Update of formalism for semileptonic hyperon decays

Varvara Batozskaya^{1,2}, Andrzej Kupść^{2,3}

¹Institute of High Energy Physics, Beijing, China ²National Centre for Nuclear Research, Warsaw, Poland ³Uppsala University, Uppsala, Sweden

> Semileptonic meeting 6 April 2021

Semileptonic Λ decay

- Momenta and masses: $\Lambda(p_1, M_1) \rightarrow p(p_2, M_2) + e^-(p_e, m_e) + \bar{\nu}_e(p_{\bar{\nu}_e}, 0)$
- Standard set of invariant FF for weak current-induced baryonic $\frac{1}{2}^+ \rightarrow \frac{1}{2}^+$ transitions:

$$M_\mu = M_\mu^V + M_\mu^A = \langle p(p_2) | J_\mu^{V+A} | \Lambda(p_1) \rangle =$$

$$= \bar{u}(p_2) \left[\gamma_{\mu} \left(F_1^V(q^2) + F_1^A(q^2) \gamma_5 \right) + \frac{i\sigma_{\mu\nu}q^{\nu}}{M_1} \left(F_2^V(q^2) + F_2^A(q^2) \gamma_5 \right) + \frac{q_{\mu}}{M_1} \left(F_3^V(q^2) + F_3^A(q^2) \gamma_5 \right) \right] u(p_1)$$
 where $q_{\mu} = (p_1 - p_2)_{\mu}$

• For
$$\Lambda \to p e^- \bar{\nu}_e$$
 at $\mathcal{O}(\frac{m_e^2}{2q^2}) \sim 4 \cdot 10^{-6} \Rightarrow F_3^{V,A} \to 0$

•
$$\Lambda \to p e^- \bar{\nu}_e \Longrightarrow \Lambda \to p W^- (\to e^- \bar{\nu}_e)$$

• Helicity amplitude is $H_{\lambda_2 \lambda_W} = (H^V_{\lambda_2 \lambda_W} + H^A_{\lambda_2 \lambda_W})$ with $(\lambda_2 = \pm \frac{1}{2}; \lambda_W = 0, \pm 1)$:

$$\begin{split} & \overset{\text{bg}}{\underset{\frac{1}{2}}{\text{bg}}} \left(H_{\frac{1}{2}1}^{V} = \sqrt{2Q_{-}} \left(-F_{1}^{V} - \frac{M_{1} + M_{2}}{M_{1}} F_{2}^{V} \right), & \overset{\text{tg}}{\underset{\frac{1}{2}}{\text{bg}}} \right) \\ & H_{\frac{1}{2}0}^{V} = \frac{\sqrt{Q_{-}}}{\sqrt{q^{2}}} \left((M_{1} + M_{2}) F_{1}^{V} + \frac{q^{2}}{M_{1}} F_{2}^{V} \right), & \overset{\text{tg}}{\underset{\frac{1}{2}}{\text{bg}}} \left(H_{\frac{1}{2}0}^{A} = \frac{\sqrt{Q_{+}}}{\sqrt{q^{2}}} \left(-(M_{1} - M_{2}) F_{1}^{A} + \frac{q^{2}}{M_{1}} F_{2}^{A} \right) \right) \\ & \text{where } Q_{\pm} = (M_{1} \pm M_{2})^{2} - q^{2}; & H_{-\lambda 2}^{V,A} - \lambda w = \pm H_{\lambda 0}^{V,A} \\ \end{split}$$

Varvara Batozskaya

Form factors

$$F_i^{V\!,A}(q^2) = F_i^{V\!,A}(0) \prod_{n=0}^{n_i} \frac{1}{1 - \frac{q^2}{m_{V\!,A}^2 + n\alpha'^{-1}}} \approx F_i^{V\!,A}(0) \left(1 + q^2 \sum_{n=0}^{n_i} \frac{1}{m_{V\!,A}^2 + n\alpha'^{-1}}\right)$$

	$F_i^{V,A}(0)(\Lambda \to p)$	$m_{V,A}$	$\alpha' [\text{GeV}^{-2}]$	n_i
$F_1^V(q^2)$	$-\sqrt{\frac{3}{2}}^{1}$	$m_{K^*(892)^0}$	$n_1 = 1$	
$F_2^V(q^2)$	$\frac{M_{\Lambda}\mu_p}{2M_p}F_1^V(0)^2$	(J = I)		$n_2 = 2$
$F_{3}^{V}(q^{2})$	0^{4}	-	0.9	$n_3 = 2$
$F_1^A(q^2)$	$0.719F_1^V(0)^3$	$\begin{array}{c} m_{K^*(1270)^0} \\ (J^P = 1^+) \end{array}$	0.0	$n_1 = 1$
$F_{2}^{A}(q^{2})$	0^{4}	_		$n_2 = 2$
$F_3^A(q^2)$	$\frac{M_{\Lambda}(M_{\Lambda}+M_{p})}{(m_{K^{-}})^{2}}F_{1}^{A}(0)^{4}$	$m_K (J^P = 0^-)$		$n_3 = 2$

• ¹ [PR135(1964)B1483], [PRL13(1964)264]

• ² $\mu_p = 1.793$ [Lect.NotesPhys.222(1985)1], [Ann.Rev.Nucl.Part.Sci.53(2003)39], [JHEP0807(2008)132]

• ³ [PRD41(1990)780]

 ⁴ Vanish in the SU(3) symmetry limit; Goldberger-Treiman relation [PR110(1958)1178], [PR111(1958)354]

Varvara Batozskaya

Decay chain: $\frac{1}{2} \rightarrow \frac{1}{2} + \{0, \pm 1\}$ (1) • $e^+e^- \rightarrow (\Lambda \rightarrow pe^-\bar{\nu}_e)(\bar{\Lambda} \rightarrow \bar{p}\pi^+)$ • Formalism of $e^+e^- \rightarrow \Lambda\bar{\Lambda}$ and $\bar{\Lambda} \rightarrow \bar{p}\pi^+$ [PRD99(2019)056008] • $\Lambda \rightarrow pe^-\bar{\nu}_e \Rightarrow \Lambda \rightarrow pW^-(\rightarrow e^-\bar{\nu}_e)$ $\bar{\Lambda}$ rest frame and resonance helicity frame $\bar{\mu}$

/ lab frame

• Decay matrix or transition matrix $b_{\mu\nu}$ for $\{\frac{1}{2} \rightarrow \frac{1}{2} + \{0, \pm 1\}\}$

$$\sigma_{\mu} \rightarrow \sum_{\nu=0}^{3} b_{\mu\nu} \sigma_{\nu}^{d-W} \implies \sum_{\lambda_{2}=-1/2}^{1/2} \sum_{\lambda_{W},\lambda_{W}'=-1}^{1} H_{\lambda_{2}\lambda_{W}} H_{\lambda_{2}\lambda_{W}'}^{*} \sum_{\kappa,\kappa'=-1/2}^{1/2} (\sigma_{\mu})^{\kappa,\epsilon'} (\sigma_{\nu})^{\lambda_{2}-\lambda'_{W},\lambda_{2}-\lambda_{W}} \mathcal{D}_{\kappa,\lambda_{2}-\lambda_{W}}^{1/2*}(\Omega) \mathcal{D}_{\kappa',\lambda_{2}-\lambda_{W}'}^{1/2}(\Omega) \times \sum_{\lambda_{l},\lambda_{r}=-1/2}^{1/2} |h_{\lambda_{l}\lambda_{r}=\pm1/2}^{1/2} |h_{\lambda_{l}\lambda_{r}=\pm1/2}^{1/2} |h_{\lambda_{l}\lambda_{r}=\pm1/2}^{1/2} |h_{\lambda_{l}\lambda_{r}=+1/2}^{1/2} (\sigma_{\mu})^{\kappa,\epsilon'} (\sigma_{\nu}) \mathcal{D}_{\kappa,\lambda_{2}-\lambda_{W}}^{1/2*}(\Omega) \mathcal{D}_{\kappa',\lambda_{2}-\lambda_{W}}^{1/2*}(\Omega) \mathcal{D}_{\kappa',\lambda_{2}-\lambda_{W}}^{1/2*}(\Omega)$$

- $\bullet~$ Four helicity amplitudes: $H_{\frac{1}{2}0}, H_{-\frac{1}{2}0}, H_{\frac{1}{2}1}, H_{-\frac{1}{2}-1}$
- $\kappa, \kappa'; \lambda_2$ index of mother hyperon (A) and daughter baryon (p)
- $\lambda_W, \lambda'_W; \lambda_l, \lambda_{\nu}$ index of W^- -boson, lepton and neutrino
- Kinematic variables: $\Omega = \{\phi_p, \theta_p, 0\}, \Omega' = \{\chi, \theta_l, 0\}$ and $q^2 \in (m_e^2, (M_\Lambda M_p)^2)$

Varvara Batozskaya

Decay chain: $\frac{1}{2} \to \frac{1}{2} + \{0, \pm 1\}$ (2)

• Relation between helicity amplitudes and decay parameters

$$\begin{split} \sigma_D^{sl} &= \frac{1}{4} (1 \mp \cos \theta_l)^2 |H_{\frac{1}{2}1}|^2 + \frac{1}{4} (1 \pm \cos \theta_l)^2 |H_{-\frac{1}{2}-1}|^2 + \frac{1}{2} \sin^2 \theta_l (|H_{-\frac{1}{2}0}|^2 + |H_{\frac{1}{2}0}|^2) \\ \alpha_D^{sl} &= \frac{1}{4} (1 \mp \cos \theta_l)^2 |H_{\frac{1}{2}1}|^2 - \frac{1}{4} (1 \pm \cos \theta_l)^2 |H_{-\frac{1}{2}-1}|^2 + \frac{1}{2} \sin^2 \theta_l (|H_{-\frac{1}{2}0}|^2 - |H_{\frac{1}{2}0}|^2) \\ \beta_D^{sl} &= \frac{1}{\sqrt{2}} \sin \theta_l ((1 \pm \cos \theta_l) \Im (H_{-\frac{1}{2}0}^* H_{-\frac{1}{2}-1}) + (1 \mp \cos \theta_l) \Im (H_{\frac{1}{2}1}^* H_{\frac{1}{2}0})), \\ \gamma_D^{sl} &= \frac{1}{\sqrt{2}} \sin \theta_l ((1 \pm \cos \theta_l) \Re (H_{-\frac{1}{2}0}^* H_{-\frac{1}{2}-1}) + (1 \mp \cos \theta_l) \Re (H_{\frac{1}{2}1}^* H_{\frac{1}{2}0})). \end{split}$$

• Non-zero elements of the decay matrix $b_{\mu\nu}$:

$$\begin{split} b_{00} &= \sigma_D^{il}, & b_{21} &= -(\gamma_D^{il} \cos\chi + \beta_D^{il} \sin\chi) \cos\theta_p \sin\phi_p \\ b_{03} &= \alpha_D^{al}, & -(\gamma_D^{al} \sin\chi - \beta_D^{al} \cos\chi) \cos\phi_p, \\ b_{10} &= \alpha_D^{al} \cos\phi_p \sin\theta_p, & b_{22} &= (\gamma_D^{al} \sin\chi - \beta_D^{al} \cos\chi) \cos\phi_p, \\ b_{11} &= -(\gamma_D^{al} \cos\chi + \beta_D^{al} \sin\chi) \cos\theta_p \cos\phi_p & -(\gamma_D^{al} \cos\chi + \beta_D^{al} \sin\chi) \cos\phi_p, \\ &+ (\gamma_D^{al} \sin\chi - \beta_D^{al} \cos\chi) \sin\phi_p, & b_{23} &= \sigma_D^{al} \sin\phi_p \sin\phi_p, \\ b_{12} &= (\gamma_D^{al} \sin\chi - \beta_D^{al} \cos\chi) \cos\theta_p \cos\phi_p & b_{30} &= \alpha_D^{al} \cos\phi_p, \\ &+ (\gamma_D^{al} \cos\chi + \beta_D^{al} \sin\chi) \sin\phi_p, & b_{31} &= (\gamma_D^{al} \cos\chi + \beta_D^{al} \sin\chi) \sin\theta_p, \\ b_{13} &= \sigma_D^{al} \sin\theta_p \cos\phi_p, & b_{32} &= -(\gamma_D^{al} \sin\chi - \beta_D^{al} \cos\chi) \sin\theta_p, \\ b_{20} &= \alpha_D^{al} \sin\phi_p, & b_{33} &= \sigma_D^{al} \cos\phi_p. \end{split}$$

• Main parameters: $\sigma_D^{sl} \equiv \sigma_D^{sl}(\theta_l, q^2), \, \alpha_D^{sl} \equiv \alpha_D^{sl}(\theta_l, q^2), \, \beta_D^{sl} \equiv \beta_D^{sl}(\theta_l, q^2), \, \gamma_D^{sl} \equiv \gamma_D^{sl}(\theta_l, q^2)$ • Each element of $b_{\mu\nu}$ is multiplied by $p = \sqrt{Q_+Q_-}/(2M_1)$

Varvara Batozskaya

Intermediate step (1)

• $\sigma^{sl}_{\Lambda}, \, \alpha^{sl}_{\Lambda}, \, \beta^{sl}_{\Lambda} \text{ and } \gamma^{sl}_{\Lambda} \Rightarrow \{n, \alpha, \alpha', \alpha'', \beta_{1,2}, \gamma_{1,2}\}(q^2) \colon g^{\Lambda}_{av}(q^2), \, g^{\Lambda}_{w}(q^2)$

• Introduce the intermediate parameters:

$$\begin{split} \text{normalization} \quad & n = |H_{\frac{1}{2}1}|^2 + |H_{-\frac{1}{2}-1}|^2 + 2(|H_{-\frac{1}{2}0}|^2 + |H_{\frac{1}{2}0}|^2), \\ & \alpha = |H_{\frac{1}{2}1}|^2 - |H_{-\frac{1}{2}-1}|^2 + 2(|H_{-\frac{1}{2}0}|^2 - |H_{\frac{1}{2}0}|^2), \\ & \alpha' = |H_{\frac{1}{2}1}|^2 + |H_{-\frac{1}{2}-1}|^2 - 2(|H_{-\frac{1}{2}0}|^2 + |H_{\frac{1}{2}0}|^2), \\ & \alpha'' = |H_{\frac{1}{2}1}|^2 - |H_{-\frac{1}{2}-1}|^2 - 2(|H_{-\frac{1}{2}0}|^2 - |H_{\frac{1}{2}0}|^2), \\ & \beta_{1,2} = 2(\Im(H_{-\frac{1}{2}0}^*H_{-\frac{1}{2}-1}) \pm \Im(H_{\frac{1}{2}1}^*H_{\frac{1}{2}0})), \\ & \gamma_{1,2} = 2(\Re(H_{-\frac{1}{2}0}^*H_{-\frac{1}{2}-1}) \pm \Re(H_{\frac{1}{2}1}^*H_{\frac{1}{2}0})), \end{split}$$

where $\beta_{1,2} = \frac{1}{2}\sqrt{n^2 - \alpha^2 - (\alpha')^2 + (\alpha'')^2} \sin \phi_{1,2}$ and $\gamma_{1,2} = \frac{1}{2}\sqrt{n^2 - \alpha^2 - (\alpha')^2 + (\alpha'')^2} \cos \phi_{1,2}$

- $\alpha^2 + (\alpha')^2 (\alpha'')^2 + 2\sum_{i=1}^2 (\gamma_i^2 + \beta_i^2) = n^2$
- Using the definition of helicity amplitudes the main parameters to describe semileptonic hyperon decays are:

•
$$F_1^V(0)$$
, $F_2^V(0)$, $F_1^A(0)$
• $g_{av}^D(0) = \frac{F_1^A(0)}{F_1^V(0)}$, $g_w^D(0) = \frac{F_2^V(0)}{F_1^V(0)}$

Intermediate step (2)

• Relations between intermediate and decay parameters:

$$\begin{split} n &= ((M_-M_+)^2 - q^4)(1 + (g^D_{av}(q^2))^2) + q^2 \left(4M_1M_2((g^D_{av}(q^2))^2 - 1) + \frac{q^2}{M_1^2}Q_-((g^D_w(q^2))^2(M_+^2 + q^2) + 4g^D_w(q^2)M_+) \right) \\ \alpha &= 2\sqrt{Q_-Q_+} \left[g^D_{av}(q^2)(q^2 - M_-M_+) + 2g^D_{av}(q^2)g^D_w(q^2)q^2\frac{M_2}{M_1} \right] \\ \alpha' &= Q_-Q_+ \left[-(1 + (g^D_{av}(q^2))^2) + (g^D_w(q^2))^2\frac{q^2}{M_1^2} \right] \\ \alpha'' &= 2\sqrt{Q_-Q_+} \left[g^D_{av}(q^2)(q^2 + M_-M_+) + 2g^D_{av}(q^2)g^D_w(q^2)q^2 \right] \\ \text{where } M_- = M_1 - M_2 \text{ and } M_+ = M_1 + M_2 \text{ and } Q_\pm = M_\pm^2 - q^2 \end{split}$$

•
$$\{\alpha, \alpha', \alpha'', \gamma_{1,2}\}(q^2)/n(q^2) \in [-1, +1]$$

Intermediate step (3)

• Non-zero elements of the decay matrix $b_{\mu\nu}$:

$$\begin{split} & b_{00} = 1, \\ & b_{01} = a_D^{sl}, \\ & b_{03} = a_D^{sl}, \\ & b_{03} = a_D^{sl}, \\ & b_{10} = a_D^{sl} \cos \phi_p \sin \theta_p, \\ & b_{10} = a_D^{sl} \cos \phi_p \sin \theta_p, \\ & b_{11} = \mp A \cos \theta_p \cos \phi_p \pm B \sin \phi_p, \\ & b_{12} = \pm B \cos \theta_p \cos \phi_p \pm A \sin \phi_p, \\ & b_{13} = \sin \theta_p \cos \phi_p, \\ & b_{13} = \sin \theta_p \cos \phi_p, \\ & b_{23} = \sin \theta_p \sin \theta_p, \\ & b_{30} = a_D^{sl} \cos \theta_p, \\ & b_{31} = \pm A \sin \theta_p, \\ & b_{32} = \mp B \sin \theta_p, \\ & b_{33} = \cos \theta_p, \\ & b_{33} = \cos \theta_p, \\ & where \quad a_D^{sl} = \frac{\alpha_D^{sl}(\theta_l, q^2)}{\sigma_D^{sl}(\theta_l, q^2)} = \frac{\alpha + \alpha'' \cos^2 \theta_l \mp (\alpha + \alpha'') \cos \theta_l}{n + \alpha' \cos^2 \theta_l \mp (\alpha + \alpha'') \cos \theta_l}, \\ & A = \frac{1}{2\sqrt{2}} \frac{\sin \theta_l}{\sigma_D^{sl}(\theta_l, q^2)} [\cos \chi(\gamma_1 \pm \cos \theta_l \gamma_2) + \sin \chi(\beta_1 \pm \cos \theta_l \beta_2)], \\ & B = \frac{1}{2\sqrt{2}} \frac{\sin \theta_l}{\sigma_D^{sl}(\theta_l, q^2)} [\sin \chi(\gamma_1 \pm \cos \theta_l \gamma_2) - \cos \chi(\beta_1 \pm \cos \theta_l \beta_2)]. \end{split}$$

Varvara Batozskaya

Sensitivity for extracted parameters (1)

• Study the importance of the individual parameters in joint angular distribution and its correlations using likelihood function [PRDD100(2019)11]

$$\mathcal{L}(\boldsymbol{\omega}) = \prod_{i=1}^{N} \mathcal{P}(\boldsymbol{\xi}_{i}, \boldsymbol{\omega}) \equiv \prod_{i=1}^{N} \frac{\mathcal{W}(\boldsymbol{\xi}_{i}, \boldsymbol{\omega})}{\int \mathcal{W}(\boldsymbol{\xi}, \boldsymbol{\omega}) d\boldsymbol{\xi}}$$

N is the number of events in the final selection $\boldsymbol{\xi}_i$ is the full set of kinematic variables describing *i*-th event $\boldsymbol{\omega}$ is the full set of individual parameters

• Reduced asymptotic expression of inverse covariant matrix element:

$$V_{kl}^{-1} = N \int \frac{1}{\mathcal{P}} \frac{\partial \mathcal{P}}{\partial \omega_k} \frac{\partial \mathcal{P}}{\partial \omega_l} d\boldsymbol{\xi}$$

- Sensitivity = $\sigma \times \sqrt{N}$
- To eliminate complicated calculation of derivatives the numerical differentiation is used [Numerical Analysis]:

$$\frac{\partial \mathcal{P}}{\partial \omega_k} = \sum_{\omega_1}^{\omega_n} \lim_{h \to 0} \frac{\mathcal{P}(\omega_k + h) - \mathcal{P}(\omega_k)}{h}$$

Definitions and input values

$$A_D \equiv \frac{X_D + X_{\bar{D}}}{X_D - X_{\bar{D}}} \text{ and } \langle X_D \rangle \equiv \frac{X_D - X_{\bar{D}}}{2}$$

where $X_D = \alpha_{\Lambda}, g_{av}^{\Lambda}, g_{w}^{\Lambda}$ and $X_{\bar{D}} = \alpha_{\bar{\Lambda}}, g_{av}^{\bar{\Lambda}}, g_{w}^{\bar{\Lambda}}$

• Input values of decay parameters [NaturePhys.15(2019)631] and slide 3

_						
	Decay	α_ψ	$\Delta \Phi$	α_{Λ}	g_{av}	g_w
	$J/\psi \to \Lambda \bar{\Lambda}$	$0.461 \pm 0.006 \pm 0.007$	$0.740 \pm 0.010 \pm 0.008$			
	$\Lambda \rightarrow p\pi^-$			0.750 ± 0.010		
	$\Lambda \rightarrow p e^- \bar{\nu}_e$				0.719	1.066

Sensitivity for extracted parameters $(\sigma \times \sqrt{N})$ (2)

• Sensitivity for $\Lambda\bar{\Lambda} \to (p\pi^-)(\bar{p}\pi^+)$ is in an agreement with [PRD100(2019)114005]

Decay	α_{ψ}	$\Delta \Phi$	α_{Λ}	g^{Λ}_{av}	g_w^{Λ}	$\langle \alpha_{\Lambda} \rangle$	A_{Λ}	$\langle g^{\Lambda}_{av} \rangle$	A^{Λ}_{av}	$\langle g_w^\Lambda \rangle$	A_w^{Λ}
$\Lambda\bar{\Lambda} \to (p\pi^-)(\bar{p}\pi^+)$	3.43	7.47	6.83			1.76	8.81				
$\Lambda\bar{\Lambda} \rightarrow (pe^-\bar{\nu}_e)(\bar{p}\pi^+) \ (q^2=0, g_w=0)$	3.19	7.13	6.97	21.0							
$\Lambda\bar{\Lambda} \to (pe^-\bar{\nu}_e)(\bar{p}\pi^+)(g_w=0)$	3.46	7.57	3.46	10.6							
$\Lambda\bar{\Lambda} \to (pe^-\bar{\nu}_e)(\bar{p}\pi^+)$	3.50	7.74	3.73	25.9	120						
$\Lambda\bar{\Lambda} \to (pe^-\bar{\nu}_e)(\bar{p}e^+\nu_e) \ (q^2=0, g_w=0)$	2.79	6.61		21.1				2.98	28.9		
$\Lambda\bar{\Lambda} \to (pe^-\bar{\nu}_e)(\bar{p}e^+\nu_e)(g_w=0)$	3.42	7.42		10.6				7.33	10.6		
$\Lambda\bar{\Lambda} \to (pe^-\bar{\nu}_e)(\bar{p}e^+\nu_e)$	3.43	7.44		24.2	111			15.6	22.9	83.5	69.5

$(q^2 = 0, g_w = 0)$ $(g_w = 0)$							g^{Λ}_{av}	g_{av}^{Λ}	g_w^{Λ}	$g_w^{\overline{\Lambda}}$	$\alpha_{\bar{\Lambda}}$	α_{ψ}	$\Delta \Phi$						
	g_{av}^{Λ}	g^{Λ}_{av}	$\alpha_{\bar{\Lambda}}$	α_{ψ}	$\Delta \Phi$		g^{Λ}_{av}	g_{av}^{Λ}	$\alpha_{\bar{\Lambda}}$	α_{ψ}	$\Delta \Phi$	g_{av}^{Λ}	1	0.05	-0.86	0.08		-0.04	-0.04
g^{Λ}_{av}	1	0.96		-0.02	0.02	g_{av}^{Λ}	1	0.04		0.04	0.05	g_{av}^{Λ}		1	-0.08	0.91		0.04	0.05
$g_{av}^{\bar{\Lambda}}$		1		0.05	0.03	$g_{av}^{\bar{\Lambda}}$		1		-0.04	-0.05	g_w^{Λ}	-0.87		1	-0.12		0.06	0.07
$\alpha_{\bar{\Lambda}}$	0.93		1			$\alpha_{\bar{\Lambda}}$	-0.18		1			$g_w^{\bar{\Lambda}}$				1		0.06	0.08
α_{ψ}	-0.06		0.01	1	0.02	α_{ψ}	0.01		0.19	1	0.24	$\alpha_{\bar{\Lambda}}$	0.21		-0.31		1		
$\Delta \Phi$	0.04		0.10	0.18	1	$\Delta \Phi$	0.01		0.25	0.27	1	α_{ψ}	-0.01		0.01		0.17	1	0.25
												$\Delta \Phi$	-0.00		0.00		0.24	0.28	1

* $\Lambda\bar{\Lambda} \rightarrow (pe^-\bar{\nu}_e)(\bar{p}e^+\nu_e)$ (above the diagonal) and $\Lambda\bar{\Lambda} \rightarrow (pe^-\bar{\nu}_e)(\bar{p}\pi^+)$ (below the diagonal)

Helicity amplitudes of the lepton pair $h_{\lambda_l\lambda_\nu}^l$

• Lepton and anti-neutrino spinors

$$\begin{split} \tilde{u}_{l^-}(\mp \frac{1}{2}, p_{l^-}) &= \sqrt{E_l + m_l} \left(\chi_{\pm}^{\dagger}, \frac{\pm |\vec{p}_{l^-}|}{E_l + m_l} \chi_{\pm}^{\dagger} \right), \\ v_{\bar{\nu}}(\frac{1}{2}) &= \sqrt{E_{\nu}} \begin{pmatrix} \chi_+ \\ -\chi_+ \end{pmatrix}, \end{split}$$
 where $\chi_+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\chi_- = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are Pauli two-spinors

• SM form of the lepton current $(\lambda_W = \lambda_{l^-} - \lambda_{\bar{\nu}})$

$$\begin{aligned} h_{\lambda_{l^-}=\mp 1/2,\lambda_{\bar{\nu}}=1/2}^l &= \bar{u}_{l^-}(\mp \frac{1}{2})\gamma^{\mu}(1+\gamma_5)v_{\bar{\nu}}(\frac{1}{2}) \begin{cases} \epsilon_{\mu}(-1)\\ \epsilon_{\mu}(t),\epsilon_{\mu}(0) \end{cases} \\ \end{aligned} \\ \text{where } \epsilon^{\mu}(t) &= (1;0,0,0), \epsilon^{\mu}(0) = (0;0,0,1) \text{ and } \epsilon^{\mu}(\mp 1) = (0;\mp 1,-i,0)/\sqrt{2} \end{aligned}$$

• Moduli squared of the helicity amplitudes [EPJ C59 (2009) 27]

$$\begin{split} & \text{nonflip}(\lambda_W = \mp 1) : |h_{\lambda_l = \pm \frac{1}{2}, \lambda_\nu = \pm \frac{1}{2}}^l|^2 = 8(q^2 - m_l^2), \\ & \text{flip}(\lambda_W = 0, t) : |h_{\lambda_l = \pm \frac{1}{2}, \lambda_\nu = \pm \frac{1}{2}}^l|^2 = 8\frac{m_l^2}{2q^2}(q^2 - m_l^2) \end{split}$$

• Upper and lower signs refer to the configurations $(l^-, \bar{\nu}_l)$ $(\lambda_{\nu} = 1/2)$ and (l^+, ν_l) $(\lambda_{\nu} = -1/2)$, respectively

• In case of the *e*-mode only nonflip transition remains under assumption $\frac{m_e^2}{2a^2} \rightarrow 0$

Varvara Batozskaya

Semileptonic $\Lambda \operatorname{decay}^{[\operatorname{flip}]}$

• For
$$\Lambda \to p e^- \bar{\nu}_e$$
 at $\mathcal{O}(\frac{m_e^2}{2q^2}) \sim 4 \cdot 10^{-6} \Rightarrow F_3^{V,A} \to 0$
• For $\Lambda \to p \mu^- \bar{\nu}_\mu$ at $\mathcal{O}(\frac{m_\mu^2}{2q^2}) \sim 0.18 \Rightarrow F_3^{V,A} \neq 0$

• Helicity amplitude is $H_{\lambda_2 \lambda_W} = (H^V_{\lambda_2 \lambda_W} + H^A_{\lambda_2 \lambda_W})$ with $(\lambda_2 = \pm \frac{1}{2}; \lambda_W = t, 0, \pm 1)$:

$$\begin{split} & \underset{\frac{1}{2}}{\text{top}} \left(\begin{array}{c} H_{\frac{1}{2}1}^{V} = \sqrt{2Q_{-}} \left(-F_{1}^{V} - \frac{M_{1} + M_{2}}{M_{1}} F_{2}^{V} \right), \\ H_{\frac{1}{2}0}^{V} = \frac{\sqrt{Q_{-}}}{\sqrt{q^{2}}} \left((M_{1} + M_{2}) F_{1}^{V} + \frac{q^{2}}{M_{1}} F_{2}^{V} \right), \\ H_{\frac{1}{2}t}^{V} = \frac{\sqrt{Q_{+}}}{\sqrt{q^{2}}} \left((M_{1} - M_{2}) F_{1}^{V} + \frac{q^{2}}{M_{1}} F_{3}^{V} \right), \\ H_{\frac{1}{2}t}^{V} = \frac{\sqrt{Q_{+}}}{\sqrt{q^{2}}} \left((M_{1} - M_{2}) F_{1}^{V} + \frac{q^{2}}{M_{1}} F_{3}^{V} \right), \\ \text{where } Q_{\pm} = (M_{1} \pm M_{2})^{2} - q^{2}; \\ \end{array} \right. \begin{array}{c} H_{\frac{1}{2}A}^{A} = \sqrt{2Q_{+}} \left((-(M_{1} - M_{2}) F_{1}^{A} + \frac{q^{2}}{M_{1}} F_{3}^{A} \right), \\ H_{\frac{1}{2}t}^{A} = \frac{\sqrt{Q_{-}}}{\sqrt{q^{2}}} \left(-(M_{1} + M_{2}) F_{1}^{A} + \frac{q^{2}}{M_{1}} F_{3}^{A} \right), \\ \end{array}$$

• SU(3) symmetry limit $\Longrightarrow F_3^V = 0$

Decay chain: $\frac{1}{2} \to \frac{1}{2} + \{t, 0, \pm 1\}$ [flip]

- Six helicity amplitudes: $H_{\frac{1}{2}0}, H_{-\frac{1}{2}0}, H_{\frac{1}{2}1}, H_{-\frac{1}{2}-1}, H_{\frac{1}{2}t}, H_{-\frac{1}{2}t}$
- Relation between helicity amplitudes and decay parameters

$$\begin{split} & f_D^{'bl} = \frac{1}{2} \sin^2 \theta_l (|H_{\frac{1}{2}l}|^2 + |H_{-\frac{1}{2}-1}|^2) + \cos^2 \theta_l (|H_{-\frac{1}{2}0}|^2 + |H_{\frac{1}{2}0}|^2) + |H_{-\frac{1}{2}t}|^2 + |H_{\frac{1}{2}t}|^2 - 2\cos \theta_l \Re (H_{-\frac{1}{2}t}H_{-\frac{1}{2}0}^* + H_{\frac{1}{2}t}^* H_{\frac{1}{2}0}^*) \\ & \alpha_D^{'sl} = \frac{1}{2} \sin^2 \theta_l (|H_{\frac{1}{2}l}|^2 - |H_{-\frac{1}{2}-1}|^2) + \cos^2 \theta_l (|H_{-\frac{1}{2}0}|^2 - |H_{\frac{1}{2}0}|^2) + |H_{-\frac{1}{2}t}|^2 - |H_{\frac{1}{2}t}|^2 - 2\cos \theta_l \Re (H_{-\frac{1}{2}t}H_{-\frac{1}{2}0}^* - H_{\frac{1}{2}t}^* H_{\frac{1}{2}0}^*) \\ & \beta_{3,4} = 2\Im (H_{-\frac{1}{2}t}^* H_{-\frac{1}{2}-1} \pm H_{\frac{1}{2}1}^* H_{\frac{1}{2}1}), \\ & \gamma_{3,4} = 2\Re (H_{-\frac{1}{2}t}^* H_{-\frac{1}{2}-1} \pm H_{\frac{1}{2}1}^* H_{\frac{1}{2}t}). \end{split}$$

• Non-zero elements of the decay matrix $b'_{\mu\nu}$:

$$\begin{split} b_{00}^{b} &= 1, & b_{21}^{b} = B' \cos \phi_{p} + A' \sin \phi_{p} \cos \theta_{p}, \\ b_{03}^{b} &= a_{D}^{cl}, & b_{22}^{b} = A' \cos \phi_{p} - B' \sin \phi_{p} \cos \theta_{p}, \\ b_{10}^{b} &= a_{D}^{cl} \cos \phi_{p} \sin \theta_{p}, & b_{23}^{b} = \sin \theta_{p} \sin \phi_{p}, \\ b_{11}^{b} &= A' \cos \theta_{p} \cos \phi_{p} - B' \sin \phi_{p}, & b_{30}^{b} = a_{D}^{cl} \cos \theta_{p}, \\ b_{12}^{b} &= -B' \cos \theta_{p} \cos \phi_{p} - A' \sin \phi_{p}, & b_{31}^{b} = -A' \sin \theta_{p}, \\ b_{13}^{b} &= \sin \theta_{p} \cos \phi_{p}, & b_{32}^{b} = B' \sin \theta_{p}, \\ b_{20}^{b} &= a_{D}^{cl} \sin \theta_{p} \sin \phi_{p}, & b_{33}^{b} = \cos \theta_{p}, \\ where & a_{D}^{cl} &= \frac{\alpha_{D}^{cl}(\theta, q^{2})}{\sigma_{D}^{cl}(\theta_{l}, q^{2})}, & A' &= \frac{1}{\sqrt{2}} \frac{\sin \theta_{l}}{\sigma_{D}^{cl}(\theta_{l}, q^{2})} [\sin \chi (\cos \theta_{l} \gamma_{2} - \gamma_{4}) + \sin \chi (\cos \theta_{l} \beta_{2} - \beta_{4})], \\ & B' &= \frac{1}{\sqrt{2}} \frac{\sin \theta_{l}}{\sigma_{D}^{cl}(\theta_{l}, q^{2})} [\sin \chi (\cos \theta_{l} \gamma_{2} - \gamma_{4}) - \cos \chi (\cos \theta_{l} \beta_{2} - \beta_{4})]. \end{split}$$

• Each element of $b'_{\mu\nu}$ is multiplied by $p = \sqrt{Q_+Q_-}/(2M_1)$ and $\frac{m_l^2}{2q^2}$

Varvara Batozskaya

Intermediate step^[flip] (1)

- $\sigma_{\Lambda}^{'sl}$ and $\alpha_{\Lambda}^{'sl} \Rightarrow \{n, \alpha, \alpha', \alpha'', \beta_{1,2}, \gamma_{1,2}\}(q^2) + \{\epsilon, \epsilon', \beta_{3,4}, \gamma_{3,4}\}(q^2)$: $g_{av}^{\Lambda}(q^2), g_{av3}^{\Lambda}(q^2)$
- Additional intermediate parameters:

$$\begin{split} \epsilon &= 4(|H_{-\frac{1}{2}t}|^2 + |H_{\frac{1}{2}t}|^2),\\ \epsilon' &= 4(|H_{-\frac{1}{2}t}|^2 - |H_{\frac{1}{2}t}|^2). \end{split}$$

- $(n + \alpha')(n \alpha' + \epsilon) (\alpha + \alpha'')(\alpha \alpha'' + \epsilon') 2\sum_{i=1}^{4} (\gamma_i^2 + \beta_i^2) = 0$ If no flip transition \implies relation on slide 6
- Introduce additional main parameter of semileptonic hyperon decay:

 $\begin{array}{c} \bullet \ F_3^A(0) \\ \text{or} \\ \bullet \ g_{av3}^D(0) = \frac{F_3^A(0)}{F_1^V(0)} \end{array} \end{array}$

Intermediate step^[nonflip+flip] (2)

• Relations between intermediate and decay parameters:

$$\begin{split} n &= \left((M_-M_+)^2 - q^4 \right) (1 + (g^D_{av}(q^2))^2) + q^2 \left(4M_1 M_2 ((g^D_{av}(q^2))^2 - 1) + \frac{q^2}{M_1^2} Q_- ((g^D_w(q^2))^2 (M_+^2 + q^2) + 4g^D_w(q^2) M_+) \right) \\ \alpha &= 2\sqrt{Q_-Q_+} \left[g^D_{av}(q^2) (q^2 - M_-M_+) + 2g^D_{av}(q^2) g^D_w(q^2) q^2 \frac{M_2}{M_1} \right] \\ \alpha' &= Q_-Q_+ \left[-(1 + (g^D_{av}(q^2))^2) + (g^D_w(q^2))^2 \frac{q^2}{M_1^2} \right] \\ \alpha''' &= 2\sqrt{Q_-Q_+} \left[g^D_{av}(q^2) (q^2 + M_-M_+) + 2g^D_{av}(q^2) g^D_w(q^2) q^2 \right] \\ \epsilon &= (M_-M_+)^2 (1 + (g^D_{av}(q^2))^2) - q^2 \left(M_-^2 + M_+^2 (g^D_{av}(q^2))^2 + \frac{Q_-}{M_1} (2g^D_{av}(q^2) g^D_{av3}(q^2) M_+ - (g^D_{av3}(q^2))^2 q^2) \right) \\ \epsilon' &= 2M_-\sqrt{Q_-Q_+} \left(g^D_{av}(q^2) M_+ - \frac{q^2}{M_1} g^D_{av3}(q^2) \right) \\ \text{where } M_- &= M_1 - M_2 \text{ and } M_+ = M_1 + M_2 \text{ and } Q_{\pm} = M_{\pm}^2 - q^2 \end{split}$$

• $\{\alpha, \alpha', \alpha'', \gamma_{1,2}\}(q^2) + \{\epsilon, \epsilon', \gamma_{3,4}\}(q^2)/n(q^2) \in [-1, +1]$

Varvara Batozskaya

Joint angular distribution

• Full decay matrix of semileptonic hyperon decay:

$$b_{\mu\nu}^{f} = \sum_{\mu,\nu=0}^{3} \left(b_{\mu\nu} + \frac{m_{l}^{2}}{2q^{2}} b_{\mu\nu}' \right)$$

where $b_{\mu\nu}$ and $b'_{\mu\nu}$ are nonflip (slide 8) and flip (slide 14) transitions

• Process $e^+e^- \to (\Lambda \to p e^- \bar{\nu}_e)(\bar{\Lambda} \to \bar{p}\pi^+)$

$$\mathrm{Tr}\rho_{pW\bar{p}} \propto \mathcal{W}(\boldsymbol{\xi};\boldsymbol{\omega}) = \sum_{\mu,\bar{\nu}=0}^{3} C_{\mu\bar{\nu}} b_{\mu 0}^{\Lambda} a_{\bar{\nu}0}^{\bar{\Lambda}}$$

• $C_{\mu\bar{\nu}}(\theta_{\Lambda}; \alpha_{\psi}, \Delta\Phi)$

• $b_{\mu 0}^{f}$ matrices for $1/2 \rightarrow 1/2 + \{t, 0, \pm 1\}$ decays $\Leftrightarrow b_{\mu 0}^{\Lambda} \equiv b_{\mu 0}^{f}(\theta_{p}, \varphi_{p}, \theta_{e}, \chi, q^{2}; [g_{av}^{\Lambda}, g_{w}^{\Lambda}, g_{avs}^{\Lambda}]$

• $a_{\bar{\nu}0}$ matrices for $1/2 \to 1/2 + 0$ decays $\Leftrightarrow a_{\bar{\nu}0}^{\bar{\Lambda}} \equiv a_{\bar{\nu}0}(\theta_{\bar{p}}, \varphi_{\bar{p}}; \alpha_{\bar{\Lambda}})$

•
$$\boldsymbol{\xi} \equiv (\theta_{\Lambda}, \theta_{p}, \varphi_{p}, \theta_{e}, \chi, q^{2}, \theta_{\bar{p}}, \varphi_{\bar{p}})$$

• $\boldsymbol{\omega} \equiv (\alpha_{\psi}, \Delta \Phi, g_{av}^{\Lambda}, g_{w}^{\Lambda}, g_{av3}^{\Lambda}, \alpha_{\bar{\Lambda}})$

If flip transition is taking into account, g^D_{av3} ≠ 0
Range of q² ∈ (m²_l, (M₁ - M₂)²) is specific for each decay

Varvara Batozskaya

ToDo list and next steps

- Test formalism using
 - Production of mDIY and MC PhSp for $e^+e^- \to (\Lambda \to p\pi^-)(\bar{\Lambda} \to \bar{p}\pi^+)$ o true and reco mDIY and MC PhSp
 - \circ allow to extract true and recovalues of α_{Λ} and $\alpha_{\overline{\Lambda}}$ decay parameters $\bigstar \alpha_{\Lambda}^{\text{true}}$ and $\alpha_{\overline{\Lambda}}^{\text{true}}$ are extracted and verified
 - Modification of mDIY to include the semileptonic decay formalism
 Done
 - $\begin{array}{l} \textcircled{\textbf{3}} \end{array} \mbox{ Production of true and reco mDIY and MC PhSp for } \Lambda \rightarrow p e^- \bar{\nu}_e \\ \hline{\textbf{0}} \mbox{ extraction of the } g^A_{av} \mbox{ and } g^M_w \mbox{ decay parameters } \end{array}$
 - 🐥 In progress
 - If all steps work, consider more difficult scenario, mixed MC samples
 - If previous step works, move to the real data
- Additional steps:
 - Sensitivity for g_i^{Λ} and A_i^{Λ} (i = av, w): • Preliminary result for three cases: • $g_w^{\Lambda} = q^2 = 0$ • $g_w^{\Lambda} = 0$ and full q^2 range • $g_w^{\Lambda} \neq 0$ • Formalism with flip transition $(m_l^2/(2q^2) \neq 0)$:
 - 🐥 In progress

Backups

" I ALWAYS BACK UP EVERYTHING."

Size estimations of helicity amplitudes

Varvara Batozskaya

6 April 2021 20 / 18

CP violation in non-leptonic decays

$$A_{\Lambda} = \frac{\alpha_{\Lambda} + \alpha_{\bar{\Lambda}}}{\alpha_{\Lambda} - \alpha_{\bar{\Lambda}}}$$

- BESIII result: $A_{\Lambda} = -0.006 \pm 0.012 \pm 0.007$ [NaturePhys.15(2019)631]
- CKM: $-3 \cdot 10^{-5} \le A_{\Lambda} \le 4 \cdot 10^{-5}$ [PRD67(2003)056001] Extensions of SM: $A_{\Lambda \to p\pi^{-}} \sim (0.05 - 1.2) \cdot 10^{-4}$ [Chin.Phys.C42(2018)013101]

Experiment	Nevt	$\sigma(A_{\Lambda})$							
BESIII (2018)	$4.2 \cdot 10^{5}$	$1.2 \cdot 10^{-2}$	$N_{J/\psi} = 1.31 \cdot 10^9$						
Some estimations									
BESIII	$3\cdot 10^6$	$5 \cdot 10^{-3}$	$ \begin{array}{c} {\rm N}_{J/\psi} = 10^{10} \\ {\cal L} = 0.47 \cdot 10^{33} / {\rm cm}^2 / {\rm s}, \Delta {\rm E} {=} 0.9 {\rm MeV} \end{array} $						
SuperTauCharm	$6 \cdot 10^8$	$3 \cdot 10^{-4}$	${f N}_{J/\psi} = 2 \cdot 10^{12}$ ${\cal L} = 10^{35}/{ m cm}^2/{ m s}, \ \Delta { m E}{=}0.9 \ { m MeV}$						
$\begin{array}{l} {\rm SuperTauCharm} \\ + \ {\rm reduced} \ \Delta {\rm E} \end{array}$	$3\cdot 10^9$	$1.4 \cdot 10^{-4}$	${ m N}_{J/\psi} = 10^{13}$ ${\cal L} = 10^{35}/{ m cm}^2/{ m s}, \Delta { m E}{ m <}0.9 { m MeV} (?)$						

CP symmetry test A^{av}_{Λ}

$$A_{\Lambda}^{av} = \frac{g_{av}^{\Lambda}(0) + g_{av}^{\bar{\Lambda}}(0)}{g_{av}^{\Lambda}(0) - g_{av}^{\bar{\Lambda}}(0)}$$

• $g_{av}(0) = \frac{F_1^A(0)}{F_1^V(0)}$

- Determination of $F_1^V(0)$ value by CVC hypothesis: $F_1^V(0) < 0$
- No determination of $F_1^A(0)$ value by any general theoretical arguments
- Some assumptions:
 - $F_1^A(0) \leq 0$ then $g_{av}(0) \geq 0$
 - ? Naïve assumption $g_{av}^{\Lambda} = -g_{av}^{\bar{\Lambda}}$ \implies Need to be care with sign of g_{av}

Experiment	N _{evt}	Result	Reference
E555 (Fermilab)	37286	$g_{av}(0) = 0.719 \pm 0.016 \pm 0.012$	[PRD/1/1000)780]
	01200	constrain on $g_w(0) = 0.97$	[11041(1550)160]
SPS (CERN)	7111	$g_{av}(0) = 0.70 \pm 0.03$	[7DC91(1082)1]
SI S (OEIUV)	1111	measured $F_2^V(0) = 1.32 \pm 0.81$	[21 021(1965)1]
AGS (BNL)	104	$ g_{av}(0) = 0.734 \pm 0.031$	[DI D09(1091)199]
	10	used $g_w(0) = 0.97$	[F LD90(1981)123]

MC generator (step 1)

Using YYbar_example package by Patrik, the presented process can be generated ۲

- MC samples: $N_{\text{evt}}^{\text{sig}}=10^5$ and $N_{\text{evt}}^{\text{phsp}}=10^6$ Generate $q^2 \in (m_e^2, (M_{\Lambda} M_p)^2)$
- Set of input values:

pp[0] =	0.461;	// alpha_J/psi (arxiv:1808.08917)
pp[1] =		<pre>// Delta_Phi (arxiv:1808.08917, equal 42.4deg)</pre>
pp[2] =		// gav Lambda->p e- nu_ebar
pp[3] =		// gw Lambda->p e- nu_ebar
pp[4] =		// alpha_D LambdaBar->pbar pi+ (arxiv:1808.08917)

- No negative weights are observed
- Maximal weight ~ 0.36

Random samples $(N_{sig} = 10^5)$ (step 1)

Random samples $(N_{phsp} = 10^6)$ (step 1)

Run through fit method (step 2)

• Set input values in the fit

ld mainMLL(){
<pre>dela///itnstantlating the values to be measured Double_t pp[]; for(int t = ; t < ; t++) pp[t]= ;</pre>
<pre>// starting values for fit Double_t alpha_jpst = 0.01; // alpha_J/Pst Double_t dphi_jpst = 0.01; // relative phase, Dphi_J/Pst Double_t gav_lam_plnu = 0.000; // gav_(Lam->p l nubar_l) Double_t gav_lam_plnu = 0.000; // gav_(Lam->p l nubar_l) Double_t alpha_lam_pbarpip = 0.000; // alpha_(Lambar->pbar pt+)</pre>
<pre>alpha_jpsi = gRandom->Rndm(); dphi_jpsi = gRandom->Rndm(); gav_iam_pinu = winn; gw_iam_pinu = winn; alpha_lam_pbarpip = -1.70; Paadmast();</pre>
ReadMC();

• Output value of fit method

Parameter	$N_{sig}^{MC} = 10^5, N_{phsp}^{MC} = 10^6$		α_{Ψ}	$\Delta \Phi$	g_{av}	g_w	$\alpha_{\bar{\Lambda}}$
α_{Ψ}	$0.4570 {\pm} 0.0110$	α_{Ψ}	1	0.281	-0.026	0.032	0.151
$\Delta \Phi$	$0.7927 {\pm} 0.0252$	$\Delta \Phi$		1	0.016	-0.013	0.269
g_{av}	$0.6601 {\pm} 0.0506$	g_{av}			1	-0.766	0.323
g_w	$1.1251 {\pm} 0.2727$	g_w				1	-0.411
$lpha_{ar\Lambda}$	-0.7527 ± 0.0121	$lpha_{ar\Lambda}$					1

Boundary case: q_{\min}^2

•
$$q_{\min}^2 = m_e^2 \longrightarrow 0$$
:

$$b_{00} = (1 + (g^{D}_{av}(0))^{2}) \sin^{2} \theta_{l}$$

$$b_{03} = -2g^{D}_{av}(0) \sin^{2} \theta_{l},$$

$$b_{10} = b_{03} \sin \theta_{p} \cos \phi_{p},$$

$$b_{13} = b_{00} \sin \theta_{p} \cos \phi_{p},$$

$$b_{20} = b_{03} \sin \theta_{p} \sin \phi_{p},$$

$$b_{23} = b_{00} \sin \theta_{p} \sin \phi_{p},$$

$$b_{30} = b_{03} \cos \theta_{p},$$

$$b_{33} = b_{00} \cos \theta_{p}$$

,

Varvara Batozskaya

6 April 2021 27 / 18