Dear Prof.Shen,

Thanks for your questions and comments.

Question 1,2,3:

In fact, they are the same questions caused by typos and the real results in draft are calculated rightly. Sorry for these mistakes.

Question 1,

$$
\begin{aligned}
& \operatorname{Br}\left(J / \psi \rightarrow \eta^{\prime} K^{*}(892)^{0} \bar{K}^{0}+\text { c.c. }\right) \begin{array}{l}
\begin{array}{l}
\text { chengping } \\
\text { you are calculating Br(jpsi-> } \\
\text { eta'K*OK0), why did you divide } \\
\text { by charged } K^{*} \text { decay } \\
\text { branching fraction? }
\end{array} \\
=\frac{N_{\text {sig }}}{N_{J / \psi} \times B r\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta\right) \times \operatorname{Br}(\eta \rightarrow \gamma \gamma) \times B r\left(K^{* \pm} \rightarrow K^{0} \pi^{ \pm}\right) \times B r\left(K^{0} \rightarrow K_{S}^{0}\right) \times B r\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) \times \epsilon} \\
=\frac{8268 \pm 137}{1310.6 \times 10^{6} \times 42.9 \% \times 39.41 \% \times 66.66 \% \times 50.0 \% \times 0.692 \% \times 9.94 \%} \\
=\left(1.66 \pm 0.03^{\text {stat. }}\right) \times 10^{-3}
\end{array}
\end{aligned}
$$

After revised, the formula should be:

$$
\begin{aligned}
& \operatorname{Br}\left(J / \psi \rightarrow \eta^{\prime} K^{*}(892)^{0} \bar{K}^{0}+\text { c.c. }\right) \\
& =\frac{N_{K^{*}(892)^{0}}}{N_{J / \psi} \times \operatorname{Br}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta\right) \times \operatorname{Br}(\eta \rightarrow \gamma \gamma) \times \operatorname{Br}\left(K^{*}(892)^{0} \rightarrow K^{+} \pi^{-}\right) \times \operatorname{Br}\left(\bar{K}^{0} \rightarrow K_{S}^{0}\right) \times \operatorname{Br}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) \times \epsilon} \\
& +\frac{N_{\bar{K}^{*}(892)^{0}}}{N_{J / \psi} \times \operatorname{Br}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta\right) \times \operatorname{Br}(\eta \rightarrow \gamma \gamma) \times \operatorname{Br}\left(\bar{K}^{*}(892)^{0} \rightarrow K^{-} \pi^{+}\right) \times \operatorname{Br}\left(K^{0} \rightarrow K_{S}^{0}\right) \times \operatorname{Br}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) \times \epsilon} \\
& =\frac{8268 \pm 137}{1310.6 \times 10^{6} \times 42.9 \% \times 39.41 \% \times 66.6 \% \times 50.0 \% \times 0.692 \% \times 9.94 \%} \\
& =\left(1.66 \pm 0.03^{\text {stat. }}\right) \times 10^{-3}
\end{aligned}
$$

Here, the

$$
\operatorname{Br}\left(\bar{K}^{0} \rightarrow K_{S}^{0}\right) \times \operatorname{Br}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)=\operatorname{Br}\left(K^{0} \rightarrow K_{S}^{0}\right) \times \operatorname{Br}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)=66.6 \% \times 50.0 \%
$$

and

$$
N_{K^{*}(892)^{0}}+N_{\bar{K}^{*}(892)^{0}}=8268 \pm 137
$$

Question 2,3

$$
\begin{aligned}
& \mathcal{B}\left(J / \psi \rightarrow \eta^{\prime} h_{1}(1380)\right) \times\left[\mathcal{B}\left(h_{1}(1380) \rightarrow K^{*}(892)^{+} K^{-}+c . c .\right)+\mathcal{B}\left(h_{1}(1380) \rightarrow K^{*}(892)^{0} \bar{K}^{0}+c . c .\right)\right] \\
& =\frac{N_{\text {sig }}}{N_{J / \psi} \times \operatorname{Br}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta\right) \times \operatorname{Br}(\eta \rightarrow \gamma \gamma) \times \operatorname{Br}\left(K^{* \pm} \rightarrow K^{0} \pi^{ \pm}\right) \times \operatorname{Br}\left(K^{0} \rightarrow K_{S}^{0}\right) \times \operatorname{Br}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) \times \epsilon} \begin{array}{l}
\text { lengping } \\
=\frac{1195 \pm 68}{\text { sorry I do not understand this }} \begin{array}{l}
\text { calculation. } \\
\text { Here, 1195 is the number of } \\
\text { h1(1380) signal events from }
\end{array} \\
\text { the fits to K*K- and K* }
\end{array} \\
& =\left(210.6 \times 10^{6} \times 42.9 \% \times 39.41 \% \times 66.6 \% \times 50.0 \% \times 69.2 \% \times 11.03 \%\right. \\
& \begin{array}{l}
\text { 0K0bar ? I mean sum of } \\
\text { them ? In the denominator, } \\
\text { why I can not find K*0 decay } \\
\text { branching fraction ? I missed } \\
\text { sth ? }
\end{array} \\
& \hline\left(2.16 \pm 0.12^{\text {stat. }) \times 10^{-4}}\right.
\end{aligned}
$$

$$
\mathcal{B}\left(J / \psi \rightarrow \eta^{\prime} h_{1}(1380)\right) \times\left[\mathcal{B}\left(h_{1}(1380) \rightarrow K^{*}(892)^{+} K^{-}+\text {c.c. }\right)+\mathcal{B}\left(h_{1}(1380) \rightarrow K^{*}(892)^{0} \bar{K}^{0}+\text { c.c. }\right)\right]
$$

$$
=\frac{N_{s i g}}{N_{J / \psi} \times \operatorname{Br}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta\right) \times \operatorname{Br}(\eta \rightarrow \gamma \gamma) \times \operatorname{Br}\left(K^{* \pm} \rightarrow K^{0} \pi^{ \pm}\right) \times \operatorname{Br}\left(K^{0} \rightarrow K_{S}^{0}\right) \times \operatorname{Br}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) \times \epsilon}
$$

$$
=\frac{1195 \pm 68}{1310.6 \times 10^{6} \times 42.9 \% \times 39.41 \% \times 66.6 \% \times 50.0 \% \times 69.2 \% \times 11.03 \%}
$$

$$
=\left(2.16 \pm 0.12^{\text {stat. }}\right) \times 10^{-4}
$$

Yes, the 1198 is sum number of $K^{*}+K-$ and $K^{*} 0$ K0 with their conjugate modes. Here, after revised, the calculation should be:

$$
\begin{aligned}
& \mathcal{B}\left(J / \psi \rightarrow \eta^{\prime} h_{1}(1380)\right) \times\left[\mathcal{B}\left(h_{1}(1380) \rightarrow K^{*}(892)^{+} K^{-}+c . c .\right)+\mathcal{B}\left(h_{1}(1380) \rightarrow K^{*}(892)^{0} \bar{K}^{0}+c . c .\right)\right] \\
& =\frac{N_{h_{1} \rightarrow K^{*+} K^{-}}}{N_{J / \psi} \times \operatorname{Br}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta\right) \times \operatorname{Br}(\eta \rightarrow \gamma \gamma) \times \operatorname{Br}\left(K^{*+} \rightarrow K^{0} \pi^{+}\right) \times \operatorname{Br}\left(K^{0} \rightarrow K_{S}^{0}\right) \times \operatorname{Br}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) \times \epsilon} \\
& +\frac{N_{h_{1} \rightarrow K^{*-} K^{+}}}{N_{J / \psi} \times \operatorname{Br}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta\right) \times \operatorname{Br}(\eta \rightarrow \gamma \gamma) \times \operatorname{Br}\left(K^{*-} \rightarrow \bar{K}^{0} \pi^{-}\right) \times \operatorname{Br}\left(\bar{K}^{0} \rightarrow K_{S}^{0}\right) \times \operatorname{Br}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) \times \epsilon} \\
& +\frac{N_{h_{1} \rightarrow K^{* 0} \bar{K}^{0}}}{N_{J / \psi} \times \operatorname{Br}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta\right) \times \operatorname{Br}(\eta \rightarrow \gamma \gamma) \times \operatorname{Br}\left(K^{* 0} \rightarrow K^{+} \pi^{-}\right) \times \operatorname{Br}\left(\bar{K}^{0} \rightarrow K_{S}^{0}\right) \times \operatorname{Br}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) \times \epsilon} \\
& +\frac{N_{h_{1} \rightarrow \bar{K}^{* 0} K^{0}}}{N_{J / \psi} \times \operatorname{Br}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \eta\right) \times \operatorname{Br}(\eta \rightarrow \gamma \gamma) \times \operatorname{Br}\left(\bar{K}^{* 0} \rightarrow K^{-} \pi^{+}\right) \times \operatorname{Br}\left(K^{0} \rightarrow K_{S}^{0}\right) \times \operatorname{Br}\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right) \times \epsilon} \\
& =\frac{1195 \pm 68}{1310.6 \times 10^{6} \times 42.9 \% \times 39.41 \% \times 66.6 \% \times 50.0 \% \times 69.2 \% \times 11.03 \%} \\
& =\left(2.16 \pm 0.12^{\text {stat. }) \times 10^{-4}}\right.
\end{aligned}
$$

Here,

$$
\begin{aligned}
& \operatorname{Br}\left(K^{*+} \rightarrow K^{0} \pi^{+}\right) \times \operatorname{Br}\left(K^{0} \rightarrow K_{S}^{0}\right) \\
& =\operatorname{Br}\left(K^{*-} \rightarrow \bar{K}^{0} \pi^{-}\right) \times \operatorname{Br}\left(\bar{K}^{0} \rightarrow K_{S}^{0}\right) \\
& =\operatorname{Br}\left(K^{* 0} \rightarrow K^{+} \pi^{-}\right) \times \operatorname{Br}\left(\bar{K}^{0} \rightarrow K_{S}^{0}\right) \\
& =\operatorname{Br}\left(\bar{K}^{* 0} \rightarrow K^{-} \pi^{+}\right) \times \operatorname{Br}\left(K^{0} \rightarrow K_{S}^{0}\right) \\
& =66.6 \% \times 50.0 \%
\end{aligned}
$$

and

$$
N_{h_{1} \rightarrow K^{*+} K^{-}}+N_{h_{1} \rightarrow K^{*-} K^{+}}+N_{h_{1} \rightarrow K^{* 0} \bar{K}^{0}}+N_{h_{1} \rightarrow \bar{K}^{* 0} K^{0}}=1195 \pm 68
$$

Question 4,

But isospin-breaking phenomenon have been reported in some process [26]. Such as, the largest isospin-breaking effect in the $D \bar{D}$ production at the $\psi(3770)$ is that due to the mass difference between the charged and the neutral D mesons: $\Delta m_{D}=4.78 \pm 0.10 \mathrm{MeV}$. So, because of the mass difference between the charged and the neutral K and $K^{*}(892)$ mesons: $\Delta m_{K}=(497.614-493.677) \mathrm{MeV}=(3.973) \mathrm{MeV}$, and $\Delta m_{K^{*}(892)}=(895.81-891.66) \mathrm{MeV}$ $=(4.15) \mathrm{MeV}$; the isospin-breaking phenomenon will be certainly not unexpected between $\mathcal{B}\left(h_{1}(1380) \rightarrow K^{*}(892)^{+} K^{-}+\right.$c.c. $)$and $\mathcal{B}\left(h_{1}(1380) \rightarrow K^{*}(892)^{0} \bar{K}^{0}+\right.$ c.c. $)$.

References for the isospin-breaking effect due to the mass differences:
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.75.113001
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.81.011501

chengping

For psi(3770) to DD: 1. isospin-breaking effect is much much smaller than your result
2. the psi(3770) mass is much more closer to DD mass threshold

So I do not think such argument is a strong reason.

Question 5,

For "Also I noticed $1.51 * 10-4=2 / 3 * 2.16 * 10-4$. There is a happened $2 / 3$ factor here :-)"
Sorry for that I don't understand the meaning of the happened $2 / 3$ factor, could you please give more explanations.

```
@r chengping
2017//8/19 20:49:12
Here I mean since in denominator there is sometimes a factor of }\textrm{Br}(\mp@subsup{\textrm{K}}{}{*}->\textrm{K pi})=2/3, I wonder if
you calculated sth wrong. For example, according to your signal eff, in decay table all the
Brs of cascade decays should be set 1, but you may set it to 2/3 ? Surely this is only my guess. I
just wonder 2/3 factor seems happen to be strange.
```

Reply:
Just as what you mentioned above, all the branching fractions of the cascade decays in decay table are fixed to be 1.

Also, It seems you expect the happened 2/3 factor to be 1 .

In fact, for the sum of charged mode and neutral mode, the branching fraction is:

$$
\begin{aligned}
& \mathcal{B}\left(J / \psi \rightarrow \eta^{\prime} h_{1}(1380)\right) \times\left[\mathcal{B}\left(h_{1}(1380) \rightarrow K^{*}(892)^{+} K^{-}+\text {c.c. }\right)+\mathcal{B}\left(h_{1}(1380) \rightarrow K^{*}(892)^{0} \bar{K}^{0}+c . c .\right)\right] \\
& =\left(2.16 \pm 0.12^{\text {stat. }}\right) \times 10^{-4}
\end{aligned}
$$

For the neutral mode alone, the branching fraction is:

$$
\begin{aligned}
& \mathcal{B}\left(J / \psi \rightarrow \eta^{\prime} h_{1}(1380)\right) \times \mathcal{B}\left(h_{1}(1380) \rightarrow K^{*}(892)^{+} K^{-}+\text {c.c. }\right) \\
& =\left(1.51 \pm 0.09^{\text {stat. }}\right) \times 10^{-4}
\end{aligned}
$$

It's not reasonable to expect the neutral mode branching fraction equaling to the sum of charged mode and neutral mode branching fraction.

Question 6

The 367 th line: did you find the desstructive solution ? We should have this solution and show this in the paper.

Reply:

The fit of $h_{1}(1380)$ is performed with the consideration of interference between $h_{1}(1380)$ and non-resonant amplitudes, in the range of [1.250, 1.850] $\mathrm{GeV} / \mathrm{c}^{2}$, as shown in Figure 1.

Figure 1: Fit results of $h_{1}(1380)$ with the consideration of interference between h1 (1380) and non-resonant component.

The negative log Likelihood value as a function of the phase angle is shown in Figure 2.

Figure 2: The negative \log Likelihood value as a function of the phase angle.
The statistical significance of the interference, calculated based on the differences of likelihood and degrees of freedom between fits with interference (Figure 1) and without interference (Figure 3), as shown in Table 1 (last list).

Figure 3: Fit results of $h_{1}(1380)$ without the consideration of interference between h1 (1380) and non-resonant component.

Table 1: Two solutions of the fit to $M(K * K)$ by taking interference between h_{1} (1380) signal and non-resonant components.

Fit mode		Mass (MeV/c $\left.{ }^{2}\right)$	Width (MeV/c $\left.{ }^{2}\right)$	FCN/ndf	Significance $(\Delta$ FCN/ Δ ndf $)$
Interfere nce	Constructi ve	1442 ± 5	111 ± 13	$-136714 / 8$	$5.8 \sigma \quad(19.0 / 2)$
	Destructiv e	1451 ± 5	144 ± 15	$-136695 / 8$	$(0.0 / 2)$
Non-inter ference		1423 ± 2	90 ± 10	$-136695 / 6$	

Table 1: Two solutions of the fit to $\mathrm{M}(\mathrm{K} * \mathrm{~K})$ by taking interference between $\mathrm{h}_{1}(1380)$ signal and non-resonant components.

Fit mode		Mass(MeV/ $\left.\mathrm{c}^{2}\right)$	$\left.\begin{array}{l}\text { Width(MeV/c } \\ 2\end{array}\right)$	FCN/ndf	Significance $(\Delta \mathrm{FCN} / \Delta \mathrm{ndf})$
Interference	Constructive	1442 ± 5	111 ± 13	$-136714 / 8$	$5.8 \sigma \quad(19.0 / 2)$
	Destructive	1451 ± 5	144 ± 15	$-136695 / 8$	$(0.0 / 2)$
Non-interfe rence		1423 ± 2	90 ± 10	$-136695 / 6$	

Due to the limited significance for destructive solution, we don't present it in the draft.
chengping
Since we know the mass and
width from constructive and
destructive solutions should be
the same. You may fix mass or
width to have a check
destructive solution ? It may
be easier to find the correct
solution since there is a one more constraint.

Reply:

It not always happened that the destructive solution equaling to the constructive solution.

Only width fixed

$F C N=-136693, n d f=7$

Only mass fixed

$\mathrm{FCN}=-136693, \mathrm{ndf}=7$

Both mass and width are fixed

$\mathrm{FCN}=-136693, \mathrm{ndf}=6$

Both mass and width are allowed to vary

$F C N=-136695, n d f=8$

	Fit methods	FCN	ndf
With interference	Only mass fixed	-136693	7
	Only width fixed	-136693	7
	Both mass and width fixed	-136693	6
	Both mass and width allowed to vary	-136695	8
Without interference	Both mass and width allowed to vary	-136695	6

With the mass or width fixed to the constructive solution, the destructive interference results with FCN value smaller than non-interference result and ndf value larger than the non-interference result are shown in the above table.

Therefore, with the further check, the destructive solution should be discarded.

