A short review of QM 2022 -- Charmonium Spectrum

卢鹏忠 2022/04/29

Why heavy flavors

- Early creation: heavy quarks created in initial hard scatterings experience the entire evolution of the quarkgluon plasma (QGP) ($m_q >> T_{QGP}$)
- ► Include Both pQCD and non-perturbative : can be calculated down to low p_T in pQCD ($m_q >> \Lambda_{QCD}$), the process to form the heavy mesons involves soft momentum scales
- Probes to QGP properties: dissociation (static and dynamic) and (re-)generation

$$r_{qar q} \sim 1/E_{
m binding} \, > r_D \sim 1/T$$

	J/ψ	ψ(2S)	Y(1S)	Y(2S)	Y(3S)
E _b (MeV)	~ 640	~ 60	~ 1100	~ 500	~ 200

Central AA collisions	SPS 20 GeV	RHIC 200 GeV	LHC 5 TeV	
N _{ccbar} /event	~0.2	~10	~115	

- ✓ Large abundance of qqbar increasing their combining probability to form quarkonium.
- ✓ Compete with dissociation.
- ✓ Dominate at central and semi-central collisions.

Other effects

 $1.69 \, GeV^2$)

Formation time:

- \square high p_T hadrons fly out the medium faster
- **Feed-down** contribution to prompt yields: decay from excited states
- > **Non-prompt** contribution:
 - □ such as decay from open hadrons
- > Medium-induced energy loss:

□ parton energy loss

Cold Nuclear Matter effects (CNM):

the effects induced by the presence of the nuclei in the initial-state

 \square nPDF;

- □ Coherent energy loss;
- □ Nuclear absorption;

Co-movers

Other effects

Formation time:

- $\square \text{ high } p_T \text{ hadrons fly out the medium }$ faster
- Feed-down contribution to prompt yields:
 decay from excited states
- Non-prompt contribution:
 - $\hfill\square$ such as decay from open hadrons
- Medium-induced energy loss:

□ parton energy loss

Cold Nuclear Matter effects (CNM):

the effects induced by the presence of the nuclei in the initial-state

- □ nPDF;
- Coherent energy loss;
- □ Nuclear absorption;

Co-movers

better (CHW). The presence of the $\begin{bmatrix} 1.4 \\ 9 \\ 1.2 \\ 1.0 \\ 1 \\ 0.8 \end{bmatrix}$ Anti-shadowing $\begin{bmatrix} 1.4 \\ 9 \\ 1.2 \\ 1.0 \\ 1 \\ 0.8 \end{bmatrix}$ Anti-shadowing $\begin{bmatrix} 1.4 \\ 9 \\ 9 \\ 1.0 \\ 1 \\ 0.8 \end{bmatrix}$ Anti-shadowing $\begin{bmatrix} 1.4 \\ 9 \\ 9 \\ 1.0 \\ 1 \\ 0.8 \end{bmatrix}$ Anti-shadowing $\begin{bmatrix} 1.4 \\ 9 \\ 1.2 \\ 1.0 \\ 1 \\ 0.8 \end{bmatrix}$ Anti-shadowing $\begin{bmatrix} 1.4 \\ 9 \\ 1.2 \\ 1.0 \\ 1 \\ 0.8 \end{bmatrix}$ Anti-shadowing $\begin{bmatrix} 1.4 \\ 9 \\ 1.2 \\ 1.0 \\ 1 \\ 0.8 \end{bmatrix}$ Anti-shadowing $\begin{bmatrix} 1.4 \\ 9 \\ 1.2 \\ 1.0 \\ 1 \\ 0.8 \end{bmatrix}$ Anti-shadowing $\begin{bmatrix} 1.4 \\ 9 \\ 1.2 \\ 1.0 \\ 1.0 \\ 1 \\ 0.8 \end{bmatrix}$ Anti-shadowing $\begin{bmatrix} 1.4 \\ 9 \\ 1.2 \\ 1.0 \\$

Charmonium in p+p

LHCb – J/ ψ

Charmonium in p/d+A

• Strong suppression observed for $\psi(2S)$ with respect to J/ψ

- $\circ~$ Would not be expected if only CNM effects are present
- Reproduced by Co-Movers model *Phys.Lett.B* 749 (2015)

Flow in Small Systems at LHC and RHIC

• Consistent with QGP production in most central collisions

PH \ast **ENIX** Charmonia Nuclear Modification in p+Al Collisions

- $\bullet\,$ At forward rapidity, ${\rm J}/\psi$ and $\psi(2{\rm S})$ modification consistent with unity
- At backward rapidity, nuclear absorption cannot explain suppression in ψ(2S) modification
 ψ(2S) suppression could be due to final state effects, however error bars sizeable

PH^{*}ENIX

Charmonia Nuclear Modification in p+Au Collisions

At forward rapidity, J/ψ and ψ(2S) modification show similar suppression
Data well described by EPPS16 and nCTEQ15 shadowing predictions
At backward rapidity, nPDF effects alone cannot describe ψ(2S) modification

PH $\stackrel{*}{\times}$ **ENIX** Charmonia Nuclear Modification in p+Au Collisions

- Cold nuclear matter estimate shown at both rapidities
- Largest contribution to Transport Model at forward rapidity from EPS09 shadowing
- At backward rapidity, model predicts stronger hot nuclear matter effects for $\psi(2S)$ state

PH $\stackrel{\scriptstyle{\frown}}{\times}$ **ENIX** Charmonia Nuclear Modification in p+Au Collisions

- At forward rapidity, J/\u03c6 and \u03c6(2S) modification well described by shadowing models
 Consistent with cold nuclear matter effects
- At backward rapidity, charmonium inconsistent with shadowing effects alone

PH^{*}ENIX

$\psi(2S)$ Nuclear Modification at RHIC and LHC

• Initial state effects expected to be different at RHIC and LHC energies

• Larger mean p_T values at LHC lead to higher Q^2 values; different Bjorken-x probed • Both transport models at backward rapidity predict similar degree of suppression

$\psi(2S)$ to J/ ψ Ratio at RHIC and LHC

• The $\psi(2S)$ to J/ψ ratio in p+p collisions at RHIC, LHC show no clear energy dependence

• Comparison of the p+A to p+p ratio strongly suggests the presence of final state effects in p+A collisions at backward rapidity, as initial state effects expected to largely cancel

Charmonium Modification at RHIC and LHC

- J/ ψ and $\psi(2S)$ modification similar at forward rapidity
 - $\circ~$ Suggests initial state effects dominate charmonium production
- PHENIX, LHCb, and ALICE consistent with increasing final state effects in A-going direction

Conclusion

- ① Nuclear absorption cannot explain $\psi(2S)$ suppression at backward rapidity in p+A collisions
- 2 At forward rapidity, PHENIX J/ ψ , ψ (2S) modification consistent with EPPS16, nCTEQ15 shadowing predictions
- ③ Final state effects on charmonium states appear very similar at RHIC, LHC energies
- **④** Comparison of $\psi(2S)$ to J/ψ ratio in p+A versus p+p collisions strongly suggests presence of final state effects in p+A collisions at backward rapidity

- $R_{pAu} < 1$ at low p_T
- R_{pAu} is consistent with unity at mid to high p_T
- The suppression in Au + Au collisions at mid to high p_{τ} is dominated by HNM effects

 R_{pAu} result is consistent with model calculations taking nPDF into account, but at high p_T disfavor the one with additional nuclear absorption

Summary

- $J/\psi R_{pAu}$ at $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - Suppressed at low p_T ; consistent with unity at mid to high p_T
 - R_{AA} suppression at mid to high p_T is dominated by HNM effects

Charmonium in A+A

Energy Dependence of $J/\psi R_{A}$

Data are consistent with a transport model including primordial and regeneration contributions *Model calculation is in 0-20% centrality

- R_{AA} increases with p_T at $\sqrt{s_{NN}}$ = 39, 54.4 and 62.4 GeV (but not 200 GeV) below 3 GeV/c
- Could be due to more regeneration contribution at low p_T at 200 GeV
- $\sqrt{s_{NN}} = 54.4$ GeV: improved precision

- Suppression observed across centrality
- Larger suppression in more central collisions as they are more impacted by the HNM effects

- R_{AA} decreases with <N_{part}> at RHIC energy
- No significant energy and species dependence of R_{AA}

Yan Wang, Apr 8, 2022 Poster Session 3 T11_2

Summary

- J/ ψ R_{AA} measured at $\sqrt{s_{NN}}$ = 54.4 GeV in Au+Au collisions and at $\sqrt{s_{NN}}$ = 200 GeV in isobar collisions
 - No significant energy and species dependence at the same $\langle N_{part} \rangle$ between $\sqrt{s_{NN}} = 39$ and 200 GeV
 - Suppression seems to be driven by system size $\langle N_{part} \rangle$

ALICE -- J/ψ

Prompt J/ ψ R_{AA} as a function of $\langle N_{part} \rangle$ and p_T

• Prompt J/ ψ R_{AA} increases towards more central collisions (effect more visible at low p_T) \rightarrow expected trend from J/ ψ regeneration ·nid.,

- Increasing R_{AA} at low p_{T} in central collisions compatible with a regeneration scenario
- Overlapping with ATLAS and CMS measurements in central collisions at high p_{T}
- Vitev: Dissociation of charmonia via microscopic description of interactions inside the medium
 - ALICE results compatible within uncertainties with the model for $p_{T} > 5$ GeV/c
- Good agreement with calculations from SHM extended to the charm sector (SHMc) for $p_{\tau} < 5$ GeV/c

SHMc: A. Andronic et al., JHEP07 (2021) 035 (+ private communication) Vitev I. et al. arXiv:1709.02372, arXiv:1906.04186 Qualitatively compatible with transport models TM1 and TM2 at low $p_{\rm T}$ which include also non-prompt J/ ψ (not shown)

Models shown in the same centrality and rapidity ranges of ALICE measurements

ALICE -- J/ψ and $\psi(2s)$

$\psi(2S)$ and J/ ψR_{AA} as function of centrality and p_T

- Higher suppression observed for $\psi(2S)$ compared to J/ψ
- Increasing trend of R_{AA} towards low p_T for both J/ ψ and ψ (2S)
 - Hint of $\psi(2S)$ production via regeneration!
- Centrality and p_{T} dependence well reproduced by TAMU model for both J/ ψ and ψ (2S)
- Compatible with midrapidity CMS results available for higher p_{T}

16

e de la compañía de

ALICE -- J/ψ and $\psi(2s)$

The ψ(2S) / J/ψ ratio

- Initial state effects, such as shadowing, largely cancel in this ratio \rightarrow smaller theoretical uncertainties \sim
 - Theoretically the $\psi(2S)/J/\psi$ ratio is weakly dependent on the charm production cross section

ALI-PREL-511153

ALI-PREL-511147

• Smaller ψ(2S)/J/ψ ratio in Pb–Pb w.r.t. pp

ALICE -- J/ψ

- Similar trends for non-prompt J/ψ and non-prompt D⁰ R_{AA} (differences can arise due to the decay kinematic in two cases)
 - Strong suppression at high p_{T} (> 5 GeV/*c*)
 - Increase towards low p_{T} (< 5 GeV/c) \rightarrow hints that heavy quarks are pushed towards lower p_{T}
- Models containing collisional and radiative energy loss consistent with data ($p_{\tau} > 5 \text{ GeV}/c$)
- ALICE measurements complementary to ATLAS and CMS

ALICE -- J/ψ

Conclusions

J/ψ and ψ(2S) *R*_{ΔΔ}

Many **NEW** results!

- $\psi(2S)$ and prompt/inclusive J/ ψR_{AA} show similar trends \rightarrow regeneration at low p_{T} , suppression at high p_{T}
- Models implementing charmonium regeneration manage to describe data!
- $\psi(2S)/J/\psi$ described by TAMU model, slightly underestimated by SHMc

Open to hidden charm ratio

• SHMc describes the D^0 / J/ ψ ratio well vs centrality

Open beauty R_{AA} via non-prompt J/ψ

- Increasing suppression towards central collisions
- ALICE measurements
 - Extend down to very low $p_{\rm T}$
 - Compatible with models implementing energy loss mechanisms!

Reconstruction candidates:

- Candidates reconstructed with the dimuon channel
 - * Two opposite sign μ with $p_T > 700 \text{ MeV/c}$
 - * $p_T^{\mu\mu} < 1 \text{ GeV}/c \text{ and } \Delta \phi^{\mu\mu} > 0.9\pi$

/ψ PbPb UPC @5TeV

 $\sigma = 4.45 \pm 0.24$ (stat) ± 0.18 (syst) ± 0.58 (lumi) mb

- * Largest uncertainty due to the luminosity
- * Good description of the data by the different $\frac{1}{3}$ models
- * New results with the 2018 dataset, including $\psi(2S)$, will further constrain theory

Cepila *et al.* PR C97 024901 (2018) Gonçalves *et al.* PR D96 094027 (2017) Guzey *et al.* PR C93 055206 (2016) Mäntysaari *et al.* PL B772 (2017) 832

9

Phys. Rev. C 105, L032201

First measurement in PbPb hadronic collisions at LHCb !

Coherent J/ ψ in PbPb peripheral collisions

Phys. Rev. C 105, L032201

First measurement in PbPb hadronic collisions at LHCb !

Coherent J/ ψ in PbPb peripheral collisions

- * Consistent with J/ψ photo-production in PbPb hadronic collisions
- * Most precise p_T measurement to date
- * Shape compatible with model, two assumptions:
 - * No effect of the overlap between the nuclei (UPC-like but small IP)

Coherent J/ ψ in PbPb peripheral collisions

Vector Dominance Model + Glauber multiple scattering formalism

 Recent preprint shows good agreement with the soft dipole pomeron model

- * J/ψ produced by two colorless object
- * Mean p_T much lower than (re)combined J/ψ
- Photo-produced J/ψ melted by QGP not
 « (re)combined »

Better thermometer for QGP ?

Conclusion

- * Precise measurement of coherent J/ ψ production in UPC PbPb collisions.
- * Coherent J/ ψ and ψ (2S) measurement with the large 2018 data coming soon !
- * Measurement of photo-produced J/ ψ in peripheral PbPb collisions.
 - * First result using PbPb hadronic collisions in LHCb.
 - * Consistent with photo-production in PbPb peripheral collisions.
 - * Agreement with last model
- * Many results in the future (CEP J/ ψ in *p*Pb, lower mass vector mesons...)

Summary

▶ p+p collisions:

✓ LHCb (J/ψ)

(1) A new results from LHCb at 5 TeV, good agreement with NRQCD

➢ p/d+A collisions:

- ✓ PHENIX (J/ ψ and ψ (2s) in p+Au):
- (1) At forward rapidity, nPDF can well describe data
- At background rapidity, it suggest the presence of the final states (similar at RHIC and LHC energy)

✓ STAR (J/ ψ in p+Au):

(1) Suppression at low p_T , consistent with unity at high p_T at mid-rapidity

Summary

> A+A collisions:

- ✓ STAR (J/ ψ in Au+Au and isobar):
- (1) No significant energy dependence from 39.9 to 200 GeV
- (2) Seems to be driven by system size ($\langle N_{part} \rangle$)
- ✓ ALICE (J/ ψ in Pb+Pb):
- Consistent with CMS and ATLAS results within uncertainties
- ✓ LHCb (J/ ψ in Pb+Pb UPCs and PCs):
- (1) Consistent with model