+ \nu) = \frac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} |V_{cd(s)}|^2 m_l^2 m_{D_{(s)}^+} (1 - \frac{m_l^2}{m_{D_{(s)}^+}^2})^2$$

BESIII samples: Data: 0.482 fb⁻¹; Cocktail MC: 5x data.

STCF sample: cocktail MC: 0.1 ab⁻¹ (59 rounds); Fast simulation. Signal MC sample:

generated for each tag mode; Obtain the DT efficiency.

 $D_s^+ \to \mu^+ \nu_\mu$ 刘佳俊1, 郑波1 1. 南华大学

Data sets

BOSS version: 703 Method: double tag Channel: $e^+e^- \rightarrow D_s^+ D_s^-$ Signal mode: $D_s^+ \rightarrow \mu^+ \nu_{\mu}$ 14 tag modes:

$$\begin{split} D_{s}^{-} &\rightarrow K^{+}K^{-}\pi^{-}(101) & K_{S}^{0}K_{S}^{0}\pi^{-}(109) & \pi^{-}\eta_{\pi^{+}\pi^{-}\eta_{\gamma\gamma}}(115) \\ K^{+}K^{-}\pi^{-}\pi^{0}(102) & K_{S}^{0}K^{+}\pi^{-}\pi^{-}(110) & \pi^{-}\eta_{\gamma\rho_{\pi^{+}\pi^{-}}}(116) \\ \pi^{-}\pi^{-}\pi^{+}(103) & K_{S}^{0}K^{-}\pi^{+}\pi^{-}(111) & \rho_{\pi^{-}\pi^{0}}^{-}\eta_{\gamma\gamma}(118) \\ K_{S}^{0}K^{-}\pi^{0}(105) & \pi^{-}\eta_{\gamma\gamma}(113) \\ K^{-}\pi^{-}\pi^{+}(107) & \pi^{-}\eta_{\pi^{+}\pi^{-}\pi^{0}}(114) \end{split}$$

The charge conjugated channels are also implied.

Comparison of $\Delta E\,$ between BESIII and STCF

Comparison of $M_{BC}\,$ between BESIII and STCF

Tag mode	STCF (10 rounds)	BESIII
$K^+K^-\pi^-(101)$	39.87±0.22	40.73±0.55
$K^+K^-\pi^-\pi^0(102)$	17.16±0.31	16.53±1.00
$\pi^{-}\pi^{-}\pi^{+}(103)$	51.97±0.90	56.06±2.14
$K_S^0 K^-(104)$	43.68±0.46	48.39±0.94
$K_S^0 K^- \pi^0(105)$	21.37±0.75	20.25±1.87
$K^{-}\pi^{-}\pi^{+}(107)$	41.11±1.40	45.31±3.73
$K_S^0 K_S^0 \pi^-(109)$	22.87±1.04	22.58±1.70
$K_S^0 K^+ \pi^- \pi^- (110)$	22.97±0.62	20.92±0.56
$K_S^0 K^- \pi^+ \pi^-(111)$	20.03±1.44	19.38±2.05
$\pi^-\eta_{\gamma\gamma}(113)$	49.18±0.71	47.22±1.74
$\pi^{-}\eta_{\pi^{+}\pi^{-}\pi^{0}}(114)$	30.14±0.70	26.56±1.66
$\pi^{-}\eta_{\pi^{+}\pi^{-}\eta_{\gamma\gamma}}^{\prime}(115)$	26.32±0.42	23.53±1.00
$\pi^{-}\eta'_{\gamma\rho^{0}_{\pi^{+}\pi^{-}}}(116)$	32.41±0.64	34.05±1.60
$\rho^{\pi^-\pi^0}\eta_{\gamma\gamma}(118)$	21.81±0.34	19.80±0.88

Consistent; The largest absolute difference is about 5%.

Comparison of DT efficiency (%) with different muon selections at STCF

Tag mode	MUC100	MUC101	MUC102
$K^+K^-\pi^-(101)$	32.17±0.08	28.08±0.04	22.94±0.07
$K^+K^-\pi^-\pi^0(102)$	14.69±0.09	12.56±0.08	10.27±0.08
$\pi^{-}\pi^{-}\pi^{+}(103)$	42.24±0.08	36.16±0.08	29.63±0.08
$K_S^0 K^-(104)$	34.75±0.09	29.73±0.09	24.33±0.08
$K_S^0 K^- \pi^0(105)$	18.25±0.12	15.58±0.11	12.82±0.10
$K^{-}\pi^{-}\pi^{+}(107)$	36.17±0.16	30.95±0.15	25.17±0.15
$K_S^0 K_S^0 \pi^-(109)$	19.59±0.19	16.80±0.18	13.59±0.16
$K_S^0 K^+ \pi^- \pi^- (110)$	19.84±0.11	16.98±0.11	13.91±0.10
$K_S^0 K^- \pi^+ \pi^-(111)$	18.41±0.07	15.72±0.07	12.85±0.06
$\pi^-\eta_{\gamma\gamma}(113)$	44.11±0.08	37.78±0.08	30.81±0.07
$\pi^{-}\eta_{\pi^{+}\pi^{-}\pi^{0}}(114)$	25.53±0.07	21.86±0.07	17.90±0.06
$\pi^{-}\eta_{\pi^{+}\pi^{-}\eta_{\gamma\gamma}}^{\prime}(115)$	22.24±0.07	19.07±0.06	15.57±0.06
$\pi^{-}\eta_{\gamma\rho_{\pi^{+}\pi^{-}}}^{\prime}(116)$	25.95±0.07	22.22±0.07	18.16±0.06
$\rho_{\pi^-\pi^0}^-\eta_{\gamma\gamma}(118)$	18.12±0.06	15.54±0.06	12.69±0.05

The probabilities of pion misidentified as muon for MUC100, 101, 102 are

$$(\frac{1}{30}, \frac{1}{60}, \frac{1}{100}) * prob(\mu)$$

> prob(e/K/p)

Measured branching fraction at STCF

Combined 14 tag modes

$$E_{\text{miss}} = E_{\text{beam}} - E_{\mu^{+}}$$
$$\overrightarrow{p}_{\text{miss}} = -\overrightarrow{p}_{tag} - \overrightarrow{p}_{\mu^{+}}$$
$$M_{\text{miss}}^{2} = E_{\text{miss}}^{2} - \left|\overrightarrow{p}_{\text{miss}}\right|^{2}$$

DT efficiency: MUC100 The signal efficiency is (83.23±0.27)%.

Sample	Integrated Luminosity	$B(D_s^+ \to \mu^+ \nu_\mu) (\times 10^{-3})$
STCF @4.009 GeV	100 fb ⁻¹	$5.60 \pm 0.05_{stat}$
BESIII @4.009 GeV [PRD94(2016)072004]	0.482 fb ⁻¹	$4.95 \pm 0.67_{stat} \pm 0.26_{syst}$
BESIII @4.178 GeV [PRL122(2019)071802]	3.19 fb ⁻¹	$5.49 \pm 0.16_{stat} \pm 0.15_{syst}$

$D_s^+ \to \tau^+ \nu_\tau \ (\tau^+ \to e^+ \nu_e \bar{\nu}_\tau)$

李惠静1, 罗涛2

- 1. 河南师范大学
- 2. 复旦大学

Data sets

BOSS version: 703 Method: double tag Channel: $e^+e^- \rightarrow D_s^+ D_s^-$ Signal mode: $D_s^+ \rightarrow \tau^+ \nu_{\tau} \ (\tau^+ \rightarrow e^+ \nu_e \bar{\nu}_{\tau})$ 11 tag modes:

The charge conjugated channels are also implied.

Comparison of ΔE between BESIII and STCF

Cocktail MC samples with MC truth matched. Scale: same area.

Comparison of $M_{BC}\,$ between BESIII and STCF

Scale: same area

Comparison of ST efficiency (%) between BESIII and STCF

Consistent; The largest absolute difference is about 7%.

Mode	$\epsilon_{ m ST}^{ m STCF}~(\%)$	$\epsilon_{ m ST}^{ m BESIII}$ (%)	$\epsilon_{\rm ST}^{\rm BESIII\ PRD94(2016)072004}$
$D_s^- \to K_S^0 K^-$	28.11 ± 0.09	34.78 ± 0.52	32.36 ± 0.24
$D_s^- \to K^+ K^- \pi^-$	42.53 ± 0.07	41.38 ± 0.34	42.45 ± 0.18
$D_s^- \rightarrow K^+ K^- \pi^- \pi^0$	15.29 ± 0.07	11.99 ± 0.36	12.56 ± 0.21
$D_s^- \rightarrow K_S^0 K^- \pi^+ \pi^-$	12.82 ± 0.23	13.04 ± 0.96	
$D_s^- \rightarrow K_S^0 K^+ \pi^- \pi^-$	14.64 ± 0.11	14.80 ± 0.50	16.17 ± 0.25
$D_s^- \to \pi^+ \pi^- \pi^-$	55.98 ± 0.25	57.38 ± 1.30	58.27 ± 0.87
$D_s^- o \pi^- \eta_{\gamma\gamma}$	19.39 ± 0.08	18.47 ± 0.49	18.26 ± 0.26
$D_s^- o \pi^- \pi^0 \eta_{\gamma\gamma}$	9.97 ± 0.05	7.92 ± 0.32	9.62 ± 0.12
$D_s^- \to \pi^- \eta'_{\pi^+\pi^-\eta(\gamma\gamma)}$	4.19 ± 0.02	3.20 ± 0.10	4.67 ± 0.08
$D_s^- \to \pi^- \eta'_{\gamma \rho^0}$	10.27 ± 0.06	9.87 ± 0.30	12.09 ± 0.25
$D_s^- \to K^- \pi^+ \pi^-$	47.01 ± 0.38	48.25 ± 1.88	

The branching fractions of sub-particles decays is included.

Comparison of ST efficiency(%) with $D_s^+ \rightarrow \mu^+ \nu_{\mu}$ analysis

			_
Mode	$D_s^+ \to \mu^+ \nu_\mu \ (10 \mathrm{x})$	$D_s^+ \to \tau^+ \nu_\tau $ (59x)	_
$D_s^- \to K_S^0 K^-$	43.68 ± 0.46	40.62 ± 0.12	_
$D^s ightarrow K^+ K^- \pi^-$	39.87 ± 0.22	42.53 ± 0.07	
$D_s^- \to K^+ K^- \pi^- \pi^0$	17.16 ± 0.31	15.47 ± 0.07	
$D_s^- \rightarrow K_S^0 K^- \pi^+ \pi^-$	20.03 ± 1.44	18.53 ± 0.33	Consistent;
$D_s^- \rightarrow K_S^0 K^+ \pi^- \pi^-$	22.97 ± 0.62	21.15 ± 0.16	The largest absolute
$D_s^- ightarrow \pi^+ \pi^- \pi^-$	51.97 ± 0.90	55.98 ± 0.25	difference is about 6%
$D_s^- \to \pi^- \eta_{\gamma\gamma}$	49.18 ± 0.71	49.19 ± 0.19	
$D_s^- \to \pi^- \pi^0 \eta_{\gamma\gamma}$	21.81 ± 0.34	25.60 ± 0.12	
$D_s^- \to \pi^- \eta'_{\pi^+\pi^-\eta(\gamma\gamma)}$	26.32 ± 0.42	24.94 ± 0.12	
$D_s^- \to \pi^- \eta'_{\gamma \rho^0}$	32.41 ± 0.64	35.53 ± 0.20	
$D_s^- \to K^- \pi^+ \pi^-$	41.11 ± 1.40	47.01 ± 0.38	_

The branching fractions of sub-particles decays is not included.

Comparison of Signal efficiency between BESIII and STCF

- 、 /		
Mode	STCF(%)	BESIII(%)
$D_s^- \to K_S^0 K^-$	66.62	71.61
$D_s^- \to K^+ K^- \pi^-$	65.12	66.05
$D_s^- \rightarrow K^+ K^- \pi^- \pi^0$	64.99	59.47
$D_s^- \rightarrow K_S^0 K^- \pi^+ \pi^-$	67.63	63.86
$D_s^- ightarrow K_S^0 K^+ \pi^- \pi^-$	67.86	64.76
$D_s^- \to \pi^+ \pi^- \pi^-$	68.54	72.45
$D_s^- \to \pi^- \eta_{\gamma\gamma}$	68.64	72.08
$D_s^- \to \pi^- \pi^0 \eta_{\gamma\gamma}$	68.46	69.26
$D_s^- \to \pi^- \eta'_{\pi^+\pi^-\eta(\gamma\gamma)}$	68.26	70.21
$D_s^- \to \pi^- \eta'_{\gamma \rho^0}$	68.39	72.31
$D_s^- \to K^- \pi^+ \pi^-$	66.90	70.55

Fitting result of DT side at BESIII

Definition of E_{extra}^{tot} :

The total energies of the good showers, except for the photons used in the tag side.

Combine 11 tag modes

Solid dots: data 0.482 fb⁻¹ Open dots with error bar: M_{BC} sideband (fix); Dashed blue: D_s^+ semileptonic decay (float) Shaded green: $D_s^+ \rightarrow K_L^0 e^+ v_e$ decay (fix); Solid red line: fit results

$$N_{\rm DT}^{\rm sig} = N_{\rm sig}^{\rm tot} - f_1 \cdot N_{\rm Class I} - N_{\rm Class II} - f_2 \cdot N_{\rm Class III}$$

Fitting result of DT side at STCF

Measured branching fraction

<u>~</u>	
Mode	STCF (%)
$D_s^- \to K_S^0 K^-$	4.75 ± 0.25
$D_s^- \to K^+ K^- \pi^-$	4.89 ± 0.10
$D_s^- \to K^+ K^- \pi^- \pi^0$	3.82 ± 0.13
$D_s^- \rightarrow K_S^0 K^- \pi^+ \pi^-$	4.59 ± 0.74
$D_s^- ightarrow K_S^{ ilde{0}} K^+ \pi^- \pi^-$	5.15 ± 0.38
$D_s^- o \pi^+ \pi^- \pi^-$	3.35 ± 0.32
$D_s^- \to \pi^- \eta_{\gamma\gamma}$	4.79 ± 0.21
$D_s^- o \pi^- \pi^0 \eta_{\gamma\gamma}$	4.34 ± 0.13
$D_s^- \to \pi^- \eta'_{\pi^+\pi^- n(\gamma\gamma)}$	4.23 ± 0.29
$D_s^- \to \pi^- \eta'_{\alpha o^0}$	3.50 ± 0.32
$D_s^- \to K^- \pi^+ \pi^-$	4.69 ± 0.46
Average	4.45 ± 0.06

Sample	Integrated Luminosity	$B(D_s^+ \to \tau^+ \nu_\tau) (\times 10^{-2})$
STCF @4.009 GeV	100 fb ⁻¹	$4.45 \pm 0.06_{stat}$
$\begin{array}{c} \underset{\tau^+ \to e^+ \nu_e \bar{\nu}_{\tau}}{\text{BESIII}} @ 4.009 \text{ GeV} \end{array}$	0.482 fb ⁻¹	$4.07 \pm 0.61_{stat}$
$\begin{array}{c} \text{BESIII @4.009 GeV} \\ \text{[PRD94(2016)072004]} & \tau^+ \to \pi^+ \bar{\nu}_{\tau} \end{array}$	0.482 fb ⁻¹	$4.83 \pm 0.65_{stat} \pm 0.26_{syst}$
PDG (2018)		5.48 ± 0.23

2. $D^0 \to K_1(1270)^- e^+ \nu_e$

范玉兰1, 孙亮1, 周小蓉2, 师晓东2

- 1. 武汉大学
- 2. 中科大

Motivation

1. The photon helicity in $b \rightarrow s\gamma$ is predominantly left handed, and thereby, its measurement plays a unique role in probing right-handed coupling in new physics. 2. Help to measure photon helicity in a model-independent way:

[PRL125(2020)051802]

FIG. 1. Kinematics for $D \to K_{res}(\to K\pi\pi)e^+\nu$. The relative angle between the normal direction of the K_{res} decay plane and the opposite of *D* flight direction in the K_{res} rest frame is denoted as θ_K , while θ_l is introduced as the relative angle between the flight directions of e^+ in the $e^+\nu$ rest frame and the $e^+\nu$ in the *D* rest frame.

$$\lambda_{\gamma} = \frac{4}{3} \frac{\mathcal{A}_{\text{UD}}}{\mathcal{A}_{\text{UD}}'} \longrightarrow D \to K_1 e^+ \nu$$

Up-down asymmetry

$$\mathcal{A}_{\mathrm{UD}}' \equiv \frac{\Gamma_{K_1 e \nu_e} [\cos \theta_K > 0] - \Gamma_{K_1 e \nu_e} [\cos \theta_K < 0]}{\Gamma_{K_1 e \nu_e} [\cos \theta_l > 0] - \Gamma_{K_1 e \nu_e} [\cos \theta_l < 0]}$$

In SM:

$$A'_{UD} = (9.2 \pm 2.3) \times 10^{-2}$$

Data sets

Method: double tag Channel: $e^+e^- \rightarrow \psi(3773) \rightarrow D^0 \overline{D}^0$ @ 3.773 GeV Signal mode: $D^0 \rightarrow K_1(1270)^-e^+\nu_e, K_1(1270)^- \rightarrow K^-\pi^+\pi^-$ Three tag modes:

$$\bar{D}^0 \to K^+ \pi^-$$
$$\bar{D}^0 \to K^+ \pi^- \pi^0$$
$$\bar{D}^0 \to K^+ \pi^- \pi^+ \pi^-$$

The charge conjugated channels are also implied.

```
\bar{D}^0 \to K^+ \pi^-
```


Comparisons of ST efficiency (%) between BESIII and STCF

Mode	STCF	BESIII
$\bar{D}^0 \to K^+ \pi^-$	63.42	65.77
$\bar{D}^0 \to K^+ \pi^- \pi^0$	40.40	35.52
$\bar{D}^0 \to K^+ \pi^- \pi^+ \pi^-$	45.41	46.84

From signal MC

From inclusive MC

Mode	STCF	BESIII	BESIII[PRL122(2019)011804]
$\bar{D}^0 \to K^+ \pi^-$	59.15 ± 0.03	66.09 ± 0.09	65.37 ± 0.09
$\bar{D}^0 \to K^+ \pi^- \pi^0$	38.59 ± 0.02	34.99 ± 0.05	34.67 ± 0.04
$\bar{D}^0 \to K^+ \pi^- \pi^+ \pi^-$	41.22 ± 0.02	38.89 ± 0.05	38.20 ± 0.06

 $3.D \rightarrow K^0_{S/L} \pi^+ \pi^-$

侯颖锐¹ 等 1. 中国科学院大学

Physics in Quantum Coherent $D^0 - \overline{D}^0$ @4.009 GeV

- Use quantum-coherent $D^0 \overline{D}^0$ sample to extract strong-phase difference in $K^0_{S/L} \pi^+ \pi^-$, help to improve the precision of CKM angle γ .
- C-even QC $D^0 \overline{D}^0$ will help to perform time-independent measurement of D^0 mixing parameter x,y related CPV parameter.

Data sets

BOSS version: 703

Method: double tag

Channel: $e^+e^- \rightarrow D^{*0}\bar{D}^0 \rightarrow D^0\bar{D}^0\pi^0/\gamma$ @4.009 GeV Signal mode: $D_1 \rightarrow K^0_{S/L} \pi^+\pi^-$ 14 tag modes:

Mixed CP tag	Flavor tags	CP-even tags	CP-odd tags
$D_2 \rightarrow K_S^0 \pi^+ \pi^-$	$K^+\pi^-$	K^+K^-	$K^0_S \pi^0$
	$K^+\pi^-\pi^0$	$\pi^+\pi^-$	$K^0_S \eta_{\gamma\gamma}$
	$K^+\pi^-\pi^-\pi^+$	$\pi^+\pi^-\pi^0$	$K^0_S\eta_{\pi^+\pi^-\pi^0}$
		$K^0_S \pi^0 \pi^0$	$K^0_{a}n'$

The charge conjugated channels are also implied.

Event selection

• Based on BESIII MC, data.

. Best $D^0 ar{D}^0$ candidate is selected with the least $\Delta m \equiv rac{m_{D_1}+m_{D_2}}{2}-m_{D^0}$

• Other two variables considered as cut variables.

 $\Delta E = E_{CMS} - E_{D_1} - E_{D_2}$ $MM^2(recDD) = (E_{CMS} - E_{D_1} - E_{D_2})^2 - \left| p_{D_1} + p_{D_2} \right|^2$

Comparison of DT efficiency between 4.009 GeV and 3.773 GeV

vs. signal side is $K_S^0 \pi^+ \pi^-$

	Mode[BESIII]	4.009 GeV (%)	3.773 GeV(%) [PRD101(2020)112002]
Mixed CP tag	$K_S^0 \pi^+ \pi^-$	16.90	18.53 ± 0.06
	$K^+\pi^-$	23.51	27.28 ± 0.07
Flavor tags	$K^+\pi^-\pi^0$	12.86	14.45 ± 0.05
	$K^+\pi^-\pi^-\pi^+$	14.04	13.75 ± 0.05
	K^+K^-	22.74	25.97 ± 0.07
<i>CP</i> –even tags	$\pi^+\pi^-$	23.51	27.27 ± 0.07
	$\pi^+\pi^-\pi^0$	13.50	14.28 ± 0.06
	$K_S^0 \pi^0 \pi^0$	6.08	6.47 ± 0.03
	$K_S^0 \pi^0$	13.26	14.84 ± 0.05
	$K^0_S \eta_{\gamma\gamma}$	11.70	12.86 ± 0.05
CP-odd tags	$K^0_S\eta_{\pi^+\pi^-\pi^0}$	4.27	6.98 ± 0.03
	$K^0_S\eta'_{\gamma\pi^+\pi^-}$	8.33	9.87 ± 0.03
	$K^0_S \eta'_{\pi^+\pi^-\eta}$	5.62	5.06 ± 0.02
	$K_S^0 \omega$	4.07	6.30 ± 0.03

Preliminary estimation of the precision of mixing and CPV parameters

- Luminosity: 1 /ab;
- D^0 decay mode: $K_S \pi \pi, K \pi, K \pi \pi^0, K 3 \pi, K l v_l$;
- Least χ^2 fit method is used to extract mixing and CPV parameters.

 $N = L * \sigma * \epsilon$

$$x_D = \frac{m_2 - m_1}{\Gamma}, \quad y_D = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}, \qquad \qquad r_{\mathcal{CP}} e^{i\alpha_{\mathcal{CP}}} = q/p. \qquad \qquad D_{1,2} = pD^0 \pm q\overline{D}^0,$$

	C-even sample (1/ab)	HFLAV2019
$\sigma(x)$	0.036%	0.11%
$\sigma\left(y ight)$	0.023%	0.063%
$\sigma\left(r_{CP}\right)$	0.017	0.045
σ (α _{CP})	0.023rad	0.078rad
statistical error only		

Summary and next to do

- 1. The precision of the measured branching fraction is consistent with the value evaluated from BESIII for $D_s^+ \rightarrow l^+ \nu_l$ analyses;
- 2. The single tag has been done for $D^0 \to K_1(1270)^- e^+ \nu_e$;
- 3. Preliminary precision estimation of mixing and CPV parameters has been done for $D \rightarrow K_S^0 \pi^+ \pi^-$.

Next to do:

1. Optimize tracking and PID efficiencies for K/π in ST side, and resolutions of energy and position for photons in $D_s^+ \rightarrow l^+ \nu_l$ analyses; 2. Finish the double tag study for $D^0 \rightarrow K_1(1270)^- e^+ \nu_e$; 3. Improve the $D \rightarrow K_S^0 \pi^+ \pi^-$ decay, and study $D \rightarrow K_L^0 \pi^+ \pi^-$ decay.

Back up

D⁰⁽⁺⁾ and D_s⁺ data set at BESIII

- $> D^{0(+)}$ data:
 - Taken @ E_{cm} = 3.773 GeV.
 - Integrated luminosity = 2.93 fb⁻¹
 (The world's largest e⁺e⁻ annihilation sample taken at the mass-threshold).
 - cross section: $\sigma(e^+e^- \rightarrow D^0\bar{D}^0) \sim 3.6 \text{ nb} \Rightarrow 21 \text{ M } D^0 \text{ produced}!$
 - cross section: $\sigma(e^+e^- \rightarrow D^+D^-) \sim 2.9 \text{ nb} \Rightarrow 16 \text{ M } D^+ \text{ produced}!$
- $> D_s^+$ data:
 - @E_{cm} = 4.009 GeV.
 - Integrated luminosity = 0.482 fb⁻¹
 - $\sigma(e^+e^- \rightarrow D_s^+D_s^-) \sim 0.3 \text{ nb} \Rightarrow 0.3 \text{ M} D_s \text{ produced.}$
 - D_s is produced in pair with equal mass.
 - ■@E_{cm} = 4.178 GeV.

•Based on the data accumulated in 2016!

•Integrated luminosity = 3.19 fb⁻¹

• $\sigma(e^+e^- \rightarrow D_s^*D_s) \sim 1 \text{ nb} \Rightarrow \sim 6 \text{ M} D_s \text{ produced!!}$

Analysis method

- $N_{\text{tag}} = 2 N_{D_s D_s} B_{\text{tag}} \epsilon_{\text{tag}};$ $N_{\text{sig}} = 2 N_{D_s D_s} B_{\text{tag}} B_{\text{sig}} B_{\tau^+ \to e^+ v_e \bar{\nu}_\tau} \epsilon_{\text{tag, sig}}$ $B_{\text{sig}} = \frac{N_{\text{sig}} \epsilon_{\text{tag}}}{N_{\text{tag}} \epsilon_{\text{tag,sig}} B_{\tau^+ \to e^+ v_e \bar{\nu}_\tau}}$
- the number of $D_s D_s$ pairs; $N_{D,D}$: branching fraction of $D_s^- \rightarrow$ a tag mode; B_{tag} : branching fraction of $D_s^+ \rightarrow \tau^+ v_{\tau}$; **B**_{sig}: ST yield; N_{tag} : Obtained in the DT yield; $N_{\rm sig}$: analysis. ST efficiency; ϵ_{tag} : DT efficiency. $\epsilon_{tag, sig}$:

The difference of MC sample between BESIII and STCF

From **BESIII**:

1. 包含子探测器的响应信息

From STCF:

- 1. 快模拟
- 2. 真实的信息
- 3. 无假光子