## **SM Higgs Physics at the LHC**



### Junquan Tao, IHEP, CAS



First China LHC Physics workshop (CLHCP) 19-21 December 2015, Hefei

## Higgs Boson Discovery at LHC

### > On 4<sup>th</sup> July 2012, Higgs discovered by ATLAS and CMS at the LHC



PDG review, Chin. Phys. C, 38, 090001 (2014)

## > To explore the properties of the 125 GeV Higgs more precisely

Mass, width, lifetime, signal strengths, couplings, cross section and differential cross sections, Spin/Parity, CP mixing ...



With the discovery of Higgs, the Standard Model has been completed

**Standard particles** 



## SM Higgs production at LHC



## Higgs decays



#### ➢ BR @ mH=125GeV

## LHC Run 1

Successful operations in both LHC and Experiments

- LHC was in good condition during Run-1 (2010-2012)
- ATLAS and CMS collected good fraction of data (>95%) throughout Run-1
- 8 (7) TeV collisions
   ~20 (5) fb<sup>-1</sup> good data for physics

#### **Challenging pile-up conditions**





#### CMS Integrated Luminosity, pp

## **Channels explored**

|     | WW           | ZZ           | YΥ           | bb           | TT           |
|-----|--------------|--------------|--------------|--------------|--------------|
| ggH | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS |              | ATLAS<br>CMS |
| VBF | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS | CMS          | ATLAS<br>CMS |
| WH  | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS | CMS          |
| ZH  | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS | CMS          |
| ttH | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS | ATLAS<br>CMS |

## Observing the Higgs: $\gamma\gamma$ and ZZ



## Higgs Decaying to WW



## Higgs Decaying to ττ

#### JHEP 04 (2015) 117

JHEP 05 (2014) 104



## **Higgs Decaying to bb**



## Mass, width, lifetime

## Higgs mass

### Measured from the global fit to data of high precision channels

 $H \rightarrow \gamma \gamma$  and  $H \rightarrow ZZ \rightarrow 4I$ 

PRL 114 (2015) 191803



Some tension between the four measurements (p-value ~10%) and opposite in ATLAS and CMS - very good agreement in the central values

13

## Higgs total width: direct limit

4 MeV predicted in SM, direct measurement from peak width limited by detector resolution (~1.5 GeV)

CMS results;
 2 decay modes combined resulting in;
 F<sub>H</sub> < 1.7 GeV observed @ 95% CL (2.3 expected)</li>

 ATLAS results; − H → γγ; Γ<sub>H</sub> < 5.0 GeV obs. @ 95% CL (6.2 exp.) − H → ZZ → 4l; Γ<sub>H</sub> < 2.6 GeV obs. @ 95% CL (6.2 exp.)</li>





## Higgs total width: on/off shell

## ATLAS combined ZZ (4I, 2I2v) and WW (evµv) channels CMS include both ZZ→4I and ZZ→2I2v final states, ZZ+WW



Γ<sub>H</sub><23 MeV Expected :33 MeV Γ<sub>H</sub><22 MeV Expected : 33 MeV

## lifetime

- $c\tau_H^{\rm SM} \approx 4.8 \times 10^{-8} \mu {\rm m}$  (well beyond experimental sensitivity)
- H→ZZ→4l channel is used to measure lifetime
- p<sub>T</sub>-spectrum dependence of vertex resolution taken into account



 $c\tau_{_{H}} < 57 \ \mu m$  observed @ 95% CL (56  $\mu m$  expected)  $\Gamma_{_{H}} > 3.5 \ x \ 10^{-9} \ MeV$  observed @ 95% CL (3.6 x 10<sup>-9</sup> MeV expected)

## Signal strengths, couplings

- ATLAS and CMS results are combined for the measurement of the Higgs boson production and decay rates and tests of its couplings
- Gain a factor √2 in precision (still statistics limited, including many syst. uncertainties)
- All results are compared to the Standard Model (SM) predictions

## **Signal strength of Higgs Productions**

 $\mu = \sigma_{measured} / \sigma_{SM}$  Assuming only one SM-Higgs boson and SM decay, and strength for 7TeV and 8TeV are the same



### ATLAS+CMS combination provides 5.4σ (4.7σ expected) significance for VBF production

| Production process | Measured significance $(\sigma)$ | Expected significance $(\sigma)$ |
|--------------------|----------------------------------|----------------------------------|
| VBF                | 5.4                              | 4.7                              |
| WH                 | 2.4                              | 2.7                              |
| ZH                 | 2.3                              | 2.9                              |
| VH                 | 3.5                              | 4.2                              |
| ttH                | 4.4                              | 2.0                              |

Largest difference in ttH: 2.3 $\sigma$ excess with respect to SM Overall  $\mu = 1.09^{+0.11}_{-0.10}$ 

| ATLAS+CMS              | ATLAS                                                                                                                                                                       | CMS                                                    |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| $1.03^{+0.17}_{-0.15}$ | $1.25^{+0.24}_{-0.21}$                                                                                                                                                      | $0.84^{+0.19}_{-0.16}$                                 |
| $1.18^{+0.25}_{-0.23}$ | $1.21^{+0.33}_{-0.30}$                                                                                                                                                      | $1.13_{-0.34}^{+0.37}$                                 |
| $0.88^{+0.40}_{-0.38}$ | $1.25^{+0.56}_{-0.52}$                                                                                                                                                      | $0.46_{-0.54}^{+0.57}$                                 |
| $0.80^{+0.39}_{-0.36}$ | $0.30^{+0.51}_{-0.46}$                                                                                                                                                      | $1.35_{-0.54}^{+0.58}$                                 |
| $2.3^{+0.7}_{-0.6}$    | $1.9_{-0.7}^{+0.8}$                                                                                                                                                         | $2.9^{+1.0}_{-0.9}$                                    |
|                        | $\begin{array}{r} \text{ATLAS+CMS} \\ \hline 1.03^{+0.17}_{-0.15} \\ 1.18^{+0.25}_{-0.23} \\ 0.88^{+0.40}_{-0.38} \\ 0.80^{+0.39}_{-0.36} \\ 2.3^{+0.7}_{-0.6} \end{array}$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

## **Signal strength of Higgs Decays**

### **Assuming SM production**



| Decay channel        | ATLAS+CMS              | ATLAS                  | CMS                    |
|----------------------|------------------------|------------------------|------------------------|
| $\mu^{\gamma\gamma}$ | $1.16^{+0.20}_{-0.18}$ | $1.15_{-0.25}^{+0.27}$ | $1.12_{-0.23}^{+0.25}$ |
| $\mu^{ZZ}$           | $1.31_{-0.24}^{+0.27}$ | $1.51_{-0.34}^{+0.39}$ | $1.05_{-0.27}^{+0.32}$ |
| $\mu^{WW}$           | $1.11_{-0.17}^{+0.18}$ | $1.23_{-0.21}^{+0.23}$ | $0.91_{-0.21}^{+0.24}$ |
| $\mu^{\tau\tau}$     | $1.12^{+0.25}_{-0.23}$ | $1.41_{-0.35}^{+0.40}$ | $0.89^{+0.31}_{-0.28}$ |
| $\mu^{bb}$           | $0.69^{+0.29}_{-0.27}$ | $0.62^{+0.37}_{-0.36}$ | $0.81_{-0.42}^{+0.45}$ |

Signal strengths in different channels are consistent with SM in  $1\sigma$ 

## **Fermionic & Bosonic production**

 $\mu^{f}_{VBF+VH}$ ATLAS and CMS Fit the bosonic and ATLAS-CONF-2015-044 LHC Run 1 3 fermionic productions CMS-PAS-HIG-15-002 Preliminary separately per decay  $\mu_{\rm VBF+VH}/\mu_{\rm ggF+ttH} = 1.06^{+0.35}_{-0.27}$ No assumption on the BRs is ۵ needed in the combination of the  $H \rightarrow \gamma \gamma$  $\mu_{\rm VBF+VH}/\mu_{\rm ggF+ttH}$  ratio (benefit of  $H \rightarrow ZZ$  $H \rightarrow WW$ the ratio) ★ SM -68% CL  $H \rightarrow \tau \tau$ + Best fit  $H \rightarrow bb$ 2 3 35  $\mu^{f}_{ggF+ttH}$ 

### In agreement with SM

## Coupling: ĸ

• "κ-framework" by LHC Higgs cross-section working group: simplest parametrization of Higgs-couplings deviations from SM values

$$\kappa_i \equiv g_i / g_i^{SM}$$

- All fermion couplings scale the same way:  $\kappa_{\rm F} \equiv \kappa_{\rm t} = \kappa_{\rm b} = \kappa_{\tau} = \kappa_{\rm g}$
- All boson couplings scale the same way:  $\kappa_{V} \equiv \kappa_{W} = \kappa_{Z}$
- No new physics beyond the SM



## Individual coupling modifiers



Assuming :

- no BSM particles in the loops
- BR<sub>BSM</sub>=0

• K<sub>j</sub>>=0

 $K_b$  is lower than SM more than  $1\sigma$ 

The measurement of  $\kappa_{\mu}$  is very poor

## **Coupling modifiers vs Particle Mass**



Within current precision Higgs couplings scale with particle masses

## Coupling modifiers : $\kappa_{\gamma}$ vs $\kappa_{g}$

- We can also set effective couplings  $\kappa_{q}$  and  $\kappa_{\gamma}$
- Assuming tree level couplings as in the SM and BR<sub>BSM</sub>=o
- Not unit  $\kappa_q$  and  $\kappa_{\gamma}$  means additional particles enter the loops



**κ**<sub>γ</sub>

charged Higgs boson would modify the effective couplings

## cross section

## **Total cross section**



## **Fiducial Cross-sections**

- Fiducial region definition motivated by experimental cuts
- Model-independent measurement of production and decay kinematics
- Allows comparison with precision calculations, alternative models
- Test theoretical modelling of different Higgs boson production mechanisms
- Sensitive to BSM physics



## Fiducial Cross-sections



## Fiducial Cross-sections vs $p_T^H$

## Measurements designed as model independent as possible Higgs $p_T$ distributions are sensitive to new physics in loops



ATLAS see ~2 $\sigma$  trend of more boosted Higgs boson, not seen by CMS

## Fiducial Cross-sections vs N<sub>iets</sub>

### Measurements designed as model independent as possible



### ATLAS see slightly more associated jets, not seen by CMS

## Spin/Parity, CP mixing

## Spin-Parity Results: X(JP) vs. H(0+)



- Both experiments tested quite a lot
   alternative hypothesis against SM prediction.
- > In general data favors SM 0+ hypothesis

Alternative tested pure states typically excluded at >99% CL



## **CP** Mixing

Higgs coupling could have CP-mixing and alternative tensor structure

Test coupling and mixing angle in CP even and CP odd hypotheses

No evidence of CP violation observed



## **Higgs boson pair production**

## $X \rightarrow HH$

- Prepare for long-term SM HH @ HL-LHC: test self coupling
- Now: X→HH resonances
   bbγγ, bbττ, bbbb, multilepton results
- Results
- ATLAS excess 2.4σ [global]
- CMS does not see



## First results with 2015 13TeV data

| ATLAS and                            | CMS physics results from Run 2                                                          |
|--------------------------------------|-----------------------------------------------------------------------------------------|
| Tuesday, 15 De <b>CERN ( 500-1-0</b> | cember 2015 from <b>15:00</b> to <b>17:00</b> (Europe/Zurich)<br>01 - Main Auditorium ) |
| Organised by                         | M. Mangano, C. Lourenco, G. Unal **Tea and Coffee will be served at 14h30**             |
| Webcast                              | There is a live webcast for this event Watch                                            |
| Tuesday, 15                          | 5 December 2015                                                                         |
| 15:00 - 15:40                        | CMS results 40'                                                                         |
|                                      | CMS_13_TeV_resul                                                                        |
| 15:40 - 16:20                        | ATLAS results 40'                                                                       |
|                                      | Speaker: Marumi Kado (Laboratoire de l'Accelerateur Lineaire (FR))                      |
|                                      | CERN-Council2015                                                                        |

LHC Seminar <a href="https://indico.cern.ch/event/442432/">https://indico.cern.ch/event/442432/</a>

## First look at the Higgs boson at Run2



## **Summary**

LHC entered Higgs boson precision era : Run 1 measurements still statistics dominated

The 125GeV Higgs is very SM-like, but there are still rooms for BSM (see next presentation by Yaquan or other parallel presentations later)

First results from Run2 with increased energy of vs=13 TeV and higher luminosity

Eagerly awaiting the updated results and a much larger haul of data in 2016!



## The end

Many thanks for your attention and the organizers

# Backup

## **Higgs mass uncertainties**

![](_page_40_Figure_1.jpeg)

## Weight of each measurement

![](_page_41_Figure_1.jpeg)

• Weight of i'th measurement

 $w^{i} = 1/(\delta m_{H}^{i})^{2}/\sum_{j} 1/(\delta m_{H}^{j})^{2}$ 

• ATLAS combined measurement weight 35% (36%); CMS 65% (64%)

## Higgs total width: on/off shell

### > ATLAS use a multivariate discriminant to enhance sensitivity

![](_page_42_Figure_2.jpeg)

## **BSM decays**

## Generic models allowing physics beyond the SM

### Assume k<sub>V</sub>≤1 (as in 2HDM) -BR<sub>BSM</sub> can be measured

![](_page_43_Figure_3.jpeg)

## Ratios of k's

### Again, results in agreement with SM

![](_page_44_Figure_2.jpeg)

## Measure ratios of cross sections and BR or ratios of µ's

| $\sigma$ and BRs ratio model                  | Coupling-strength ratio model                                            |
|-----------------------------------------------|--------------------------------------------------------------------------|
| $\sigma(gg \to H \to ZZ)$                     | $\kappa_{\rm gZ} = \kappa_{\rm g} \cdot \kappa_{\rm Z} / \kappa_{\rm H}$ |
| $\sigma_{V\mathrm{BF}}/\sigma_{gg\mathrm{F}}$ |                                                                          |
| $\sigma_{WH}/\sigma_{ggF}$                    |                                                                          |
| $\sigma_{ZH}/\sigma_{ggF}$                    | $\lambda_{\rm Zg} = \kappa_{\rm Z}/\kappa_{\rm g}$                       |
| $\sigma_{ttH}/\sigma_{ggF}$                   | $\lambda_{\mathrm{tg}} = \kappa_{\mathrm{t}} / \kappa_{\mathrm{g}}$      |
| $BR^{WW}/BR^{ZZ}$                             | $\lambda_{WZ} = \kappa_W / \kappa_Z$                                     |
| $BR^{\gamma\gamma}/BR^{ZZ}$                   | $\lambda_{\gamma Z} = \kappa_{\gamma} / \kappa_{Z}$                      |
| $BR^{\tau\tau}/BR^{ZZ}$                       | $\lambda_{	au Z} = \kappa_{	au} / \kappa_Z$                              |
| $BR^{bb}/BR^{ZZ}$                             | $\lambda_{\rm bZ} = \kappa_{\rm b}/\kappa_{\rm Z}$                       |

ggF, gg→H→ ZZ is the cleanest channel and less affected by systematic uncertainties

In the ratios, systematic of the same source will be canceled

## **Fiducial Cross-sections**

![](_page_45_Figure_1.jpeg)

46

## Spin-Parity Test: X(JP) vs. H(0+)

### H→ZZ→4l

- 4I system is fully reconstructed
- use ME-based discriminator  $d = \frac{\left|ME\left(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}, \vec{p}_{4} | \mathbf{H}\right)\right|^{2}}{\left|ME\left(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}, \vec{p}_{4} | J^{P}\right)\right|^{2}}$

### H→WW→lvlv

 di-lepton angle and mass are sensitive to the spin of the decaying X(J<sup>P</sup>)

### Н→үү

- J=1 forbidden (Landau-Yang theorem)
- cosθ\* is the only variable sensitive to J<sup>P</sup> information at leading order

![](_page_46_Figure_9.jpeg)

## **CP Mixing and Tensor Structure**

## Higgs coupling could have CP-mixing and alternative tensor structure

> ATLAS: Effective field theory; fit a general Lagrangian compatible with Lorentz invariance

CMS: Anomalous couplings; fit a generic amplitude compatible with Lorentz and gauge invariance

$$A(\text{HVV}) \sim \left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}} q_{\text{V1}}^{2} + \kappa_{2}^{\text{VV}} q_{\text{V2}}^{2}}{(\Lambda_{1}^{\text{VV}})^{2}}\right] m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

$$BSM \text{ CP-even} \quad BSM \text{ CP-odd}$$

### 13 TeV dataset

![](_page_48_Figure_1.jpeg)

Run 1: 8 TeV (mu~21) and 7 TeV (mu~9)

## Reminder: increased reach @ 13 TeV

![](_page_49_Figure_1.jpeg)

### Summary of Run-2 Total Cross Section Measurements

![](_page_50_Figure_1.jpeg)