

Institute of High Energy Physics **Chinese Academy of Sciences**

BESII上D、介子多体强子衰变的 振幅分析

报告人: 卢泽辉

2023.4.8

√ 引言

√分析策略和数据集

√ 振幅分析

√总结

D、介子强子衰变振幅分析

- ✓检验非微扰QCD理论
 - 测量两体衰变 PP, VP, VV, SP, AP等分支比 • 成果丰富: 15篇已发表, 2篇待发表
 - •研究 CP 破坏和SU(3)味道对称性破缺
- **√**理解强子谱
 - 为深入探讨轻标量介子提供实验支持
 - 与D介子相比有更大的相空间
- ✓ 为其他测量提供重要衰变模型

✓ BESIII上的D。强子衰变振幅分析

- 覆盖面广: 三、四与五体分析
- 意义重要
 - $D_s^+ \to \pi^+ \pi^0 \eta$
 - $D_s^+ \to K_s^0 K_s^0 \pi^+$
 - $D_s^+ \to K_s^0 K^+ \pi^0$

く引言

√ 分析策略和数据集

√ 振幅分析

√总结

分析策略和数据集

振幅构造:

$$A(p_j) = F_{D_s}^L F_r^L P^L S^L$$

 $F_{D_m r}^L$: Blatt-Weisskopf barrier factors

 P^L : Propagator

 S^L : Spin-dependent angular term

Eur. Phys. J. A 16 (2003) 537

收集于2013-2017, 共6.32 fb⁻¹ @ $E_{cm} = 4.178 - 4.226$ GeV。

单标记方法(ST): 仅重建标记侧 D,介子

—相对高的本底

— 更高的效率

双标记方法 (DT):同时重建信号和标记侧 D_s介子

— 低本底 以研究不同衰变过程

—标记侧系统误差几乎被抵消

く引言

✓ 分析策略和数据集

√ 振幅分析

√总结

Amplitude analysis of $D_{s}^{+} \rightarrow K^{+}K^{-}\pi^{+}$

Phys. Rev. D 104, 012016 (2021)

80)的混合	BF	F (%)
	BESIII (this analysis)	PDG
$^{0} \rightarrow K^{-}\pi^{+}$	$2.64\pm0.06_{stat}\pm0.07_{sys}$	2.58 ± 0.0
$\rightarrow K^+K^-$	$2.21 \pm 0.05_{ m stat} \pm 0.07_{ m sys}$	2.24 ± 0.0
K^+K^-	$1.05 \pm 0.04_{\rm stat} \pm 0.06_{\rm sys}$	1.14 ± 0.1
$(30)^0 \rightarrow K^- \pi^+$	$0.16 \pm 0.03_{\rm stat} \pm 0.03_{\rm sys}$	0.18 ± 0.0
$\rightarrow K^+K^-$	$0.10 \pm 0.02_{\rm stat} \pm 0.03_{\rm sys}$	0.07 ± 0.0
$\rightarrow K^+K^-$	$0.07 \pm 0.02_{\rm stat} \pm 0.01_{\rm sys}$	0.07 ± 0.0
	$5.47\pm0.08_{stat}\pm0.13_{sys}$	5.39 ± 0.1
$\pm 0.17)\%$ 94 ± 0.12)%	ents/(20.0 MeV ² /c ⁴)	100 MeV ² /c ⁴)
0)	$\sum_{m=1}^{3} 50^{-1} + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $
 1.1 1.15 ²)	$\left[\begin{array}{c} 1500 \\ 1500 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	(b) 150 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
	m² (K K ⁺) (GeV²/ <i>c</i> ⁴)	m² (K_K⁺) (GeV²/ <i>c</i> ⁴)

Amplitude analysis of $D_{S}^{+} \rightarrow K_{S}^{0}K_{S}^{0}\pi^{+}$

412 事例, 纯度97%

 $S(1710): f_0(1710) 和 a_0(1710) 的混合:$

• $D_{c}^{+} \rightarrow K^{+}K^{-}\pi^{+}$: 相消干涉

PRD 104, 012016 (2021)

• $D_s^+ \rightarrow K_s^0 K_s^0 \pi^+$: 相加干涉

Events / (20 MeV/c²)

Phys. Rev. D 105, L051103 (2022)

观测到了新的同位旋为1的粒子 a₀(1710) ➡ $f_n(1710)$ 是 $K^*\bar{K}^*$ 分子态假设的证据 $\mathscr{B}(D_s^+ \to K_s^0 K_s^0 \pi^+) = (0.68 \pm 0.04_{\text{stat.}} \pm 0.01_{\text{syst.}})\%$

Amplitude analysis of $D_{S}^{+} \rightarrow K_{S}^{0}K^{+}\pi^{0}$ 首次振幅分析 (a) Amplitude $D_s^+ \rightarrow \bar{K}^*(8)$

Phys. Rev. Lett. 129, 182001 (2022)

	FF (%)	BF (10 ⁻³)	
$(892)^0 K^+$	$32.7 \pm 2.2 \pm 1.9$	$4.77 \pm 0.38 \pm 0.32$	>
$(892)^+ K_S^0$	$13.9\pm1.7\pm1.3$	$2.03 \pm 0.26 \pm 0.20$	>
$(80)^{+}\pi^{0}$	$7.7\pm1.7\pm1.8$	$1.12 \pm 0.25 \pm 0.27$	
$(1410)^0 K^+$	$6.0\pm1.4\pm1.3$	$0.88 \pm 0.21 \pm 0.19$	
$(817)^{+}\pi^{0}$	$23.6\pm3.4\pm2.0$	$3.44 \pm 0.52 \pm 0.32$	>

Amplitude analysis of $D_{s}^{+} \rightarrow \pi^{+}\pi^{+}\pi^{-}$

 $\mathscr{B}(D_s^+ \to \rho^0 \pi^+) = (0.009 \pm$ 与 Phys. Rev. D 89, 054006 (201

Phys. Rev. D 106, 112006 (2022)

Fit fraction (%)	Magnitude	Phase (radia
$\begin{array}{c} 10.5 \pm 0.8 \pm 1.1 \\ 0.9 \pm 0.4 \pm 0.5 \\ 1.3 \pm 0.4 \pm 0.5 \\ 84.2 \pm 0.8 \pm 1.2 \\ 96.8 \pm 2.4 \pm 3.3 \end{array}$	1. (Fixed) $0.13 \pm 0.03 \pm 0.04$ $0.91 \pm 0.16 \pm 0.21$ Table III	0. (Fixed 5.44 \pm 0.25 \pm 1.03 \pm 0.32 \pm Table II
: 0.007) % 14) 预测结果一致	与 Phys. Rev. D 79 (2009) 032	2003 结果一致
(a) 2500 1500 1000 500 0.0 0.0 0.5 1.0 1.5 0.0 0.0 0.0 0.5 1.0 1.5 0.0 0.0 0.5 1.0 1.5 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.15 0.0 0.0 0.15 1.0 1.5 2.0 $m^2(\pi^+\pi^-)$ (G	(b) 1200 (b) 10000 10000 10000 10000 100000 100000 100000 1000000000000000000000000	1.0 1.5 2.0 2.5 3 $m^2(\pi^+\pi^+)$ (GeV ² / c^4)

Amplitude analysis of $D_{s}^{+} \rightarrow \pi^{+}\pi^{0}\eta'$

Decay		$\mathcal{B}(\%)$		
Theory	$D_s^+ \to \rho^+ \eta'$	3.0 ± 0.5 [1]	1.7 [2] 1.6 [2]	
Experiment	$D_s^+ \to \pi^+ \pi^0 \eta'$	$5.6\pm0.5\pm0.6$	CLEO	
	$D_s^+ \to \rho^+ \eta'$	$5.8\pm1.4\pm0.4$		
	$D_s^+ \to \pi^+ \pi^0 \eta'$	< 5.1	BESIII	
	(nonresonant)	(90% confidence level)		

理论预期值与实验测量值存在偏差

[1] Phys. Rev. D 84 (2011) 074019

[2] Phys. Rev. D 89 (2014) 054006

 $\mathscr{B}(D_s^+ \to (\pi^+ \pi^0)_S \eta') < 0.1 \% @ 90\% \text{ CL}$

 $\mathscr{B}(D_{s}^{+} \to (\pi^{+}\pi^{0})_{P}\eta') < 0.74 \% @ 90\% CL$

 $\mathscr{B}(D_s^+ \to \pi^+ \pi^0 \eta') = (6.15 \pm 0.25_{\text{stat.}} \pm 0.18_{\text{syst.}})\%$ 精度显著提升

JHEP04(2022)058

411事例, 纯度96%

首次振幅分析

Amplitude analysis of $D_{s}^{+} \rightarrow K^{+}\pi^{+}\pi^{-}\pi^{0}$ 首次振幅分析,630事例,纯度87%

JHEP09(2022)242

ess	BF (10^{-3})
$^0 ho^+$	$1.41 \pm 0.23 \pm 0.07$
$^{0} ho^{+}$	$2.53 \pm 0.28 \pm 0.12$
F	$3.95 \pm 0.35 \pm 0.17$
$^+ ho^0$	$0.42 \pm 0.16 \pm 0.06$
	$0.95 \pm 0.12 \pm 0.06$
$K^+, K_1(1270)^0[S] \to K^+ \rho^-$	$0.39 \pm 0.12 \pm 0.06$
$K^+, K_1(1400)^0[S] \to K^*(892)^+\pi^-$	$0.55 \pm 0.09 \pm 0.03$
$K^+, K_1(1400)^0[S] \to K^*(892)^0 \pi^0$	$0.59 \pm 0.09 \pm 0.02$
$K^+, K_1(1400)^0[S] \to K^*(892)\pi$	$1.10 \pm 0.19 \pm 0.04$
$S^+, a_1(1260)^0[S] \to \rho^+ \pi^-$	$0.19 \pm 0.07 \pm 0.09$
$S^+, a_1(1260)^0[S] \to \rho^- \pi^+$	$0.19 \pm 0.07 \pm 0.09$
$S^+, a_1(1260)^0[S] \to \rho \pi$	$0.32 \pm 0.12 \pm 0.15$
ρ^0	$1.01 \pm 0.20 \pm 0.06$
$_{ m ave}(\pi^+\pi^-)_{ m S-wave}$	$0.93 \pm 0.22 \pm 0.09$

主要过程: $\mathscr{B}(D_{s}^{+} \to K^{*}(892)^{+}\rho^{0})$ $= (3.95 \pm 0.20_{\text{stat.}} \pm 0.17_{\text{syst.}}) \times 10^{-3}$

$$A_{CP} = \frac{\mathscr{B}(D_s^+) - \mathscr{B}(D_s^-)}{\mathscr{B}(D_s^+) + \mathscr{B}(D_s^-)}$$
$$= (6.5 \pm 5.4_{\text{stat.}} \pm 0.7_{\text{syst.}})\%$$

没有明显的CP 破坏

理论预期: $= (0.95 \pm 0.12_{\text{stat.}} \pm 0.06_{\text{syst.}}) \times 10^{-3}$ $2.12 \times 10^{-3} \rightarrow 0.99 \times 10^{-3}$ Phys. Rev. D 100 (2019) 093002 Phys. Rev. D 104 (2021) 073003 帮助理解SU(3)F味道对称性破缺效应

lacksquare

 $\mathscr{B}(D_s^+ \to K^+ \pi^+ \pi^- \pi^0) = (9.75 \pm 0.54_{\text{stat.}} \pm 0.17_{\text{syst.}}) \times 10^{-3}$

Amplitude analysis of $D_s^+ \to K^+ K^- \pi^+ \pi^+ \pi^-$

首次振幅分析,243事例,纯度96%

Amplitude	Phase	FF (%)	Significance (σ)
$D_s^+[S] \to a_1(1260)^+\phi$	0 (fixed)	$73.1{\pm}3.1{\pm}1.5$	> 10
$D_s^+[P] \to a_1(1260)^+\phi$	$1.47{\pm}0.19\pm0.03$	$5.0{\pm}1.7\pm0.7$	5.5
$D_s^+ \rightarrow a_1(1260)^+ \phi$	• • •	$78.1{\pm}2.9\pm1.6$	•••
$D_s^+ \rightarrow (K^- K^+ \pi^+ \pi^+ \pi^-)_{\rm NR}$	$1.99{\pm}0.12\pm0.17$	$21.8{\pm}2.9\pm0.8$	> 10

JHEP07(2022)051

• 主要过程 $\mathscr{B}(D_s^+ \to a_1(1260)^+ \phi)$ $= (5.15 \pm 0.41_{\text{stat.}} \pm 0.32_{\text{syst.}}) \times 10^{-3}$

 $D_s^+ \rightarrow AP$ 过程的信息十分有限, 帮助理解该类过程

 $\mathscr{B}(D_s^+ \to K^+ K^- \pi^+ \pi^+ \pi^-)$ $= (6.60 \pm 0.47_{\text{stat.}} \pm 0.38_{\text{syst.}}) \times 10^{-3}$

13

其他D。介子多体衰变振幅分析测量

• • • • • •

 $\checkmark D_s^+ \to \pi^+ \pi^0 \eta$: Phys. Rev. Lett. 123, 112001(2019) $\checkmark D_{\rm s}^+ \to \pi^+ \pi^0 \pi^0$: JHEP01(2022)052 $\checkmark D_{s}^{+} \rightarrow K_{s}^{0} \pi^{+} \pi^{0}$: JHEP06(2021)181 $\checkmark D_{s}^{+} \rightarrow K^{+}\pi^{+}\pi^{-}$: JHEP08 (2022) 196 $\checkmark D_s^+ \rightarrow \pi^+ \pi^- \eta$: Phys. Rev. D 104, L071101 (2021) $\checkmark D_s^+ \rightarrow K_s^0 K^- \pi^+ \pi^+$: Phys. Rev. D 103, 092006 (2021) $\checkmark D_s^+ \rightarrow K^+ K^- \pi^+ \pi^0$: Phys. Rev. D 104, 032011 (2021) $\sqrt{D_{c}^{+}} \rightarrow \pi^{+}\pi^{+}\pi^{-}\pi^{0}: 待发表$ $\checkmark D_{c}^{+} \rightarrow \pi^{+}\pi^{+}\pi^{-}\pi^{0}\pi^{0}:$ 待发表

✓引言

✓ 分析策略和数据集

√ 振幅分析

√总结

✓ $BESIII 上 D_s$ 介子的振幅分析研究成果丰富

- 三、四与五体振幅分析的成功研究
- $D \rightarrow VP, SP, AP, VV...$ 等中间过程的精确测量
- 新的同位旋为1的粒子— $a_0(1817)$ 的发现
- ✓ 未来会有更多的重要结果
 - 四体、五体多π末态的振幅分析研究
 - 与D介子振幅分析对比研究

谢谢各位老师、同学的聆听!

