The measurement of R at BESIII

Weiping Wang

24-th, July. 2017

1/20

Outline

- The physics of R
- Introduction
- Data sets
- Event selection
- Background substraction
- Systematic uncertainty study
- Results
- Summary

R is defined as the ratio of the production rate of hadron and muon pairs:

$$R \equiv \frac{\sigma(e^{+}e^{-} \to \text{hadrons})}{\sigma(e^{+}e^{-} \to \mu^{+}\mu^{-})}$$
 (1)

That is:

According to the QED theory, the cross section of $e^+e^- \to \mu^+\mu^-$ process can be precisely calculated. At the level of lowest oder,

$$\frac{d\sigma_{\mu\mu}}{d\Omega} = \frac{\alpha^2}{4s} \sqrt{1 - \frac{4m_{\mu}^2}{s}} \left[\left(1 + \frac{4m_{\mu}^2}{s} \right) + \left(1 - \frac{4m_{\mu}^2}{s} \right) \cos^2 \theta \right] \tag{2}$$

The total cross section is

$$\sigma_{total} = \frac{4\pi\alpha^2}{3s} \sqrt{1 - \frac{4m_{\mu}^2}{s} \left(1 + \frac{2m_{\mu}^2}{s}\right)}$$
 (3)

In the high energy limit where $\sqrt{s} \gg 2m_{\mu}$, it turns out

$$\frac{d\sigma_{\mu\mu}}{d\Omega} = \frac{\alpha^2}{4s} (1 + \cos^2 \theta) \quad \text{and} \quad \sigma_{total} = \frac{4\pi\alpha^2}{3s}$$
 (4)

That is $\sigma(e^+e^- \to \mu^+\mu^-) = 4\pi\alpha^2/(3s) = 86.85 \text{ nb/s}(\text{GeV}^2)$

◆□▶◆□▶◆意▶◆意▶ 意 めら○

Regarding the denominator of the Eq. 1:

- The $\sigma(e^+e^- \to \mu^+\mu^-)$ is just a reference.
- It is OK only the lowest order diagram is included in the denominator.
- At $\sqrt{s} = 2 \sim 5$ GeV, the high energy limit can be achieved esaily.
- The calculation of QED provides analytical result.
- Not necessary to measure $\sigma(e^+e^- \to \mu^+\mu^-)$.

For the numerator of the Eq. 1:

- Higher order diagrams should be included.
- The QCD theory can realize third order (α_s^3) correction, with perturbation method.
- What we measured contains all the high order corrections.

QCD calculation of R

The calculation of the R(s) is based on the perturbative QCD method and performed to α_s^3 order:

$$R(s) = 3\sum_{flavor} Q_f^2 \left[1 + \frac{\alpha_s}{\pi} + r_1 \left(\frac{\alpha_s}{\pi} \right)^2 + r_2 \left(\frac{\alpha_s}{\pi} \right)^3 \right] + O(\alpha_s^4)$$
 (5)

where α_s is the strong coupling constant and

$$r_1 = 1.9857 - 0.1153f (6)$$

$$r_2 = -6.6368 - 1.2001f - 0.0052f^2 - 1.2395 \frac{(\sum Q_f)^2}{3\sum Q_f^2}$$
 (7)

where the *f* denotes the number of quarks can be produced at \sqrt{s} .

QCD calculation of R

- \sqrt{s} < 3.7 GeV, f = 3, $\sum Q_f = 0$, $\sum Q_f^2 = \frac{2}{3}$, $r_1 = 1.6398$, $r_2 = -10.284$
- $\sqrt{s} < 10 \text{ GeV}, f = 4, \sum Q_f = \frac{2}{3}, \sum Q_f^2 = \frac{10}{9}, r_1 = 1.5245, r_2 = -11.686$
- $\sqrt{s} > 11 \text{ GeV}, f = 5, \sum Q_f = \frac{1}{3}, \sum Q_f^2 = \frac{11}{9}, r_1 = 1.4092, r_2 = -12.805$

Therefore

$$R \equiv \left\{ \begin{array}{ll} 2 \left[1 + \frac{\alpha_s}{\pi} + 1.64 \left(\frac{\alpha_s}{\pi}\right)^2 - 10.3 \left(\frac{\alpha_s}{\pi}\right)^3\right] + O(\alpha_s^4) & \text{for} \quad u,d,s \\ \frac{10}{3} \left[1 + \frac{\alpha_s}{\pi} + 1.52 \left(\frac{\alpha_s}{\pi}\right)^2 - 11.7 \left(\frac{\alpha_s}{\pi}\right)^3\right] + O(\alpha_s^4) & \text{for} \quad u,d,s,c \\ \frac{11}{3} \left[1 + \frac{\alpha_s}{\pi} + 1.41 \left(\frac{\alpha_s}{\pi}\right)^2 - 12.8 \left(\frac{\alpha_s}{\pi}\right)^3\right] + O(\alpha_s^4) & \text{for} \quad u,d,s,c,b \end{array} \right.$$

The measurement of R value can be used to determine the α_s at \sqrt{s} .

The corrected electron vertex function

The radiation correction to the electron vertex function:

After applying Lorentz invariance requirement and Ward identity, the corrected vertex function takes the form

$$\Gamma^{\mu}(p',p) = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2m} F_2(q^2)$$
(8)

- $F_1(q^2)$ and $F_2(q^2)$ are functions of q^2 called form factors. The loop diagrams will contribute to F_1 and F_2 at order α and higher.
- To lowest order, $F_1(q^2) \equiv 1$ and $F_2(q^2) \equiv 0$.
- $F_1(q^2)$ renormalizes the electric charge of the electron. While the $F_2(q^2)$ modifies the relative magnetic moment of the electron.

24-th, July. 2017 9/20

The anomalous magnetic moment

Since the actual magnetic moment is measured at non-relativistic energies with $q^2 \rightarrow 0$, the moment which can be compared to data is

$$g \equiv 2 + 2F_2(0) \tag{9}$$

Thus the anomalous magnetic moment of lepton is

$$a_{\ell} \equiv \frac{g-2}{2} = F_2(0) \tag{10}$$

In conclusion, the anomalous magnetic moment of lepton exactly comes from the high oder radiative corrections to the $\sigma^{\mu\nu}$ term of the lepton vertex function in Eq. 8.

The anomalous magnetic moment

There are several radiative corrections to the lepton vertex function:

$$a_{\ell}^{Exp.} = a_{\ell}^{SM} + a_{\ell}^{new} \tag{11}$$

where

$$a_{\ell}^{SM} = a_{\ell}^{QED} + a_{\ell}^{Weak} + a_{\ell}^{Had.}$$
 (12)

In principle, the a_{ℓ}^{QED} and a_{ℓ}^{Weak} can be precisely calculated to any order of α . While the a_{ℓ}^{Had} should obtain from the measurement of the R value.

- $a_{\ell}^{new} = a_{\ell}^{Exp.} a_{\ell}^{SM}$ reflects the contributions of physics beyond SM.
- a_{ℓ}^{QED} is the corrections from leptonic vacuum polarization, lepton self-energy and phton to the vertex function.
- a_{ℓ}^{Weak} is the corrections from W^{\pm} , Z^{0} and H^{0} interactions.
- $a_{\ell}^{Had.}$ is the contribution of hadronic vacuum polarization.

The anomalous magnetic moment: a_{ℓ}^{QED}

The main ingredients of QED radiative corrections are leptonic vacuum polarization and lepton self-energy:

Usually, the QED contributions to lepton anomalous magnetic moment can be expressed in the perturbative series

$$a_{\ell}^{QED} = \sum_{n=1}^{\infty} a_{\ell}^{(2n)} \left(\frac{\alpha}{\pi}\right)^n \tag{13}$$

- The *n*th term in Eq. 13 is called n-loop term or the 2*n*th-order term, as it is $O(\alpha^n) \sim O(e^{2n})$
- The leading-order coefficient $a_{\ell}^{(2)} = 1/2 \equiv A_1^{(2)}$.

The anomalous magnetic moment: a_{ℓ}^{QED}

Since the dimensionful quantities of the radiative correction are expressed in unit of the mass of the external lepton, the coefficients of Eq. 13, *i.e.* $a_{\ell}^{(2n)}$, can be decomposed into four types according to the dependence on lepton mass ratios. We take electron as an example:

$$a_e^{(2n)} = A_1^{(2n)} + A_2^{(2n)} \left(\frac{m_e}{m_{\mu}}\right) + A_2^{(2n)} \left(\frac{m_e}{m_{\tau}}\right) + A_3^{(2n)} \left(\frac{m_e}{m_{\mu}}, \frac{m_e}{m_{\tau}}\right) \tag{14}$$

where the subscript j attached to $A_j^{(2n)}$ denotes the number of leptons involved in its calculation.

- $A_1^{(2n)}$ is the contribution from electron only. It is mass-independent thus universally contributes to a_ℓ for all leptons.
- $A_2^{(2n)}(\frac{m_e}{m_H})$ comes from at least one μ loop and without τ loop.
- $A_2^{(2n)}(\frac{m_e}{m_{\pi}})$ comes from at least one τ loop and without μ loop.
- $A_3^{(2n)}\left(\frac{m_e}{m_\mu}, \frac{m_e}{m_\mu}\right)$ is the contribution of both one τ loop and one μ loop.

The anomalous magnetic moment: a_{ℓ}^{QED}

According to Eq. 14, we conclude that since $m_{\mu} \gg m_e$ and $m_{\tau} \gg m_e$, the $A_2^{(2n)}$ and $A_3^{(2n)}$ are significantly suppressed compared to $A_1^{(2n)}$.

Regarding the μ lepton:

$$a_{\mu}^{(2n)} = A_1^{(2n)} + A_2^{(2n)} \left(\frac{m_{\mu}}{m_e}\right) + A_2^{(2n)} \left(\frac{m_{\mu}}{m_{\tau}}\right) + A_3^{(2n)} \left(\frac{m_{\mu}}{m_e}, \frac{m_{\mu}}{m_{\tau}}\right) \tag{15}$$

This means that $A_2^{(2n)}(\frac{m_{\mu}}{m_e})$ would be more contributive due to $m_{\mu} \gg m_e$.

For the τ lepton, a measurement of a_{τ} is very difficult due to the short τ -lifetime.

The anomalous magnetic moment: a_{ℓ}^{Weak}

The weak interaction contribution to a_ℓ is originated from the exchanges of gauge bosons W^\pm , Z^0 and the Higgs boson. To the leading order of weak interaction contributions, the vertex diagrams are

There is a factor of m_ℓ^2/m_W^2 in the weak interaction contributions to the a_ℓ . Therefore, the a_ℓ^{Weak} is very small comparing to the a_ℓ^{QED} . However, it cannot be ignored due to its comparable scale with respect to the $\delta a_\mu = a_\mu^{Exp.} - a_\mu^{SM}$.

Similarly, the size of a_ℓ^{Weak} is enhanced relative to a_ℓ^{QED} when the lepton mass becomes heavier.

The anomalous magnetic moment: a_{ℓ}^{Had} .

The hadronic contribution to a_ℓ is originated from the hadronic vacuum polarization (VP). The lowest order of $a_\ell^{Had.}$ is of $\mathcal{O}(\alpha^2)$. Following diagrams show the $\mathcal{O}(\alpha^2)$ - and $\mathcal{O}(\alpha^3)$ -hadronic VP diagrams:

Above diagrams represents three types of hadronic contribution to a_{ℓ}^{Had} .

$$a_{\ell}^{Had.} = a_{\ell}(\text{had. VP}) + a_{\ell}(\text{NLO had. VP}) + a_{\ell}(\text{had. l-l})$$
 (16)

- a_{ℓ} (had. VP) \sim 0 (α^2) and it also includes the 0 (α^3)-terms due to one virtual photon exchange between quarks in the grayed circle.
- a_{ℓ} (NLO had. VP) is obtained from the QED corrections to a photon line, lepton line or leptonic vertex of a_{ℓ} (had. VP).
- a_{ℓ} (had. 1-1) is of $\mathcal{O}(\alpha^3)$ and is the contribution of light-by-light scattering.

The anomalous magnetic moment: a_{ℓ}^{Had} .

At the low energy region ($\sqrt{s} < 1.0$ GeV), the perturbation theory of QCD is not valid. Therefore the a_ℓ (had. VP) cannot be calculated analytically. Fortunately, this contribution may be calculated in terms of experimental total cross section. Take the μ lepton as an example:

$$a_{\mu}(\text{had. VP}) = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{4m_{\pi}^2}^{\infty} ds \frac{R(s)K(s)}{s^2}$$

$$\tag{17}$$

where the kernel K(s) varying from 0.63 at threshold to 1.0 at $s = \infty$.

- The motivation of this integral is the optical theorem of the QFT.
- Only the R values below 1.0 GeV contribute the a_{ℓ} (had. VP) significantly.
- The kernel is numerically instable at large \sqrt{s} , as shown in right plot.
- After sufficient high energy, *e.g.* $\sqrt{s} = 40$ GeV, the a_{ℓ} (had. VP) is calculated using perturbative QCD thery.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

The effective coupling constant $\alpha(s)$

The vacuum polarization diagram (also known as the photon self-energy) can be reviewed as a modification to the photon structure by a virtual lepton pair. This diagram will alter the effective field $A^{\mu}(x)$ seen by the scattered electron. It can potentially shift the over all strength of this field, and can also change its dependence on space-time.

The vacuum polarization diagram is consistent of inserting all one-particle-irreducible (1PI) diagrams into photon propagator:

$$\mu \bigvee_{q} \mathbf{1PI} \bigvee_{\nu} \nu \equiv i\Pi^{\mu\nu}(q) \equiv i(q^2 g^{\mu\nu} - q^{\mu}q^{\nu})\Pi(q^2)$$

Therefore, the exact photon propagator function is:

After substituting the express of 1PI diagram and applying the Ward identity, the exact photon propagator takes the form:

$$\sim \equiv \frac{-ig^{\mu\nu}}{q^2(1-\Pi(q^2))}$$

←□▶←□▶←□▶←□▶ □ ♡Q♡

The effective coupling constant $\alpha(s)$

Above exact photon propagator function creates two effects:

- Renormalize the electric charge of the theory: bare charge to physical charge, i.e. $e_0 \mapsto e \equiv e_0 \sqrt{\frac{1}{1-\Pi(0)}}$. This is a constant shift in the strength of the electric charge.
- The q^2 -dependent effective coupling 'constant': $\alpha_0 \equiv \frac{e_0^2}{4\pi} \mapsto \alpha_{\rm eff.}(q^2) \equiv \frac{e_0^2}{4\pi} \frac{1}{1-\Pi(q^2)}$, where the α_0 is the fine structure constant.

In practice, the effective fine structure constant at scale \sqrt{s} is given by:

$$\alpha(s) = \frac{\alpha}{1 - \Delta\alpha(s)} \tag{18}$$

where $\Delta\alpha(s)=\Pi(s)$, and is the contribution from all one-particle-irreducible diagrams to the photon vacuum polarization. The $\Delta\alpha(s)$ is large at $s=m_Z^2$ due to the large change of the scale. In the perturbative theory, the leading order corrections to $\Delta\alpha(s)$ is:

The effective coupling constant $\alpha(s)$

The contributions to $\Delta\alpha(s)$ can be distinguished to the contributions from leptons, the five active quarks and the top quark:

$$\Delta \alpha = \Delta \alpha_{\ell} + \Delta \alpha_{\text{Had.}}^{(5)} + \Delta \alpha_{\text{top}}$$
 (19)

- Since the top quark is heavy, the $\Delta \alpha_{top}$ is small comparing with other light fermions.
- $\Delta \alpha_{\ell}$ can be calculated analytically using the perturbative theory.
- The $\Delta\alpha_{Had.}^{(5)}$ cannot be reliably calculated by using perturbative QCD at low energy scale.

Fortunately, one can evaluate this hadronic term $\Delta \alpha_{\mathrm{Had.}}^{(5)}$ from hadronic e^+e^- annihilation data by using dispersion relation together with the optical theorem which results in the integral:

$$\Delta \alpha_{\text{Had.}}^{(5)}(M_Z^2) = -\frac{\alpha M_Z^2}{3\pi} \operatorname{Re} \int_{4m_\pi^2}^{\infty} ds \frac{R(s)}{s(s - M_Z^2 - i\varepsilon)}$$
 (20)

- The integral is similar to the one in a_{ℓ} (Eq. 17) but with different kernel function.
- $\Delta \alpha_{\text{Had.}}^{(5)}(M_Z^2)$ gets significant contributions from a broad energy range up to $\sqrt{s} \simeq M_Z/2$.

4□ >
4□ >
4 = >
4 = >
5
9 < </p>
0