Two-Body Hadronic $D_{(s)}$ **Decays at BESIII**

Xinyu Shan

University of Science and Technology of China (USTC)

On behalf of BESIII Collaboration

Hefei, 6th - 9th, April, 2023

2023年BESIII粲强子研讨会

Outline

>Introduction

- Motivation
- D meson production @ BESIII
- BEPCII & BESIII

>Two-Body Hadronic $D_{(s)}$ Decays at BESIII

- Measurement of the decays involving K_L^0
- Measurement of W-Annihilation processes
- $D \rightarrow \omega \phi$
- Other works

➤Summary

Motivation

Hadronic decays of charmed meson (weak and strong interaction)

- > To understand non-perturbative QCD
- > To test flavor SU(3) symmetry and final-state-interaction effects

D meson production @ BESIII

D meson pair production near threshold @ BESIII

E_{cm} (GeV)	Pair Production	ST D Yields	Luminosity
3.773	$D^0\overline{D}{}^0$, D^+D^-	2.5M D^{0} , 1.7M D^{\pm}	2.93 fb ⁻¹
4.13~4.23	$D_s^{\pm} D_s^{*\mp}$	$0.8 \mathrm{M} D_s^{\pm}$	7.33 fb ⁻¹

> Analysis technique

- Single Tag (ST): reconstruct one D
 - Relative high efficiency and signal yields
 - Relative high background
- Double Tag (DT): reconstruct both D
 - Clean background
 - Full kinematic constraint
 - Absolute branching fraction measurement $\mathcal{B}_{sig} = \frac{N_{sig}^{DT}}{\Sigma_{\alpha} N_{\alpha}^{ST} \epsilon_{\alpha,sig}^{DT} / \epsilon_{\alpha}^{ST}}$
 - Quantum correlated $D^0\overline{D}^0$ analysis

BEPCII & BESIII

[Nucl. Instr. Meth. A614, 345(2010)]

$K_S^0 - K_L^0$ Asymmetry in D Meson Decays

- > Interference between Cabibbo-favored (CF) and doubly Cabibbo-suppressed (DCS) amplitudes
- \succ Advantage of BESIII: Full kinematic constraint \rightarrow measurement of the decays with K_L^0

$$R(D \to K^{0}_{S,L}\pi) = \frac{\mathcal{B}(D \to K^{0}_{S}\pi) - \mathcal{B}(D \to K^{0}_{L}\pi)}{\mathcal{B}(D \to K^{0}_{S}\pi) + \mathcal{B}(D \to K^{0}_{L}\pi)} - 2r\cos\delta \qquad \frac{A(D \to K^{0}\pi)}{A(D \to \overline{K}^{0}\pi)} = re^{i\delta}$$

$$\sim \lambda^{2} \sim 0.05$$

Measurement of $D^+ \rightarrow K^0_{S,L}K^+$

- ➢ Branching fractions of D^+ → $K^0_{S,L}K^+(\pi^0)$ are measured and
 CPV is searched
- > DT method with 2.93 fb⁻¹ data @ $E_{cm} = 3.773$ GeV
- Direction of K⁰_L in EMC is used in analysis

[PRD 99, 032002 (2019)]

Signal mode	$\mathcal{B}(D^+) \; (\times 10^{-3})$	${\cal B}(D^-)~(imes 10^{-3})$	$\overline{\mathcal{B}}$ (×10 ⁻³)	\mathcal{B} (PDG) (×10 ⁻³)	\mathcal{A}_{CP} (%)
$K^0_S K^{\pm}$	$2.96 \pm 0.11 \pm 0.08$	$3.07 \pm 0.12 \pm 0.08$	$3.02 \pm 0.09 \pm 0.08$	2.95 ± 0.15	$-1.8 \pm 2.7 \pm 1.6$
$K^0_S K^{\pm} \pi^0$	$5.14 \pm 0.27 \pm 0.24$	$5.00 \pm 0.26 \pm 0.22$	$5.07 \pm 0.19 \pm 0.23$	-	$1.4 \pm 3.7 \pm 2.4$
$K^0_L K^{\pm}$	$3.07 \pm 0.14 \pm 0.10$	$3.34 \pm 0.15 \pm 0.11$	$3.21 \pm 0.11 \pm 0.11$	-	$-4.2 \pm 3.2 \pm 1.2$
$K_L^0 K^{\pm} \pi^0$	$5.21 \pm 0.30 \pm 0.22$	$5.27 \pm 0.30 \pm 0.22$	$5.24 \pm 0.22 \pm 0.22$	-	$-0.6 \pm 4.1 \pm 1.7$

 $D_{S}^{+} \rightarrow \omega \pi^{+}, \omega K^{+}$

> Observation of W-Annihilation decay $D_s^+ o \omega \pi^+$ and evidence of $D_s^+ o \omega K^+$

> DT method with 3.19 fb^{-1} data @ $E_{cm} = 4.178 \ GeV$

[PRD 99, 091101(R) (2019)]

Channel	Branching fraction (10 ⁻³)	Significance
$D_s^+ o \omega \pi^+$	$1.77\pm 0.32\pm 0.13$	6.7σ
$D_s^+ \to \omega K^+$	$0.87 \pm 0.24 \pm 0.08$	4.4σ

$$D_s^+ \to p\bar{n}$$

 \succ Observation of baryonic decay decay $D_s^+ \rightarrow p\overline{n}$

> DT method with 3.19 fb⁻¹ data @ $E_{cm} = 4.178$ GeV

[PRD 99, 031101(R) (2019)]

Channel	Branching fraction (10 ⁻³)	Significance
$D_s^+ o p\overline{n}$	$1.21 \pm 0.10 \pm 0.05$	>10σ

Confirm the result from CLEO's measurement

- > Branching fraction of $D^0 \rightarrow \omega \phi$ are measured for the first time
- > ST method with 2.93 fb⁻¹ data @ $E_{cm} = 3.773$ GeV

 $BF = (6.48 \pm 0.96 \pm 0.40) \times 10^{-4}$ 6.3 σ

Upper limit on longitudinal polarization faction $f_L < 0.24 @ 95\%$ C.L.

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta} = \frac{3}{2}\left\{\frac{1}{2}(1-f_L)\sin^2\theta + f_L\cos^2\theta\right\}$$

 $f_L = H_0^2 / (H_0^2 + H_-^2 + H_+^2)$

[PRL 128, 011803 (2022)]

$$D^{+,0} \rightarrow PP(P = \pi, K, \eta, \eta')$$

- > The branching fractions of 14 $D^{+,0}$ two-body hadronic decays are measured
- > ST method with 2.93 fb⁻¹ data @ $E_{cm} = 3.773$ GeV $\mathcal{B}(D \rightarrow P_1P_2) = \frac{N_{net}}{2 \times N_{D\bar{D}}^{tot} \times \varepsilon \times \mathcal{B}_{sub}}$, [PRD 97, 072004 (2018)]

Mode	N _{net}	ϵ (%)	${\cal B}~(imes 10^{-3})$	$\mathcal{B}_{PDG} (\times 10^{-3})$
$D^+ o \pi^+ \pi^0$	10108 ± 267	49.0 ± 0.3	$1.259 \pm 0.033 \pm 0.023$	1.24 ± 0.06
$D^+ \rightarrow K^+ \pi^0$	1834 ± 168	48.2 ± 0.4	$0.232 \pm 0.021 \pm 0.006$	0.189 ± 0.025
$D^+ o \pi^+ \eta$	11636 ± 215	47.0 ± 0.3	$3.790 \pm 0.070 \pm 0.068$	3.66 ± 0.22
$D^+ \rightarrow K^+ \eta$	439 ± 72	44.6 ± 0.3	$0.151 \pm 0.025 \pm 0.014$	0.112 ± 0.018
$D^+ o \pi^+ \eta^\prime$	3088 ± 83	21.5 ± 0.2	$5.12 \pm 0.14 \pm 0.024$	4.84 ± 0.31
$D^+ o K^+ \eta'$	87 ± 25	18.8 ± 0.2	$0.164 \pm 0.051 \pm 0.024$	0.183 ± 0.023
$D^+ \rightarrow K^0_S \pi^+$	93883 ± 352	51.4 ± 0.2	$15.91 \pm 0.06 \pm 0.30$	15.3 ± 0.6
$D^+ \rightarrow K_S^{0} K^+$	17704 ± 151	48.5 ± 0.1	$3.183 \pm 0.029 \pm 0.060$	2.95 ± 0.15
$D^0 ightarrow \pi^+ \pi^-$	21107 ± 249	66.0 ± 0.3	$1.508 \pm 0.018 \pm 0.022$	1.421 ± 0.025
$D^0 \rightarrow K^+ K^-$	56359 ± 272	62.8 ± 0.3	$4.233 \pm 0.021 \pm 0.064$	4.01 ± 0.07
$D^0 \to K^{\mp} \pi^{\pm}$	534135 ± 759	64.7 ± 0.1	$38.98 \pm 0.06 \pm 0.51$	39.4 ± 0.4
$D^0 \rightarrow K^0_{\rm S} \pi^0$	66552 ± 302	37.1 ± 0.2	$12.39 \pm 0.06 \pm 0.27$	12.0 ± 0.4
$D^0 \to K_S^0 \eta$	9485 ± 126	32.0 ± 0.1	$5.13 \pm 0.07 \pm 0.12$	4.85 ± 0.30
$D^0 \rightarrow K^0_S \eta'$	2978 ± 61	12.7 ± 0.1	$9.49 \pm 0.20 \pm 0.36$	9.5 ± 0.5

$$D_s^+ \to PP(P = \pi, K, \eta, \eta')$$

- \succ The branching fractions of 7 D_s^+ two-body hadronic decays are measured
- $\succ \text{ ST method with 6.32 fb}^{-1} \text{ data @ } E_{cm} = 4.18 \sim 4.23 \text{ GeV} \qquad R^i = \frac{\mathcal{B}^i}{\mathcal{B}^{K^+K^-\pi^+}} = \frac{n^i \cdot \overline{\varepsilon}^{K^+K^-\pi^+}}{n^{K^+K^-\pi^+} \cdot \overline{\varepsilon}^i \cdot \mathcal{B}^i_{\text{final-state}}}.$ [JHEP 08, 146 (2020)]

Decay	n^i	$\overline{arepsilon}^i \ (\%)$	R^i (%)	$\mathcal{B}^i \ (10^{-3})$ BF of Ds->KKpi
$K^+\eta'$	675 ± 43	13.66 ± 0.20	$4.91 \pm 0.31 \pm 0.31$	$2.68 \pm 0.17 \pm 0.17 \pm 0.08$
$\eta' \pi^+$	9912 ± 113	14.19 ± 0.04	$69.4 \pm 0.8 \pm 3.8$	$37.8 \pm 0.4 \pm 2.1 \pm 1.2$
$K^+\eta$	1841 ± 114	26.21 ± 0.17	$2.97 \pm 0.18 \pm 0.06$	$1.62 \pm 0.10 \pm 0.03 \pm 0.05$
$\eta \pi^+$	19519 ± 192	25.86 ± 0.05	$31.94 \pm 0.33 \pm 0.49$	$17.41 \pm 0.18 \pm 0.27 \pm 0.54$
$K^+K^0_S$	35977 ± 206	31.47 ± 0.05	$27.55 \pm 0.18 \pm 0.50$	$15.02 \pm 0.10 \pm 0.27 \pm 0.47$
$K_S^0 \pi^+$	2724 ± 83	32.27 ± 0.16	$2.035 \pm 0.062 \pm 0.042$	$1.109 \pm 0.034 \pm 0.023 \pm 0.035$
$K^+\pi^0$	2275 ± 149	27.96 ± 0.18	$1.373 \pm 0.090 \pm 0.033$	$0.748 \pm 0.049 \pm 0.018 \pm 0.023$
$K^+K^-\pi^+$	160262 ± 478	26.73 ± 0.02	100	54.5 ± 1.7 Reference channel

$D \rightarrow PV$

> ST method with 2.93 fb⁻¹ data @ $E_{cm} = 3.773$ GeV

[PRD 97, 052005 (2018)]

Decay mode	This work (10 -3) PDG [3] (10 ⁻³
$D^0 o \omega \eta$	$2.16 \pm 0.17 \pm 0.15$	_
$D^0 o \eta \pi^0$	$0.59 \pm 0.05 \pm 0.05$	0.68 ± 0.07
$D^0 o \eta' \pi^0$	$0.92 \pm 0.11 \pm 0.09$	0.90 ± 0.14
$D^0 o \eta \eta$	$2.20 \pm 0.07 \pm 0.11$	1.67 ± 0.20
$D^0 \to \eta' \eta$	$0.93 \pm 0.24 \pm 0.10$	1.05 ± 0.26

[PLB 798, 135017 (2019)]

Decay mode	$\mathcal{B}^i(imes 10^{-4})$	
$D^+ \to \phi \pi^+$	$57.0 \pm 0.5 \pm 1.3$	
$D^+ \to \phi K^+$	$\begin{array}{l} 0.062^{+0.144}_{-0.062}\pm 0.002\\ < 0.21 \text{ at } 90\% \text{ CL} \end{array}$	evidence
$D^0 o \phi \pi^0$	$11.68 \pm 0.28 \pm 0.28$	
$D^0 o \phi \eta$	$1.81 \pm 0.46 \pm 0.06$	

> DT method with 2.93 fb⁻¹ data @ $E_{cm} = 3.773$ GeV

[PRL 116, 082001 (2016)]

Mode	This work	Previous measurements	
$D^+ \to \omega \pi^+$	$(2.79 \pm 0.57 \pm 0.16) \times 10^{-4}$	$< 3.4 \times 10^{-4}$ at 90% C.L.	5.5σ
$D^0\to\omega\pi^0$	$(1.17\pm 0.34\pm 0.07)\times 10^{-4}$	$<2.6\times10^{-4}$ at 90% C.L.	4.1σ
$D^+ \to \eta \pi^+$	$(3.07\pm 0.22\pm 0.13)\times 10^{-3}$	$(3.53 \pm 0.21) \times 10^{-3}$	
$D^0 \to \eta \pi^0$	$(0.65\pm 0.09\pm 0.04)\times 10^{-3}$	$(0.68 \pm 0.07) \times 10^{-3}$	

BFs of $\omega \pi \simeq 1$ order lower than $\eta \pi$

Summary

- D meson pair production data near threshold at BESIII provide a clean environment to measure the absolute branching fractions of D meson decays
- Based current data (2.93 fb⁻¹ @ 3.773 GeV, 6.32 fb⁻¹ @ 4.18~4.23 GeV), most of twobody hadronic D meson decays have been measured
 - ➤ The branching fraction reach to 10⁻⁴ for D decays and 10⁻³ for Ds decays
 - > Only 10⁻² sensitivity for asymmetry measurement.
- ➢ 8 fb⁻¹ (2.7x) data @ 3.773 GeV is ready and 20 fb⁻¹ (6.8x) data @ 3.773 GeV is expected to be acquired at next year

Thank you!