

Study of Inclusive η Production

Jian Zu¹, Weiping Wang¹, Yateng Zhang², Yuxiang Zhao³, Wenbiao Yan¹,Guangshun Huang¹ ¹University of Science and Technology of China ²Zhengzhou University ³Institude of Modern Physics, Chinese Academy of Science

□Introduction

Description of analysis

DSummary

Introduction

• Fragmentation Function $D_i^h(z, Q^2)$: probability that hadron *h* is found in the debris of a parton *i* carrying a fraction $z = 2E_h/\sqrt{s}$ of parton's momentum.

- Universality: e^+e^- , DIS, pp, $p\overline{p}$
- Not calculable because of non-perturbative QCD dynamics

Introduction

- Splitting Functions $P_{ij}(z)$ calculable in pQCD Probability of parton i going into parton j with momentum fraction z
- Evolution with Q^2 calculable in pQCD: DGLAP

Study of Fragmentation Function: parametrization & experimental data

Study of Fragmentation Function at e^+e^- colliders

- Multiplicity: $\frac{1}{\sigma(e^+e^- \rightarrow hadrons)} \frac{d\sigma(e^+e^- \rightarrow h+X)}{dp_h}$
- At leading order ~ $\sum_{q} e_q^2 D_q^h(z, Q^2)$

Introduction

World Data:

- η Frag. Func. @ NLO: no data at $\sqrt{s} < 10 \text{ GeV } e^+e^-$ collision
- This work:
 - Provide more constraints for Frag. Func. parameters fitting
 - Helps to study QCD in low energy region

Data Samples

- BOSS Version: 6.6.4.p01, 6.6.5.p01
- Experimental data: 2012, 2015 R-scan data
- Energy point selection:
 ~200 MeV intervals, avoid low statistic points
- $\mathcal{L}_{int} (pb^{-1})$ \sqrt{s} (GeV) Run No. 2.0000 41729-41909 10.074 2.2000 40989-41121 13.699 2015 66.869 2.3960 40463-40769 2.6444 40128-40298 33.722 2.9000 39775-40069 105.253 3.0500 28312-28346 14.893 2012 3.5000 33725-33733 3.633 3.6710 33759-33764 4.628
- Monte-Carlo simulation: $e^+e^- \rightarrow q\bar{q}$ by LUARLW $e^+e^- \rightarrow q\bar{q}$ by Hybrid $e^+e^- \rightarrow e^+e^$ $e^+e^- \rightarrow e^+e^$ $e^+e^- \rightarrow \mu^+\mu^-$ by Babayaga v3.5 $e^+e^- \rightarrow \mu^+\pi^-$ by KKMC $e^+e^- \rightarrow e^+e^- + X$ (X: leptons and hadrons) by DIAG36, EKHARA, GALUGA 2.0

Hadronic Event Selection

Same as R-value analysis published in PRL 128, 062004 (2022)

Track Level

- Veto Bhabha and Di-gamma events
 - $N_{\rm shower} \ge 2$
 - $E_1 \ge E_2 \ge 0.65 E_{\text{beam}}$
 - $|\Delta \theta| = |\theta_1 + \theta_2 180^\circ| < 10^\circ$

• Isolated photon

- Energy deposition should be larger than 0.1 GeV
- Angle from the nearest charged track should be larger than 20°
- $0 < T_{\rm EMC} < 700 \, \rm ns$
- Good charged hadronic tracks
 - $|V_r| < 0.5 \text{ cm}$, $|V_z| < 5.0 \text{ cm}$, $|\cos \theta| < 0.93$
 - $p_{\text{track}} < 0.94 p_{\text{beam}}$, where $p_{\text{beam}} \approx E_{\text{beam}}$
 - $\chi_{\text{prob.}} = (dE/dx_{\text{measure}} dE/dx_{\text{proton}}) / \sigma_{\text{proton}} > 10$
 - Remove charged tracks when E/p > 0.8 and $p > 0.65p_{beam}$
 - Veto γ -conversions when $M(e^+ e^-) < 0.1$ GeV and $\theta_{ee} < 15^{\circ}$

Event Level

At least 2 good charged hadronic tracks

- Number of good charged hadronic tracks = 2:
 - $|\Delta \theta| = |\theta_1 + \theta_2 180^\circ| > 10^\circ \text{ or } |\Delta \phi| = ||\phi_1 \phi_2| 180^\circ| > 15^\circ$
 - At least 2 isolated photons
- Number of good charged hadronic tracks = 3:
 - The two highest momentum tracks are required not back-to-back: $|\Delta \theta| = |\theta_1 + \theta_2 - 180^\circ| < 10^\circ$ or $|\Delta \varphi| = ||\varphi_1 - \varphi_2| - 180^\circ| < 15^\circ$
 - (number of track with $E/p > 0.8) \le 1$

 $Prob.(p) + Prob.(K) + Prob.(\pi) + Prob.(e)$

• Number of good charged hadronic tracks ≥ 4: No additional requirements

Good photon selection:

- Angle between any charged track $\theta_{trk} > 10^{\circ}$
- Deposited energy in EMC: $E_{endcap} > 50 \text{MeV}$ and $E_{barrel} > 25 \text{MeV}$
- EMC timing requirement: $0 \le T \le 700$ ns

Remove photons from
$$\pi^{\mathbf{0}} : |m_{\gamma\gamma} - m_{\pi^0}^{\text{PDG}}| < 5\sigma_{\pi^0} \ (\sigma_{\pi^0} = 4 \text{ MeV})$$

Reconstruct η from $\eta \to \gamma\gamma$

η Control Sample

•
$$J/\psi \rightarrow K^+K^-\pi^+\pi^-\eta$$
 , $\eta \rightarrow \gamma\gamma$

BOSS Version: 7.0.5

Data Set:

2019 J/ψ data & official inclusive MC (4100M) 5M signal MC events

Event Selection:

4 good charged tracks, net charge=0 ≥ 2 good photons PID: Prob(K)>Prob(π) && Prob(K)>Prob(p) for Kaons Prob(π)>Prob(K) && Prob(π)>Prob(p) for pions 4C kinematic fit: $\chi^{2}(K^{+}K^{-}\pi^{+}\pi^{-}\gamma\gamma) < \chi^{2}(K^{+}K^{-}\pi^{+}\pi^{-}+n\gamma)$ (n = 1, 2, 4) $\chi^{2}(K^{+}K^{-}\pi^{+}\pi^{-}\gamma\gamma) < 50$

Check: η helicity cut

 η purity > 95% after selection

Mass distribution of backgrounds and fake η sample

Dots in red: mis-combined photon pairs after helicity cut $\cos \theta_h < 0.8$

No peaking background after helicity cut

Check: π^0 photons veto

Mass distribution of backgrounds and fake η sample

Dots in red: mis-combined photon pairs after π^0 photons veto: γ removed if $|m_{\gamma\gamma} - m_{\pi^0}| < 20$ MeV

No peaking background after π^0 photons veto

2021/06/13

Check: π^0 photons veto

University of Science and Technology of China

Black/Blue line: before/after π^0 photons veto Backgrounds from π^0 photons reduced obviously

2021/06/13

Data VS MC @ 2.9000 GeV

φ(η)

Fitting: η MC Shape

Match requirement:

- For each truth-level η track in an event, select the reconstructed η with minimum $\theta_{\text{match}} (\theta_{\text{match}} = \text{Angle}(\vec{p}_{\gamma\gamma}^{\text{rec.}}, \vec{p}_{\eta}^{\text{truth}}))$
- Reject reconstructed η with minimum $\theta_{\text{match}} > 25^{\circ}$

Fitting to data

Un-binned Maximum Likelihood fits on $M_{\gamma\gamma}$

- Signal: Matched MC Shape \otimes Gaussian
- Background: 3rd-order Chebychev Polynomials

Correction Factor

 \overline{N} : from Monte-Carlo N : from experimental data Correction factor f_{η} : ISR effect and detection efficiency

$$\frac{1}{\sigma_{\text{had}}} \frac{\mathrm{d}\sigma_{\eta}}{\mathrm{d}p_{\eta}} = \frac{N_{\eta}}{N_{\text{had}}} \frac{1}{\Delta p_{\eta}} = \frac{1}{Br(\eta \to \gamma\gamma)} f_{\eta} \frac{N_{\eta}^{\text{obs}}}{N_{\text{had}}^{\text{obs}}} \frac{1}{\Delta p_{\eta}}$$

2021/06/13

Fitting to MC

Un-binned Maximum Likelihood fits on $M_{\gamma\gamma}$

- Signal: Matched MC Shape
- Background: 3rd-order Chebychev Polynomials

Correction Factors (2.3960 GeV) (University of Science and Technology of China

$f_{\eta} =$	$\overline{N}_{\eta}^{\mathrm{tru}}(\mathrm{off})$	$\sqrt{\overline{N_{\eta}^{\text{obs}}}(\text{on})}$
	$\overline{N}_{\rm had}^{\rm tru}({\rm off})$	$\overline{N_{\rm had}^{\rm obs}({\rm on})}$

$p_{\eta} (\text{GeV}/c)$	$\bar{N}_{\eta}^{\mathrm{obs}}(on)$	$\bar{N}_{\rm had}^{\rm obs}(on)$	$\bar{N}_{\eta}^{\mathrm{tru}}(off)$	$\bar{N}_{ m had}^{ m tru}(off)$	f_η
0.0-0.1	4319.0 ± 86.4	7216057	26906	1000000	4.495 ± 0.090
0.1-0.2	16985.6 ± 187.6	7216057	90446	1000000	3.842 ± 0.042
0.2-0.3	24564.8 ± 244.6	7216057	115848	1000000	3.403 ± 0.034
0.3-0.4	26028.9 ± 256.5	7216057	112162	1000000	3.109 ± 0.031
0.4-0.5	23320.4 ± 239.5	7216057	96112	1000000	2.974 ± 0.031
0.5-0.6	20038.9 ± 208.4	7216057	78248	1000000	2.818 ± 0.029
0.6-0.7	16513.2 ± 176.2	7216057	61687	1000000	2.696 ± 0.029
0.7-0.8	13042.0 ± 146.6	7216057	49015	1000000	2.712 ± 0.030
0.8-0.9	10322.3 ± 122.8	7216057	38236	1000000	2.673 ± 0.032
0.9-1.0	7770.7 ± 101.9	7216057	30253	1000000	2.809 ± 0.037
1.0-1.1	5848.4 ± 85.4	7216057	22280	1000000	2.749 ± 0.040
1.1-1.2	4140.9 ± 70.0	7216057	15994	1000000	2.787 ± 0.047
1.2-1.3	3438.3 ± 61.1	7216057	14895	1000000	3.126 ± 0.056
1.3-1.4	1068.3 ± 33.8	7216057	8118	1000000	5.484 ± 0.174

Correction Factors (2.3960 GeV)

Results

Statistic uncertainty only

Systematic uncertainty: hadronic event selection

- Nominal selection criteria changed to alternative ones
- Differences of results are taken as systematic uncertainties

Category	Source	Nominal	Alternative	Abbreviation
Veto Bhabha	E _{ratio}	$0.65E_{beam}$	$0.6 \sim 0.7 E_{\text{beam}}$	Eratio
and $\gamma\gamma$	$\Delta heta$	10°	$5^{\circ} \sim 15^{\circ}$	dthveto
	V _r	0.5 cm	$0.45 \sim 0.55 \text{ cm}$	Vr
	χ Prob	10	15	Chip
	p_{track}	$0.94 p_{beam}$	$0.92 \sim 0.96 p_{beam}$	ptrack
	E/p ratio	0.8	$0.75 \sim 0.85$	Epratio
Selection of	Bhabha momentum limit	$0.65 p_{\text{beam}}$	$0.6 \sim 0.7 p_{beam}$	BBplmt
good tracks	gamma conversion angle	15°	$10^\circ \sim 20^\circ$	eeang
	gamma conversion mass	100 MeV	80~120 MeV	eeene
	isolated photon angle	20°	$15^\circ \sim 25^\circ$	isoang
	isolated photon energy	100 MeV	75~125 MeV	isoene
	PID ratio value	0.25	0.1~0.4	pidratio
2 prongs	$\Delta \theta$	10°	5°~15°	2prgdth
events	$\Delta \phi$	15°	$10^{\circ} \sim 20^{\circ}$	2prgdphi
3 prongs	$\Delta heta$	10°	$5^{\circ} \sim 15^{\circ}$	3prgdth
events	$\Delta \phi$	15°	$10^{\circ} \sim 20^{\circ}$	3prgdphi

Same as R-value analysis published in PRL 128, 062004 (2022)

Systematic Uncertainties

Systematic uncertainty: η helicity

• η control sample: $J/\psi \to K^+ K^- \pi^+ \pi^- \eta$

Comparison of η helicity distributions between data and signal MC

The relative differences between data and MC are fitted with a Gaussian distribution

Systematic Uncertainties () 中国神学技术大学

• η match angle:

Nominal requirement: $\theta(\vec{p}_{\eta}^{\text{truth}}, \vec{p}_{\gamma\gamma}^{\text{rec.}}) < 25^{\circ}$ Alternative requirements: $\theta(\vec{p}_n^{\text{truth}}, \vec{p}_{\nu\nu}^{\text{rec.}}) < 20^{\circ}/30^{\circ}$

• η reconstruction:

2% for η since 1% for single photon reconstruction

• Fitting:

Nominal signal model: matched MC shape distribution

Alternative signal model: Crystal Ball function

Nominal background model: **3rd-order** Chebychev polynomials

Alternative background model: **2nd-order** Chebychev polynomials

• Signal MC model:

Nominal signal MC model: LUARLW

Alternative signal MC model for uncertainty study: HYBRID

Systematic uncertainties in % at 2.9000 GeV

$p_{\eta} (\text{ GeV}/c)$	Event Selection	η helicity	Match Angle	Fitting	MC Model	Photon Eff.	Total
0.0-0.1	1.92	1.87	0.91	2.36	-25.52	2.00	25.86
0.1-0.2	0.80	1.87	0.16	2.95	-16.69	2.00	17.18
0.2-0.3	0.57	1.87	0.11	1.18	-14.32	2.00	14.64
0.3-0.4	0.36	1.87	0.07	1.17	-10.22	2.00	10.65
0.4-0.5	0.76	1.87	0.01	1.37	-7.59	2.00	8.22
0.5-0.6	0.66	1.87	0.05	0.81	-4.59	2.00	5.44
0.6-0.7	0.63	1.87	0.03	0.47	1.01	2.00	3.02
0.7-0.8	0.88	1.87	0.06	1.22	1.55	2.00	3.49
0.8-0.9	0.86	1.87	0.01	0.28	8.01	2.00	8.51
0.9-1.0	0.54	1.87	0.01	0.68	5.56	2.00	6.26
1.0-1.1	0.98	1.87	0.01	0.54	12.99	2.00	13.32
1.1-1.2	1.02	1.87	0.02	0.79	6.64	2.00	7.30
1.2-1.3	1.12	1.87	0.03	0.56	27.82	2.00	27.98
1.3-1.4	2.01	1.87	0.07	0.22	-24.95	2.00	25.18

Final Results

Systematic uncertainty included

- Inclusive production of η in e^+e^- annihilation at 8 energy points between 2.0000 and 3.6710 GeV was measured
- Study of all the systematic uncertainties including hadronic event selection, η helicity, match angle, fitting strategy and signal MC model has been finished
- Memo is ready

Thanks for your attention!

Backups

Systematic uncertainties in % at 2.0000 GeV

p_{η} (GeV/c)	Event Selection	η helicity	Match Angle	Fitting	MC Model	Photon Eff.	Total
0.0-0.1	14.29	1.87	0.23	3.68	-11.27	2.00	18.78
0.1-0.2	2.39	1.87	0.29	1.57	-9.85	2.00	10.62
0.2-0.3	2.16	1.87	0.10	2.28	-4.52	2.00	6.15
0.3 - 0.4	1.48	1.87	0.02	1.29	-1.21	2.00	3.58
0.4 - 0.5	0.88	1.87	0.03	0.86	4.17	2.00	5.14
0.5 - 0.6	1.08	1.87	0.04	1.42	0.58	2.00	3.32
0.6-0.7	1.18	1.87	0.09	2.96	32.72	2.00	32.99
0.7-0.8	0.61	1.87	0.09	0.61	13.36	2.00	13.67
0.8-0.9	2.09	1.87	0.09	2.38	14.95	2.00	15.52

Systematic uncertainties in % at 2.2000 GeV

p_{η} (GeV/c)	Event Selection	η helicity	Match Angle	Fitting	MC Model	Photon Eff.	Total
0.0-0.1	5.00	1.87	0.83	5.46	-3.47	2.00	8.66
0.1 - 0.2	2.46	1.87	0.52	3.11	-4.62	2.00	6.70
0.2-0.3	1.14	1.87	0.20	1.37	9.83	2.00	10.36
0.3-0.4	1.02	1.87	0.07	0.91	15.79	2.00	16.08
0.4 - 0.5	1.53	1.87	0.00	0.71	8.62	2.00	9.20
0.5 - 0.6	1.01	1.87	0.01	0.21	4.80	2.00	5.62
0.6-0.7	1.48	1.87	0.06	1.64	4.53	2.00	5.74
0.7-0.8	1.10	1.87	0.04	1.09	19.95	2.00	20.20
0.8-0.9	1.61	1.87	0.10	1.39	4.68	2.00	5.82
0.9-1.0	0.86	1.87	0.01	1.17	21.73	2.00	21.95

Systematic uncertainties in % at 2.3960 GeV

$p_{\eta} (\text{ GeV}/c)$	Event Selection	η helicity	Match Angle	Fitting	MC Model	Photon Eff.	Total
0.0-0.1	3.86	1.87	0.43	6.79	-26.11	2.00	27.39
0.1-0.2	1.04	1.87	0.16	2.94	-14.12	2.00	14.72
0.2-0.3	0.51	1.87	0.08	0.92	-5.96	2.00	6.64
0.3-0.4	0.77	1.87	0.07	2.13	1.26	2.00	3.77
0.4 - 0.5	0.79	1.87	0.03	1.75	4.88	2.00	5.92
0.5 - 0.6	1.30	1.87	0.02	0.28	2.60	2.00	4.00
0.6 - 0.7	1.14	1.87	0.13	0.38	-1.01	2.00	3.16
0.7-0.8	1.08	1.87	0.03	0.95	1.59	2.00	3.48
0.8-0.9	1.14	1.87	0.02	0.52	14.20	2.00	14.52
0.9-1.0	0.79	1.87	0.03	0.54	7.83	2.00	8.35
1.0-1.1	0.62	1.87	0.00	0.22	26.03	2.00	26.18

Systematic uncertainties in % at 2.6444 GeV

$p_{\eta} (\text{GeV}/c)$	Event Selection	η helicity	Match Angle	Fitting	MC Model	Photon Eff.	Total
0.0-0.1	3.22	1.87	0.33	6.52	-21.67	2.00	23.02
0.1-0.2	1.62	1.87	0.27	2.51	-15.38	2.00	15.91
0.2-0.3	0.93	1.87	0.04	0.45	-8.76	2.00	9.24
0.3-0.4	1.11	1.87	0.06	2.23	-4.54	2.00	5.86
0.4 - 0.5	0.76	1.87	0.01	1.11	-1.69	2.00	3.49
0.5 - 0.6	0.93	1.87	0.04	0.66	-2.27	2.00	3.73
0.6 - 0.7	1.21	1.87	0.02	0.90	1.87	2.00	3.64
0.7 - 0.8	0.67	1.87	0.03	0.80	1.21	2.00	3.17
0.8-0.9	0.91	1.87	0.04	0.64	-0.09	2.00	2.96
0.9-1.0	0.91	1.87	0.04	1.24	8.62	2.00	9.18
1.0-1.1	1.25	1.87	0.03	1.72	32.96	2.00	33.14
1.1-1.2	0.74	1.87	0.00	1.22	20.42	2.00	20.65

Systematic uncertainties in % at 3.0500 GeV

$p_{\eta} (\text{GeV}/c)$	Event Selection	η helicity	Match Angle	Fitting	MC Model	Photon Eff.	Total
0.0-0.1	199.41	1.87	0.46	5.72	-20.92	2.00	200.61
0.1-0.2	1.61	1.87	0.07	2.86	-18.10	2.00	18.60
0.2-0.3	1.42	1.87	0.19	0.43	-8.83	2.00	9.37
0.3-0.4	1.13	1.87	0.11	0.94	-4.92	2.00	5.82
0.4-0.5	1.00	1.87	0.04	3.20	-2.03	2.00	4.78
0.5-0.6	0.68	1.87	0.05	0.74	-4.01	2.00	4.96
0.6-0.7	1.13	1.87	0.09	1.69	-3.93	2.00	5.21
0.7-0.8	1.35	1.87	0.03	0.57	-4.24	2.00	5.26
0.8-0.9	0.79	1.87	0.01	1.55	-0.55	2.00	3.29
0.9-1.0	1.02	1.87	0.01	2.09	6.50	2.00	7.42
1.0-1.1	1.83	1.87	0.04	1.28	6.23	2.00	7.17
1.1-1.2	1.79	1.87	0.03	0.94	4.06	2.00	5.29
1.2-1.3	1.81	1.87	0.00	0.93	9.78	2.00	10.36
1.3-1.4	2.16	1.87	0.01	0.46	21.00	2.00	21.29

Systematic uncertainties in % at 3.5000 GeV

$p_\eta \ (\ { m GeV}/c)$	Event Selection	η helicity	Match Angle	Fitting	MC Model	Photon Eff.	Total
0.0-0.1	2.44	1.87	0.23	3.50	-19.05	2.00	19.71
0.1-0.2	5.17	1.87	0.35	9.95	-4.29	2.00	12.32
0.2-0.3	2.13	1.87	0.15	3.91	4.73	2.00	7.05
0.3-0.4	3.63	1.87	0.21	9.93	12.88	2.00	16.89
0.4-0.5	1.70	1.87	0.24	1.83	16.89	2.00	17.29
0.5 - 0.6	1.77	1.87	0.13	1.41	14.54	2.00	14.97
0.6-0.7	1.83	1.87	0.14	1.47	15.06	2.00	15.48
0.7-0.8	1.49	1.87	0.01	0.32	6.66	2.00	7.36
0.8-0.9	2.04	1.87	0.09	0.70	2.56	2.00	4.33
0.9-1.0	2.33	1.87	0.06	2.19	3.16	2.00	5.26
1.0-1.1	2.28	1.87	0.01	0.52	-0.15	2.00	3.60
1.1-1.2	3.59	1.87	0.07	0.81	-0.78	2.00	4.65
1.2-1.3	3.71	1.87	0.04	0.84	3.75	2.00	6.00
1.3-1.4	2.08	1.87	0.01	4.41	1.85	2.00	5.89
1.4 - 1.5	5.71	1.87	0.02	0.56	5.79	2.00	8.60

Systematic uncertainties in % at 3.6710 GeV

$p_\eta \ ({ m GeV}/c)$	Event Selection	η helicity	Match Angle	Fitting	MC Model	Photon Eff.	Total
0.0-0.1	1.07	1.87	1.47	27.91	-17.47	2.00	33.09
0.1-0.2	1.68	1.87	0.17	5.03	-9.09	2.00	10.88
0.2-0.3	2.52	1.87	0.35	1.89	2.84	2.00	5.06
0.3-0.4	1.83	1.87	0.17	2.12	10.16	2.00	10.89
0.4 - 0.5	2.12	1.87	0.31	5.27	14.11	2.00	15.46
0.5 - 0.6	1.91	1.87	0.04	1.09	8.51	2.00	9.20
0.6 - 0.7	1.39	1.87	0.03	1.55	7.25	2.00	8.03
0.7 - 0.8	1.62	1.87	0.11	3.29	3.83	2.00	5.97
0.8-0.9	1.97	1.87	0.03	4.33	0.29	2.00	5.50
0.9-1.0	1.73	1.87	0.03	1.21	-3.48	2.00	4.91
1.0 - 1.1	1.85	1.87	0.00	0.31	2.58	2.00	4.20
1.1 - 1.2	1.14	1.87	0.02	2.49	-2.45	2.00	4.58
1.2-1.3	2.04	1.87	0.01	1.12	3.21	2.00	4.82
1.3 - 1.4	3.20	1.87	0.00	3.25	13.68	2.00	14.68
1.4 - 1.5	3.34	1.87	0.04	5.01	3.18	2.00	7.34

Backup: Match Angle

Backup: Data Fitting (2.9000 GeV)

2021/06/13

Backup: Data Fitting (2.9000 GeV)

2021/06/13

Backup: LUARLW MC Fitting (2.9000 GeV)

Backup: LUARLW MC Fitting (2.9000 GeV)

Data VS MC

中国科学技术大学

University of Science and Technology of China

Data VS MC

2.9000 GeV

中国科学技术大学

University of Science and Technology of China

Backup: momentum weighted MC () 体 通 神 な 技 ボ ナ 資 University of Science and Technology of China

	, , , , , , , , , , , , , , , , , , ,			√s = 2.9 ♦ I - N	000 GeV _{Data} 4C
0	0.2 0.4	0.6	0.8	1 1	.2 1.4
		P(AD)	(Gevic)		
0	0.289	0.341	0.295	0.308	0.304
1	0.400	0.442	0.479	0.514	0.607
2	0.625	0.699	0.767	0.819	0.789
3	0.761	0.913	0.918	1.019	1.051
4	1.104	1.175	1.204	1.208	1.169
b	1.144	1.270	1.280	1.264	1.337
0	1.250	1.378	1.343	1.308	1.288
(1.449	1.420	1.439	1.310	1.440
ð	1.300	1.201	1.391	1.207	1.311
9	1.230	1.237	1.222 0.710	1.009	0.992
10	0.900	0.800	0.718 0.919	0.808	0.029
11	0.123	0.721	0.013	0.794	0.000
12	0.970	0.731	0.833	-0 031	0.000
10	0.000	0.001	U. 1 21	0.001	0.000

$p_{\eta} (\text{GeV}/c)$	unweighted	weighted	$\operatorname{diff}(\%)$
0.0-0.1	0.014 ± 0.002	0.014 ± 0.002	-0.02
0.1-0.2	0.081 ± 0.004	0.081 ± 0.004	-0.24
0.2-0.3	0.186 ± 0.005	0.186 ± 0.005	-0.24
0.3-0.4	0.251 ± 0.006	0.251 ± 0.006	-0.17
0.4-0.5	0.291 ± 0.006	0.291 ± 0.006	-0.02
0.5-0.6	0.256 ± 0.005	0.256 ± 0.005	0.06
0.6-0.7	0.204 ± 0.004	0.204 ± 0.004	0.03
0.7-0.8	0.173 ± 0.004	0.173 ± 0.004	0.06
0.8-0.9	0.127 ± 0.003	0.127 ± 0.003	0.02
0.9-1.0	0.086 ± 0.001	0.086 ± 0.001	-0.09
1.0-1.1	0.043 ± 0.002	0.043 ± 0.002	0.11
1.1-1.2	0.032 ± 0.001	0.032 ± 0.001	-0.02
1.2-1.3	0.032 ± 0.001	0.033 ± 0.001	0.91
1.3-1.4	0.013 ± 0.001	0.012 ± 0.001	-7.05

LUARLW MC weighted by momentum at 2.9000 GeV

No obvious difference found compared with unweighted results

Counts

Backup

