Hadron states in e^+e^- annihilation and subthreshold resonance

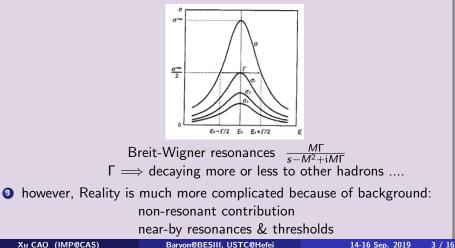
Xu CAO

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China

Workshop of the Baryon Production at BESIII University of Science and Technology of China 14-16 Sep. 2019, Hefei

2 Formula

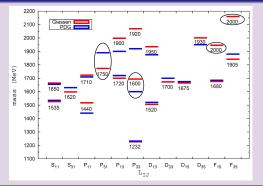
3 Results


- $\psi(3770)$
- Λ electromagnetic form factor (EFF)

Conclusion

3 k 3

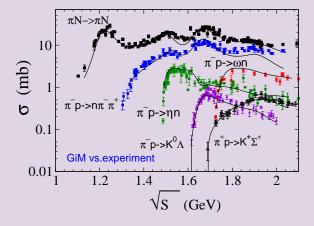
Hadron spectrum


- **1** Hadron in ground state: objects with internal components
- 2 Hadron spectrum: excitation of internal freedom

e.g. Baryon spectrum - N^* and Δ^*

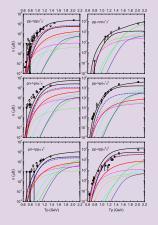
- Nucleon: objects with internal components and structure.
- **2** Baryon spectrum: excitation of internal freedom \implies must be wide > 100 MeV (coupled strongly to πN , ηN )

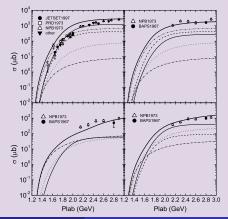
In a coupled-channel model H. Lenske, M. Dhar, T. Gaitanos, X.C., PPNP98(2018)119



PDG update: $F_{15}(2060) \& F_{35}(2000)$ in $K \land \& K \Sigma$

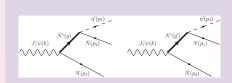
Philip COLE's talk


Reaction in Reality: Multiple peaks x.c.& H.Lenske, PRC88(2013)055204; PLB772(2017)274

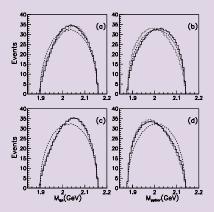

• The measured πN (also γN) reactions versus CC model

Reaction in Reality: complementary reactions IJMPA26(2011)505

- COSY, HADES: $\textit{NN}
 ightarrow \textit{NN}\pi\pi$, X. C., Bing-Song Zou, Hu-Shan Xu, PRC81(2010)065201
- PANDA: $Nar{N} o Nar{N}\pi\pi$, X. C., Ju-Jun Xie, Bing-Song Zou, Hu-Shan Xu, NPA861(2011)23

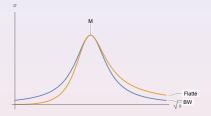


Xu CAO (IMP@CAS)


Baryon@BESIII, USTC@Hefei

Reaction in Reality: No peaks x. c., & Ju-Jun Xie, CPC40(2016)083103

- Baryon spectrum in $J/\psi
 ightarrow p ar{p} \eta'$ (with small phase space)
- We know little about states coupling to $\eta' N$ (also $\omega N \And \phi N$)
- Higher charmonium (ψ (3686), ψ (3770))? BESIII, PRD99(2019)032006



 $S_{11}(1535), P_{11}(1710),$ $P_{13}(1900), S_{11}(2090), P_{11}(2100)$

Formula: Beyond Breit-Wigner resonance

$$\frac{M\sqrt{\Gamma_{tot}\Gamma_{i(s)}}}{s-M^2+\mathfrak{i}\sqrt{s}\sum_{i}\Gamma_{i(s)}}$$

the Flatté formula Flatté, PLB63(1976)224

$$\Gamma_{i(s)} = \Gamma_0 \left(\frac{p_{(s)}}{p_{(M^2)}}\right)^{2L+1} \frac{M}{\sqrt{s}} \left(\frac{F_L(p_0, p_{(s)})}{F_L(p_0, p_{(M^2)})}\right)^2$$

with $F_L(p_0, p_{(M^2)})$ being (Blatt-Weisskopf) form factor.

2 E.G. energy dependent width in *p*-wave: $\Gamma_{i(s)} = g_i \frac{p^3}{s(1+r^2p^2)}$ $p_{(s)}$: c.m. momenta of final particles pure imaginary below threshold

$$|F_{bg}|^2 \frac{|q+\varepsilon|^2}{1+\varepsilon^2}$$
 with $\varepsilon = \frac{-s+M^2}{M\Gamma}$

Interplay of discrete states with continua Fano, PhysRev124(1961)1866

$$|\Psi
angle = z_r |r
angle + \sum_c \int_0^\infty dk_c z_c(k_c) |c
angle$$

is the wave function of the system.

After solving the coupled Schödinger equations Z.G.Xiao&Z.Y.Zhou PRD94(2016)076006:

$$q = \frac{\langle b'|T|i\rangle}{\langle r'|T|i\rangle}$$

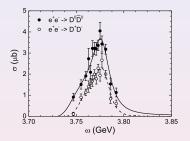
determined by the wave functions of resonance and continuum.

o producing a dip in line shape at the position of $q = -\varepsilon|_{s=s_0}$

Xu CAO (IMP@CAS)

Baryon@BESIII, USTC@Hefei

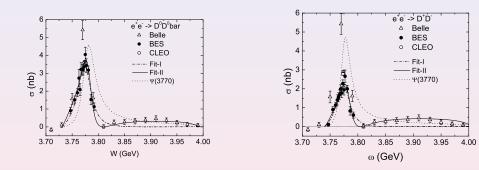
F_{bg} ? AND q?


- We can construct models to calculate them!
- q: energy dependent, but can be regraded as a constant in limited energy range of interest.
- **3** The form of background:

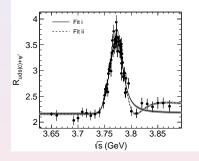
$$F_{bg} = \begin{cases} \text{Breit Wigner of } \psi(3686) & \text{for } \psi(3770) \\ \frac{A_B}{\tau^2 \ln^2(s/\Lambda_{QCD}^2)} & \text{for } \Lambda \text{ EFF} \end{cases}$$

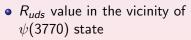
which is the main uncertainties!

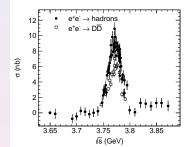
Results: $\psi(3770)$


- non-resonant background: $\psi(2S) = \psi(3686)$
- main difference is from q, $\psi(3770)$ is the same in both channels.
 - X. C., H. Lenske, arXiv:1410.1375; 1408.5600.

	$D^0 ar{D}^0$	D^+D^-
$m_{\psi'}$ (MeV)	3782.1 ± 1.6	3784.0 ± 2.0
$g_{\psi'D\bar{D}}$	11.8 ± 0.9	10.7 ± 1.3
'q	-2.1 ± 0.3	-1.6 ± 0.3
m_{bg} (MeV)	$\textbf{3743.0} \pm \textbf{5.4}$	3753.3 ± 3.9
Γ_{bg} (MeV)	34.1 ± 5.2	33.3 ± 5.6
$\chi^2/d.o.f$	0.83	0.90

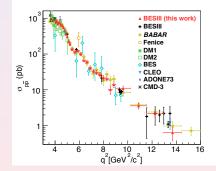

Xu CAO (IMP@CAS)


Baryon@BESIII, USTC@Hefei


- in a parameterized coupled-channel formalism
- Fit-I: $\psi(3686)$ and $D\overline{D}$ channel
- Fit-II: $\psi(4040)$ and $D^*\overline{D} + h.c.$ channel also added
 - X. C., H. Lenske, arXiv:1410.1375; 1408.5600.

Results: ψ (3770)

- $R_{uds} = 2.156 \pm 0.022$ after correction of line shape
- Fit-I: $g_{\psi(3770)\gamma}$ fixed
- Fit-II: $g_{\psi(3770)\gamma}$ non-fixed xu cao (IMP@cas)

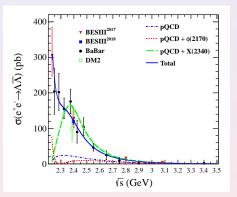

- Extracted $e^+e^- \rightarrow hadrons$ Versus $e^+e^- \rightarrow D\bar{D}$
- non- $D\bar{D}$ decay of $\psi(3770)$?

Rong Wang, X. C., Xurong Chen, PLB747(2015)321

14-16 Sep. 2019 13 / 16

Results: Λ electromagnetic form factor (EFF)

- proton EFF: follows pQCD expectation: $\frac{A_B}{\tau^2 \ln^2(s/\Lambda^2_{QCD})}$ BESIII, PRD99(2019)092002
- Some small structures: resonances? thresholds opening?
- threshold enhancement


Results: Λ electromagnetic form factor (EFF)

- non-resonant background: $\phi(2170)$ and pQCD
- The second errors are obtained by varying the mass and width of $\phi(2170)$

X. C., Jian-Ping Dai, Ya-Ping Xie, PRD98(2018)094006

• A vector meson as in $p\bar{p} \rightarrow \Lambda\bar{\Lambda}$?

D. V. Bugg, EPJC 36(2004)161 $M = 2.338 \pm 0.046 \pm 0.030$ $\Gamma = 257 \pm 159 \pm 41$

Relative phase $\Delta \Phi$ of FFs would vary dramatically with c.m. energies! $\Delta \Phi = 37 \pm 12 \pm 6@2.396 \text{ GeV}, 42.4 \pm 0.6 \pm 0.5@J/\psi$

Xu CAO (IMP@CAS)

Baryon@BESIII, USTC@Hefei

14-16 Sep. 2019 15 / 16

• A parameterization originated from Fano resonance is discussed

- easy to use for both theoretical and experimental purposes
- directly connected to underlying nature of resonance
- We use it to study line shape of states in e⁺e⁻ annihilation
 The role of subthreshold resonance

- Other interesting cases?
- Combined analysis of different reactions in realistic amplitudes!

- A parameterization originated from Fano resonance is discussed
 - easy to use for both theoretical and experimental purposes
 - directly connected to underlying nature of resonance
- We use it to study line shape of states in e⁺e⁻ annihilation
 The role of subthreshold resonance

- Other interesting cases?
- Combined analysis of different reactions in realistic amplitudes!

- A parameterization originated from Fano resonance is discussed
 - easy to use for both theoretical and experimental purposes
 - directly connected to underlying nature of resonance
- We use it to study line shape of states in e⁺e⁻ annihilation
 The role of subthreshold resonance

- Other interesting cases?
- Combined analysis of different reactions in realistic amplitudes!

- A parameterization originated from Fano resonance is discussed
 - easy to use for both theoretical and experimental purposes
 - directly connected to underlying nature of resonance
- We use it to study line shape of states in e^+e^- annihilation
- The role of subthreshold resonance
 - significant for the $\psi(3770)$ line shape: $\psi(3686)$
 - close-to-threshold enahncement of Λ EFF: $\phi(2170)$
- Other interesting cases?
- Combined analysis of different reactions in realistic amplitudes!

- A parameterization originated from Fano resonance is discussed
 - easy to use for both theoretical and experimental purposes
 - directly connected to underlying nature of resonance
- We use it to study line shape of states in e^+e^- annihilation
- The role of subthreshold resonance
 - significant for the $\psi(3770)$ line shape: $\psi(3686)$
 - close-to-threshold enahncement of Λ EFF: $\phi(2170)$?
- Other interesting cases?
- Combined analysis of different reactions in realistic amplitudes!

- A parameterization originated from Fano resonance is discussed
 - easy to use for both theoretical and experimental purposes
 - directly connected to underlying nature of resonance
- We use it to study line shape of states in e^+e^- annihilation
- The role of subthreshold resonance
 - significant for the $\psi(3770)$ line shape: $\psi(3686)$
 - close-to-threshold enahncement of Λ EFF: φ(2170)?
- Other interesting cases?
- Combined analysis of different reactions in realistic amplitudes!

- A parameterization originated from Fano resonance is discussed
 - easy to use for both theoretical and experimental purposes
 - directly connected to underlying nature of resonance
- We use it to study line shape of states in e^+e^- annihilation
- The role of subthreshold resonance
 - significant for the $\psi(3770)$ line shape: $\psi(3686)$
 - close-to-threshold enahncement of Λ EFF: $\phi(2170)$?
- Other interesting cases?
- Combined analysis of different reactions in realistic amplitudes!

- A parameterization originated from Fano resonance is discussed
 - easy to use for both theoretical and experimental purposes
 - directly connected to underlying nature of resonance
- We use it to study line shape of states in e^+e^- annihilation
- The role of subthreshold resonance
 - significant for the $\psi(3770)$ line shape: $\psi(3686)$
 - close-to-threshold enahncement of Λ EFF: $\phi(2170)$?
- Other interesting cases?

• Combined analysis of different reactions in realistic amplitudes!

Thanks for the attention!!!

Xu CAO (IMP@CAS)

Baryon@BESIII, USTC@Hefei

14-16 Sep. 2019 16 / 16

- A parameterization originated from Fano resonance is discussed
 - easy to use for both theoretical and experimental purposes
 - directly connected to underlying nature of resonance
- We use it to study line shape of states in e^+e^- annihilation
- The role of subthreshold resonance
 - significant for the $\psi(3770)$ line shape: $\psi(3686)$
 - close-to-threshold enahncement of Λ EFF: $\phi(2170)$?
- Other interesting cases?
- Combined analysis of different reactions in realistic amplitudes!

- A parameterization originated from Fano resonance is discussed
 - easy to use for both theoretical and experimental purposes
 - directly connected to underlying nature of resonance
- We use it to study line shape of states in e^+e^- annihilation
- The role of subthreshold resonance
 - significant for the $\psi(3770)$ line shape: $\psi(3686)$
 - close-to-threshold enahncement of Λ EFF: $\phi(2170)$?
- Other interesting cases?
- Combined analysis of different reactions in realistic amplitudes!