BESIII上 Λ_c^+ 半轻衰变研究

- 李 蕾 中国人民大学
- 2023年4月9日
- lilei2023@ruc.edu.cn

BESIII 粲强子物理研讨会, 2023/04/06-2023/04/09, 安徽合肥

Introduction

• Study of Λ_c^+ SL decays at BESIII

Summary

Λ_c^+ cornerstone of charmed baryon spectroscopy

Quark model picture:

a heavy quark (c) with a unexcited spin-zero diquark (u-d) Heavy Quark Effective Theory predicts that Λ_c may provide more powerful test on internal dynamics than D/D_s

Cornerstone of charmed baryons:

 Λ_c^+ is the lightest charmed baryon, most of the charmed baryons will eventually decay to Λ_c^-

Essential input for study the decays of b-flavored hadrons involving Λ_c in final state

Status of Λ_c^+ measurement [PDG2015]:

- poorly understood compared to charm mesons total BF~60%, large uncertainties(>20%)
- Relative measurement
- No neutron mode has been observed yet.

Λ_c^+ Measurements [PDG2015]

A+ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<mark>⊿B</mark> /B
Hadronic modes with	hap: $S = -1$ fin	al states	
$p\overline{K}^0$	(3.21± 0.30) %	6	9.3%
$pK^{-}\pi^{+}$	(6.84 + 0.32)	6	5.8%
a K *(802)0	(2.12 ± 0.20)	- (14.1%
$\Lambda(1232)^{++}K^{-}$	(1.18 ± 0.30)	0	22.9%
$\Lambda(1520)\pi^+$	(1.10 ± 0.27)	6	25.0%
$pK^-\pi^+$ nonresonant	(3.8 ± 0.4)	6	10.5%
$p\overline{K}^0\pi^0$	(4.5 ± 0.6)	, ,	13.3%
$p \overline{K}^0 \eta$	(1.7 ± 0.4)	6	23.5%
$p\overline{K}^0\pi^+\pi^-$	(3.5 ± 0.4) 9	6	11.4%
$pK^{-}\pi^{+}\pi^{0}$	(4.6 ± 0.8) %	6	13.0%
$pK^{*}(892)^{-}\pi^{+}$	(1.5 ± 0.5) %	6	33.3%
$p(K^{-}\pi^{+})_{\text{nonresonant}}\pi^{0}$	(5.0 ± 0.9)%	6	18.0%
$\Delta(1232)\overline{K}^{*}(892)$	seen		
$pK^{-}\pi^{+}\pi^{+}\pi^{-}$	(1.5 ± 1.0)×	10-3	66.7%
$pK^{-}\pi^{+}\pi^{0}\pi^{0}$	(1.1 ± 0.5) %	6	45.4%
Hadronic modes wit	th a <i>p</i> : <i>S</i> = 0 fina	states	
$\rho \pi^{+} \pi^{-}$	(4.7 ± 2.5)×	10-3	45.4%
$p f_0(980)$ [4	[] (3.8 ± 2.5) ×	10-3	53.2%
$p\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	(2.5 ± 1.6)×	10-3	64.0%
pK+K-	(1.1 ± 0.4)×	10-3	30.4%
<i>ρφ</i> [9	[] (1.12± 0.23) ×	10-3	
pK^+K^- non- ϕ	$(4.8 \pm 1.9) \times$	10-4	
Hadronic modes with a	hyperon: $S = -1$	final states	
$\Lambda \pi^+$	(1.46± 0.13) %	6	8.9%
$\Lambda \pi^+ \pi^0$	(5.0 ± 1.3) 9	6	26.0%
$\Lambda \rho^+$	< 6 9	6 CL=95%	
$\Lambda \pi^+ \pi^+ \pi^-$	(3.59± 0.28) %	6	7.8%
$\Sigma(1385)^+\pi^+\pi^-, \Sigma^{*+} \rightarrow$	(1.0 ± 0.5) %	6	20.0%
$\begin{array}{c} \Lambda \pi^+ \\ \Sigma(1385)^- \pi^+ \pi^+, \ \Sigma^{*-} \rightarrow \\ \Lambda \pi^- \end{array}$	(7.5 ± 1.4)×	10-3	18.7%
HTTP://PDG.LBL.GOV Pa	age 32 Cre	ated: 10/6/201	5 12
Total branching frac	ction ~609	%.	

- ✓ Lots of unknown decay channels
- ✓ Quite large uncertainties(>20%)
- ✓ Most BFs are measured relative to Λ_{c}^{+} → $pK^{-}\pi^{+}$

$\Lambda \pi^+ \rho^0$	$(1.4 \pm 0.6)\%$	42.8%
$\Sigma(1385)^+ \rho^0, \Sigma^{*+} \rightarrow \Lambda \pi^+$	$(5 \pm 4) \times 10^{-3}$	80.0%
$\Lambda \pi^+ \pi^+ \pi^-$ nonresonant	< 1.1 % CL=90%	
$\Lambda \pi^+ \pi^+ \pi^- \pi^0$ total	(2.5 ± 0.9) %	36.0%
$\Lambda \pi^+ \eta$	[q] (2.4 ± 0.5)%	20.8%
$\Sigma(1385)^{+}\eta$	[q] (1.16± 0.35) %	30.2%
$\Lambda \pi^+ \omega$	[q] (1.6 ± 0.6)%	37.5%
$\Lambda \pi^+ \pi^+ \pi^- \pi^0$, no η or ω	$< 9 \times 10^{-3}$ CL=90%	
$\Lambda K^+ \overline{K}^0$	$(6.4 \pm 1.3) \times 10^{-3}$ S=1.6	20.3%
$\Xi(1690)^0 K^+$, $\Xi^{*0} \rightarrow \Lambda \overline{K}^0$	$(1.8 \pm 0.6) \times 10^{-3}$	33.3%
$\Sigma^0 \pi^+$	(1.43± 0.14) %	10.0%
$\Sigma^+ \pi^0$	(1.37± 0.30) %	21.9%
$\Sigma^+\eta$	$(7.5 \pm 2.5) \times 10^{-3}$	33.3%
$\Sigma^{+}\pi^{+}\pi^{-}$	(4.9 ± 0.5)%	10.2%
$\Sigma^+ \rho^0$	< 1.8 % CL=95%	
$\Sigma^{-}\pi^{+}\pi^{+}$	(2.3 ± 0.4)%	17.4%
$\Sigma^0 \pi^+ \pi^0$	(2.5 ± 0.9)%	36.0%
$\Sigma^{0}\pi^{+}\pi^{+}\pi^{-}$	(1.13± 0.31) %	27.4%
$\Sigma^{+}\pi^{+}\pi^{-}\pi^{0}$	_	
$\Sigma^+ \omega$	[q] (3.7 ± 1.0)%	27.1%
$\Sigma^+ K^+ K^-$	$(3.8 \pm 0.6) \times 10^{-3}$	15.8%
$\Sigma^+\phi$	[q] (4.3 ± 0.7)×10 ⁻³	16.3%
$\Xi(1690)^0 K^+$, $\Xi^{*0} \rightarrow$	$(1.11\pm 0.29) \times 10^{-3}$	26.2%
$\Sigma^+ K^-$		
$\Sigma^+ K^+ K^-$ nonresonant	< 9 × 10 ⁻⁴ CL=90%	
= K+	$(5.3 \pm 1.3) \times 10^{-3}$	24.5%
$= -K^{+}\pi^{+}$	$(7.0 \pm 0.8) \times 10^{-3}$ S=1.1	11.4%
$=(1530)^{\circ}K^{+}$	[q] $(3.5 \pm 1.0) \times 10^{-3}$	28.6%
Hadronic modes wit	h a hyperon: $S = 0$ final states	
ΛK ⁺	$(6.9 \pm 1.4) \times 10^{-4}$	20.3%
$\Lambda K^+ \pi^+ \pi^-$	$< 6 \times 10^{-4}$ CL=90%	
$\Sigma^0 K^+$	$(5.7 \pm 1.0) \times 10^{-4}$	17.5%
$\Sigma^{0}K^{+}\pi^{+}\pi^{-}$	$< 2.9 \times 10^{-4}$ CL=90%	
$\Sigma^+ K^+ \pi^-$	$(2.3 \pm 0.7) \times 10^{-3}$	30.4%
$\Sigma^{+}K^{*}(892)^{0}$	$[a] (3.8 \pm 1.2) \times 10^{-3}$	31.6%
$\Sigma^- K^+ \pi^+$	$< 1.3 \times 10^{-3}$ CL=90%	
Doubly Cab	ibbo-suppressed modes	
$pK^{+}\pi^{-}$	$< 3.1 \times 10^{-4} CL=90\%$	
Sem	lentonic modes	
<i>M</i> ⁺ <i>v</i> _∗	$[t] (28 \pm 04)\%$	
Ae+u.	$(20 \pm 05)\%$	17.2%
Au+v	(2.7 ± 0.5) %	22.2%
$\mu \nu_{\mu}$	(2.7 ± 0.0) %	22.270
		4

 $\Delta B/B$

Λ_c^+ Measurements [PDG2020]

Λ_c^+ decay modes

Fraction (Fi/ 衰变分支比测量精度ΔB/B

Hadronic modes with	n a j	oorn:S=−1 final st	ates	
рК ⁰ 5		(1.59± 0.08) %	S=1.1	5.0%
$pK^{-}\pi^{+}$		(6.28± 0.32) %	S=1.4	5.1%
$p\overline{K}^{*}(892)^{0}$	[r]	$(1.96 \pm 0.27)\%$		13.8%
$\Delta(1232)^{++}K^{-}$	• •	$(1.08 \pm 0.25)\%$		23.1%
$\Lambda(1520)\pi^+$	[r]	$(2.2 \pm 0.5)\%$		22.7%
$pK^{-}\pi^{+}$ nonresonant		$(3.5 \pm 0.4)\%$		11.5%
$\rho K_c^0 \pi^0$		$(1.97 \pm 0.13)\%$	S=1.1	6.6%
$nK_{S}^{0}\pi^{+}$		$(1.82 \pm 0.25)\%$		13.7%
5				
$p\overline{K}^{0}\eta$		$(1.6 \pm 0.4)\%$		25.0%
$pK_{S}^{0}\pi^{+}\pi^{-}$		(1.60± 0.12)%	S=1.1	7.5%
$\rho K^{-} \pi^{+} \pi^{0}$		(4.46± 0.30)%	S=1.5	6.8%
$pK^{*}(892)^{-}\pi^{+}$	[<i>r</i>]	(1.4 ± 0.5)%		35.7%
$p(K^{-}\pi^{+})_{nonresonant}\pi^{0}$		(4.6 ± 0.8)%		17.4%
$\Delta(1232)K^{*}(892)$		seen		CA 20 (
$pK = 2\pi^{+}\pi^{-}$		$(1.4 \pm 0.9) \times 10^{-3}$		64.3%
$pK = \pi + 2\pi^{\circ}$		(1.0 ± 0.5)%		50.0%
Hadronic modes v	vith	a $p: S = 0$ final states	s	
$\rho \pi^0$		$< 2.7 \times 10^{-4}$	CL=90%	
<i>Ρ</i> η		$(1.24 \pm 0.30) \times 10^{-3}$		24.2%
ρω(782) ⁰		$(9 \pm 4) \times 10^{-4}$		44.4%
$p\pi^{+}\pi^{-}$		$(4.61 \pm 0.28) \times 10^{-3}$		6.1%
pf ₀ (980)	[r]	$(3.5 \pm 2.3) \times 10^{-3}$		65.7%
$p_{2\pi^+2\pi^-}$		$(2.3 \pm 1.4) \times 10^{-3}$		60.9%
pK K	[.]	$(1.06 \pm 0.06) \times 10^{-3}$		5.7% 13.7%
$p\phi$ pK^+K^- non ϕ	[/]	$(1.00 \pm 0.14) \times 10^{-5}$		22.6%
$\rho \phi \pi^0$		$(10 \pm 4) \times 10^{-5}$		40.0%
$pK^+K^-\pi^0$ nonresonant		< 6.3 × 10 ⁻⁵	CI =90%	

Hadronic modes with a hyperon: S = -1 final states

$\Lambda \pi^+$	(1.30± 0.07)%	S=1.1	5.4%
$A \pi^{+} \pi^{0}$	$(7.1 \pm 0.4)\%$	S=1.1	5.6%
$\Lambda \rho^+$	< 6 %	CL=95%	
$A \pi^{-} 2 \pi^{+}$	(3.64± 0.29)%	S=1.4	8.0%
$\Sigma(1385)^+\pi^+\pi^-, \Sigma^{*+} \rightarrow$	$(1.0 \pm 0.5)\%$		50.0%
$\Sigma^{\Lambda\pi^+}_{(1385)^- 2\pi^+}, \Sigma^{*-} \rightarrow$	(7.6 \pm 1.4) $\times10^{-3}$		18.4%
$\Lambda \pi^-$ $\Lambda \pi^+ \rho^0$	$(1.5 \pm 0.6)\%$		40.0%
$\Sigma(1385)^+ \rho^0$, $\Sigma^{*+} \rightarrow \Lambda \pi^+$	$(5 \pm 4) \times 10^{-3}$		80.0%
$\Lambda \pi^{-} 2\pi^{+}$ nonresonant	< 1.1 %	CL=90%	

$\Lambda \pi^{-} \pi^{0} 2\pi^{+}$ total	(2.3 ± 0.8)%		34.8%
$\Lambda \pi^+ \eta$	[r] (1.84± 0.26)%		14.1%
$\Sigma(1385)^{+}\eta$	[r] (9.1 ± 2.0)×10 ⁻³		21.9%
$\Lambda \pi^+ \omega$	[r] (1.5 ± 0.5)%		33.3%
$\Lambda \pi^{-} \pi^{0} 2\pi^{+}$, no η or ω	$< 8 \times 10^{-3}$	CL=90%	
$\Lambda K^+ \overline{K}^0$	$(5.7 \pm 1.1) \times 10^{-3}$	S=1.9	19.3%
$\Xi(1690)^0 K^+$, $\Xi^{*0} \rightarrow \Lambda \overline{K}^0$	$(1.6 \pm 0.5) \times 10^{-3}$		31.2%
$\Sigma^{0} \pi^{+}$	(1.29± 0.07)%	S=1.1	5.4%
$\Sigma^{+}\pi^{0}$	(1.25± 0.10)%		8.0%
$\Sigma^+ \eta$	$(4.4 \pm 2.0) \times 10^{-3}$		45.4%
$\Sigma^+ \eta'$	(1.5 ± 0.6)%		40.0%
$\Sigma^{+}\pi^{+}\pi^{-}$	(4.50± 0.25)%	S=1.3	5.6%
$\Sigma^+ \rho^0$	< 1.7 %	CL=95%	
$\Sigma^{-}2\pi^{+}$	$(1.87 \pm 0.18)\%$		9.6%
$\Sigma^{0} \pi^{+} \pi^{0}$	$(3.5 \pm 0.4)\%$		11.4%
$\Sigma^{+} \pi^{0} \pi^{0}$	(1.55± 0.15)%		9.7%
$\Sigma^{0} \pi^{-} 2\pi^{+}$	(1.11± 0.30) %		27.0%
$\Sigma^{+}\pi^{+}\pi^{-}\pi^{0}$			2/10/0
$\Sigma^{+}\omega$	[r] (1.70± 0.21)%		12.4%
$\Sigma^{-}\pi^{0}2\pi^{+}$	$(2.1 \pm 0.4)\%$		19.0%
$\Sigma^+ K^+ K^-$	$(3.5 \pm 0.4) \times 10^{-3}$	S=1.1	11.4%
$\Sigma^+ \phi$	[r] (3.9 ± 0.6)×10 ⁻³	S=1.1	15.4%
$\Xi(1690)^0 K^+$, $\Xi^{*0} \rightarrow$	$(1.02 \pm 0.25) \times 10^{-3}$		24.5%
$\Sigma^+ K^-$			
$\Sigma^+ K^+ K^-$ nonresonant	< 8 × 10 ⁻⁴	CL=90%	12 70/
= K+	$(5.5 \pm 0.7) \times 10^{-3}$	-	12.7%
$= -K + \pi +$	$(6.2 \pm 0.6) \times 10^{-3}$	S=1.1	9.7%
$=(1530)^{\circ}K^{+}$	$(4.3 \pm 0.9) \times 10^{-3}$	S=1.1	20.9%
Hadronic modes wit	th a hyperon: $S = 0$ final st	ates	
ΛK ⁺	$(6.1 \pm 1.2) \times 10^{-4}$		19.7%
$\Lambda K^+ \pi^+ \pi^-$	< 5 × 10 ⁻⁴	CL=90%	
$\Sigma^0 K^+$	$(5.2 \pm 0.8) \times 10^{-4}$		15.4%
$\Sigma^{0}K^{+}\pi^{+}\pi^{-}$	< 2.6 × 10 ⁻⁴	CL=90%	
$\Sigma^+ K^+ \pi^-$	$(2.1 \pm 0.6) \times 10^{-3}$		28.6%
$\Sigma^{+} K^{*}(892)^{0}$	[r] (3.5 ± 1.0) × 10 ⁻³		28.6%
$\Sigma - K + \pi +$	< 1.2 × 10 ⁻³	CL=90%	
B 11 61			
	bibbo-suppressed modes		
pr + π ⁻²	$(1.11 \pm 0.18) \times 10^{-4}$		16.2%
Sen	nileptonic modes		
$\Lambda e^+ \nu_e$	(3.6 ± 0.4)%		11.1%
$\Lambda \mu^+ \nu_{\mu}$	$(3.5 \pm 0.5)\%$		14.3%
·	. ,		

衰变分支比测量精度ΔB/B

Λ_c^+ Measurements [PDG2022]

			衰变分支比测
Λ_c^+ DECAY MODES	Fraction (Γ_i/Γ)	Confidence	量精度∆B/B
Hadronic modes with	a p or <i>n</i> : $S = -1$	final states	
pK ⁰	(1.59 ± 0.08) %	% S=	=1.1 5.0%
$pK^{-}\pi^{+}$	(6.28 ± 0.32) %	6 S=	=1.4 5.1%
$p\overline{K}^*(892)^0$	[r] (1.96 ± 0.27) %	6	13.8%
$\Delta(1232)^{++}K^{-}$	(1.08± 0.25) %	6	23.1%
$\Lambda(1520)\pi^+$	$[r]$ (2.2 \pm 0.5) %	6	22.7%
$pK^{-}\pi^{+}$ nonresonant	(3.5 ± 0.4) %	6	11.5%
$pK_{S}^{0}\pi^{0}$	(1.97 ± 0.13) %	6 S=	=1.1 6.6%
$nK_{S}^{0}\pi^{+}$	(1.82 ± 0.25) %	6	13.7%
$p\overline{K}^{0}\eta$	(8.3 \pm 1.8) >	< 10 ⁻³	21.7%
$pK_S^0\pi^+\pi^-$	(1.60 ± 0.12) %	6 S=	=1.1 7.5%
$pK^{-}\pi^{+}\pi^{0}$	(4.46 ± 0.30) %	6 S=	=1.5 6.8%
$pK^{*}(892)^{-}\pi^{+}$	[r] (1.4 ± 0.5)%	6	35.7%
$p(K^-\pi^+)_{\text{nonresonant}}\pi^0$	(4.6 ± 0.8) %	0	17.4%
$\Delta(1232) K^{+}(892)$	seen	3	64.2%
$p_{K} = 2\pi + \pi$	$(1.4 \pm 0.9) >$	/ 10 9	50.0%
	(1.0 ± 0.5)	0	50.076
Hadronic modes v	vith a p : S = 0 fina	al states	
$p\pi^0$	< 8 >	$(10^{-5} CL=)$	90% 8.4%
$p\eta$	$(1.42 \pm 0.12) >$	(10-5	13.2%
$p\omega(782)^{\circ}$	$(8.3 \pm 1.1) \times$	(10-4	6.0%
$p\pi \cdot \pi$	$(4.61 \pm 0.28) \times$	(10 ⁻³)	65.7%
$p_{10}(980)$ $p_{2\pi}^{+}2\pi^{-}$	$[7] (3.5 \pm 2.5) \times (2.3 \pm 1.4) \times (2.3 \pm 1.4$	10^{-3}	60.8%
$p K^+ K^-$	(2.3 ± 1.4)	$\frac{10}{10}$ - 3	5.6%
pro re	[r] (1.06± 0.14)	10^{-3}	13.2%
$p K^+ K^-$ non- ϕ	(5.3 ± 1.2)	10-4	22.6%
$p\phi\pi^0$	$(10 \pm 4) >$	< 10 ^{−5}	40.0%
$pK^+K^-\pi^0$ nonresonant	< 6.3	10 ⁻⁵ CL=	90%
Inc	usive modes		
e^+ anything	(3.95±0.35)%	6	8.9%
p anything	(50 ±16) %	6	32.0%
n anything	(50 ± 16) %	6	32.0%
Λ anything	(38.2 + 2.9) 9	6	~7.0%
K^0_S anything	(9.9 ± 0.7)%	6	7.1%
3prongs	(24 ± 8) %	6	33.3%

Measurements for Λ_c^+ decays are greatly improved, with great efforts from BESIII, LHCb and Belle.

Hadronic modes with	h a hyperon: $S = -1$ final s	tates	
$\Lambda \pi^+$	(1.30± 0.07) %	S=1.1	5.4%
$\Lambda(1670)\pi^+$, $\Lambda(1670) \rightarrow \eta \Lambda$	$(3.5 \pm 0.5) \times 10^{-3}$		14.3%
$\Lambda \pi^+ \pi^0$	$(7.1 \pm 0.4)\%$	S=1.1	5.6%
Λho^+	< 6 %	CL=95%	
$\Lambda \pi^{-} 2\pi^{+}$	(3.64± 0.29) %	S=1.4	8.0%
$\Sigma(1385)^+\pi^+\pi^-$, $\Sigma^{*+} ightarrow$	(1.0 \pm 0.5) %		50.0%
$\Sigma(1385)^- 2\pi^+$, $\Sigma^{*-} \rightarrow A\pi^-$	(7.6 \pm 1.4) $\times10^{-3}$		18.4%
$\Lambda \pi^+ \rho^0$	$(1.5 \pm 0.6)\%$		40.0%
$\Sigma(1385)^+ \rho^0, \Sigma^{*+} \rightarrow \Lambda \pi^+$	$(5 \pm 4) \times 10^{-3}$		80.0%
$\Lambda\pi^{-} 2\pi^{+}$ nonresonant	< 1.1 %	CL=90%	
$\Lambda \pi^{-} \pi^{0} 2\pi^{+}$ total	$(2.3 \pm 0.8)\%$		34.8%
$\Lambda \pi^+ \eta$	[r] (1.84± 0.26)%		14.1%
$\Sigma(1385)^+\eta$	[r] (9.1 ± 2.0) × 10 ⁻³		21.9%
$\Lambda \pi^+ \omega_{\perp}$	$[r]$ (1.5 \pm 0.5) %		33.3%
$\Lambda\pi^{-}\pi^{0}2\pi^{+}$, no η or ω	$< 8 \times 10^{-3}$	CL=90%	
$\Lambda K^+ \overline{K}{}^0$	$(5.7 \pm 1.1) \times 10^{-3}$	S=1.9	19.3%
$arepsilon$ (1690) 0 K^+ , $arepsilon^{st 0} o \ arepsilon \overline{K}{}^0$	$(1.6 \pm 0.5) \times 10^{-3}$		31.2%
$\Sigma^0 \pi^+$	(1.29± 0.07) %	S=1.1	5.4%
$\Sigma^0 \pi^+ \eta$	$(7.5 \pm 0.8) \times 10^{-3}$		10.7%
$\Sigma^+\pi^0$	(1.25± 0.10) %		8.0%
$\Sigma^+\eta$	$(4.4 \pm 2.0) \times 10^{-3}$		45.4%
$\Sigma^+ \eta'$	(1.5 \pm 0.6) %		40.0%
$\Sigma^+\pi^+\pi^-$	(4.50± 0.25)%	S=1.3	5.6%
$\Sigma^+ ho^0$	< 1.7 %	CL=95%	
$\Sigma^{-}2\pi^{+}$	(1.87± 0.18) %		9.6%
$\Sigma^0 \pi^+ \pi^0$	$(3.5 \pm 0.4)\%$		11.4%
$\Sigma^+ \pi^0 \pi^0$	(1.55± 0.15) %		9.7%
$\Sigma^0 \pi^- 2\pi^+$	(1.11± 0.30) %		27.0%
$\Sigma^+\pi^+\pi^-\pi^0$	—		
$\Sigma^+\omega$	[r] (1.70± 0.21) %		12.4%
$\Sigma^{-}\pi^{0}2\pi^{+}$	$(2.1 \pm 0.4)\%$		19.0%
$\Sigma^+ K^+ K^-$	$(3.5 \pm 0.4) \times 10^{-3}$	S=1.1	11.4%
$\Sigma^+\phi$	[r] (3.9 ± 0.6) × 10 ⁻³	S=1.1	15.4%
$\overline{\Xi}$ (1690) ⁶ K^+ , $\overline{\Xi}^{*6}$ $ ightarrow$ $\Sigma^+ K^-$	$(1.02\pm 0.25) \times 10^{-3}$		24.5%
$\Sigma^+ K^+ K^-$ nonresonant	$< 8 \times 10^{-4}$	CL=90%	
$\Xi^0 K^+$	$(5.5 \pm 0.7) \times 10^{-3}$		12.7%
$\Xi^- K^+ \pi^+$	$(6.2 \pm 0.6) \times 10^{-3}$	S=1.1	9.7%
$\Xi(1530)^{0}K^{+}$	$(4.3 \pm 0.9) \times 10^{-3}$	S=1.1	20.9%
Hadronic modes wit	th a hyperon: $S = 0$ final st	ates	40 70/
ΛK^+	$(6.1 \pm 1.2) \times 10^{-4}$		19.7%
$\Lambda K^+ \pi^+ \pi^-$	$< 5 \times 10^{-4}$	CL=90%	4 - 40/
$\Sigma^0 K^+$	$(5.2 \pm 0.8) \times 10^{-4}$		15.4%
$\Sigma^0 K^+ \pi^+ \pi^-$	$< 2.6 \times 10^{-4}$	CL=90%	
$\Sigma^+ K^+ \pi^-$	$(2.1 \pm 0.6) \times 10^{-3}$		28.6%
$\Sigma^{+}K^{*}(892)^{0}$	[r] (3.5 ± 1.0) × 10 ⁻³		28.6%
$\Sigma^- K^+ \pi^+$	$< 1.2 \times 10^{-3}$	CL=90%	
Doubly Cat	bibbo-suppressed modes		
<i>pK</i> ⁺ π ⁻	$(1.11\pm 0.18) \times 10^{-4}$		16.2%
Sem	nileptonic modes		11 10/
$\Lambda e^+ \nu_e$	(3.6 ± 0.4) %		11.1%
$\Lambda \mu^+ u_\mu$	$(3.5 \pm 0.5)\%$		14.3%

ŝ

Λ_c Data samples at BESIII

In 2014, BESIII collected data above Λ_c pair threshold and run machine at 4.599 GeV with excellent performance.

Energy (GeV)	Luminosity (pb ⁻¹)	(f) 0.6 PRL101 (2008) 172001
4.575	~48	0.4 HI BELLE
4.580	~8.5	$0.2 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$
4.590	~8.1	$0 \begin{bmatrix} -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1$
4.599	~567	FIG. 4: The cross section for the exclusive process $e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$.

With 567/pb data collected at E_{cm} =4.599 GeV, lots of the works are performed to study the decay property of Λ_c at BESIII.

$\Lambda_{c}^{+} \rightarrow \Lambda l^{+} \nu_{l}$ decays

Theoretical calculations on the BF ranges from 1.4% to 9.2%
 BESIII performed the first absolute BF measurements.
 The BFs provide complementary information on determining |V_{cs}|.

B[Λ_c^+ → $\Lambda\mu^+\nu_{\mu}$]=(3.49±0.46±0.26)% $\Gamma[\Lambda_c^+$ → $\Lambda\mu^+\nu_{\mu}$]/ $\Gamma[\Lambda_c^+$ → $\Lambda e^+\nu_e$]= 0.96±0.16±0.04 **Provides important input for calibrating the LQCD calculations.**

Model & Experiment	Br ^{exp} [%]	References
SU(4) symmetry limit	9.2	M. Avila-Aoki et al [PRD40, 2944 (1989)]
Non-relativistic quark model	2.6	Perez-Marcial et al [PRD40, 2955 (1989)]
MIT bag model [MBM]	1.9	Perez-Marcial et al [PRD40, 2955 (1989)]
Relativistic spectator Model	4.4	F. Hussain et al [ZPC51, 607 (1991)]
Spectator quark model	1.96	Robert Singleton, Jr. [PRD43, 2939(1991)]
Quark confinement Model	5.62	G. V. Efimov et al [ZPC52, 149 (1991)]
Non-relativistic quark model	2.15	A. Garcia et al [PRD45, 3266 (1992)]
Non-relativistic quark model	1.42	H. Y. Cheng et al [PRD53, 1457 (1995)]
QCD Sum Rule	3.0±0.9	H. G. Dosch et al [PLB431, 173 (1998)]
QCD Sum Rule	2.6±0.4	R. S. Marques de Carvalho et al
QCD Sum Rule	5.8±1.5	[PRD60, 034009 (1999)]
HOSR	4.72	M. Pervin et al [PRC72, 035201 (2005)]
HONR	4.2	
STSR	2.22	
STNR	1.58	
LCSRs	3.0±0.3 (CZ-type) 2.0±0.3(Ioffe-type)	Y. L. Liu, M.Q. Huang and D. W. Wang [PRD80, 074011 (2009)]
Convariant confined quark model	2.78	Thomas Gutsche et al [PRD93, 034008(2016)]
relativistic quark model	3.25	R. N. Faustov, V. O. Galkina, Eur. Phys. J. C (2016) 76:628
Lattice QCD	$3.80 \pm 0.19_{LQCD} \pm 0.11_{\tau\Lambda c}$	Stefan Meinel, PRL118,082001 (2017)
BESIII [First absolute measurement]	3.63±0.43	PRL 115, 221805 (2015)]

$\Lambda_c \rightarrow \Lambda l^+ \nu_l$ Form Factors and Decay Rates from Lattice QCD with Physical Quark Masses

Stefan Meinel

Department of Physics, University of Arizona, Tucson, Arizona 85721, USA and RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA (Received 1 December 2016; published 21 February 2017)

Expectations from Lattice QCD on BFs

BESIII results:

$$\mathcal{B}(\Lambda_c \to \Lambda \ell^+ \nu_\ell) = \begin{cases} 0.0380(19)_{\text{LQCD}}(11)_{\tau_{\Lambda_c}}, \ \ell = e, \\ 0.0369(19)_{\text{LQCD}}(11)_{\tau_{\Lambda_c}}, \ \ell = \mu, \end{cases} \qquad \qquad \mathcal{B}(\Lambda_c \to \Lambda \ell^+ \nu_\ell) = \begin{cases} 0.0363(38)(20), \ \ell = e, \\ 0.0349(46)(27), \ \ell = \mu, \end{cases}$$

Expectations from Lattice QCD on form factors and differential decay widths

BESIII can provide the first direct test on LQCD predictions.

Inclusive SL decay $\Lambda_c^+ \rightarrow e^+X$

Two tags are used in analysis

Unfolding method to obtain signals

$\langle N_e^{\rm obs} \rangle$		$\left(P_{e \to e} \right)$	$P_{\pi \to e}$	$P_{K \to e}$	$P_{p \to e}$	$\left(N_{e}^{\text{true}} \right)$
N_{π}^{obs}		$P_{e \to \pi}$	$P_{\pi \to \pi}$	$P_{K \to \pi}$	$P_{p \to \pi}$	N_{π}^{true}
$N_K^{\rm obs}$	=	$P_{e \to K}$	$P_{\pi \to K}$	$P_{K \to K}$	$P_{p \to K}$	$N_K^{\rm true}$
$\langle N_p^{\rm obs} \rangle$		$\langle P_{e \to p} \rangle$	$P_{\pi \to p}$	$P_{K \to p}$	$P_{p \to p}$	$\langle N_p^{\text{true}} \rangle$

✓ The extracted BFs for $\Lambda_c^+ \rightarrow eX$

 $B[\Lambda_{c}^{+} \rightarrow e+X] = (3.95 \pm 0.34 \pm 0.09)\%$

Result	$\Lambda_c^+ \to X e^+ \nu_e$	$\frac{[\Gamma(\Lambda_c^+ \to X e^+ \nu_e)/\bar{\Gamma}(D \to X e^+ \nu_e)]}{\bar{\Gamma}(D \to X e^+ \nu_e)]}$
BESIII	3.95 ± 0.35	1.26 ± 0.12
MARK II [11]	4.5 ± 1.7	1.44 ± 0.54
Effective-quark method [8,9]		1.67
Heavy-quark expansion [10]		1.2

PRL121(2018)251801

PID efficiencies obtained from data

Data sets for charm baryon studies at **BESIII**

12

DT Technique

$$M_{\rm BC} = \sqrt{E_{\rm beam}^2 - |\overrightarrow{p}_{\overline{\Lambda}_c}|^2}$$

- ✓ Double Tags (DT) $U_{\rm miss} = E_{\rm miss} - c |\vec{p}_{\rm miss}|$
- ✓ Branching Fraction (BF) $\mathcal{B}_{SL} = \frac{N^{\text{semi}}}{N^{\text{tag}} \times \epsilon}$

Clean sample of ST charmed baryons can be fully reconstructed by hadronic decays with large BFs. Based on this, one can access to absolute BFs and dynamics in the decays.

Reconstruction of Λ_c **ST baryons**

□ Fourteen ST modes:

$\bar{\Lambda}_c^- \rightarrow$	Branching fraction	PDG2022
$ar{p}ar{K}^0$	$(3.18 \pm 0.16)\%$	ר –
$ar{p}K^+\pi^-$	$(6.28\pm 0.32)\%$	
$ar{p}ar{K}^0\pi^0$	$(3.94 \pm 0.26)\%$	
$ar{p}ar{K}^0\pi^+\pi^-$	$(3.20 \pm 0.24)\%$	
$ar{p}K^+\pi^-\pi^0$	$(4.46 \pm 0.30)\%$	
$ar{\Lambda}\pi^-$	$(1.30 \pm 0.07)\%$	
$ar{\Lambda}\pi^-\pi^0$	$(7.10 \pm 0.40)\%$	
$ar{\Lambda}\pi^-\pi^+\pi^-$	$(3.64 \pm 0.29)\%$	~45%
$ar{\Sigma}^0\pi^-$	$(1.29 \pm 0.07)\%$	
$ar{\Sigma}^-\pi^0$	$(1.25\pm 0.10)\%$	
$ar{\Sigma}^-\pi^+\pi^-$	$(4.50 \pm 0.25)\%$	
$ar{p}^-\pi^+\pi^-$	$(0.46 \pm 0.03)\%$	
$ar{\Sigma}^0\pi^+\pi^-\pi^-$	$(1.11 \pm 0.30)\%$	
$ar{\Sigma}^0\pi^-\pi^0$	$(3.50 \pm 0.40)\%$	

Currently, the total measured BFs for Λ_c decays is roughly 70%.

Reconstruction of Λ_c **ST baryons**

• The M_{BC} distributions at $\sqrt{s} = 4.68$ GeV.

Mode	$\Delta E \; ({ m GeV})$	$N_{ m ST}$
$ar{p}ar{K}^0$	[-0.031, 0.033]	7688 ± 98
$ar{p}K^+\pi^-$	[-0.030, 0.039]	45842 ± 235
$ar{p}ar{K}^0\pi^0$	[-0.049, 0.052]	4448 ± 109
$ar{p}ar{K}^0\pi^+\pi^-$	[-0.048, 0.049]	4962 ± 110
$ar{p}K^+\pi^-\pi^0$	[-0.043, 0.051]	10670 ± 161
$ar{\Lambda}\pi^-$	[-0.031, 0.034]	6089 ± 82
$ar{\Lambda}\pi^-\pi^0$	[-0.044, 0.057]	11933 ± 143
$ar{\Lambda}\pi^-\pi^+\pi^-$	[-0.043, 0.045]	7163 ± 122
$ar{\Sigma}^0\pi^-$	[-0.032, 0.040]	3883 ± 69
$ar{\Sigma}^-\pi^0$	[-0.050, 0.060]	2289 ± 70
$ar{\Sigma}^-\pi^+\pi^-$	[-0.043, 0.052]	8206 ± 161
$ar{p}^-\pi^+\pi^-$	[-0.040, 0.040]	4199 ± 139
$ar{\Sigma}^0\pi^+\pi^-\pi^-$	[-0.030, 0.030]	1290 ± 64
$ar{\Sigma}^0\pi^-\pi^0$	[-0.030, 0.032]	3606 ± 90

Totally, 122 268±474 ST events are reconstructed with 14 ST modes.

$\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ decays

PRL129(2022)231803

BESIII result: B[$\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$]=(3.56±0.11±0.07)%

The precision of the BF is improved by threefold.

The measured BF is important to test various theoretical calculations.

	$\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) ~(\%)$		
Constituent quark model (HONR) [9]	4.25 ×		
Light-front approach [10]	1.63 ×		
Covariant quark model [11]	$2.78 \times$		
Relativistic quark model [12]	3.25 ×		
Non-relativistic quark model [13]	3.84		
Light-cone sum rule [14]	3.0 ± 0.3		
Lattice QCD [15]	$\underline{3.80\pm0.22}$		
<i>SU</i> (3) [16]	3.6 ± 0.4		
Light-front constituent quark model [17]	3.36 ± 0.87		
MIT bag model [17]	3.48		
Light-front quark model [18]	4.04 ± 0.75		
This Letter	$3.56 \pm 0.11 \pm 0.07$		

$\Lambda_c \rightarrow \Lambda l^+ \nu_l$ Form Factors and Decay Rates from Lattice QCD with Physical Quark Masses

Approximation in experimental measurement:

In LQCD, 11 independent variables parameterized in four form factors.
 About 1200 events are collected from experiment.

□ The free parameters are reduced from 11 to 6 in anaysis, which are:

$$a_0^{g_\perp}$$
, $\alpha_1^{g_\perp}$, $\alpha_1^{f_\perp}$, $r_{f_\perp} = a_0^{f_\perp}/a_0^{g_\perp}$, $r_{f_+} = a_0^{f_+}/a_0^{g_\perp}$, $r_{g_+} = a_0^{g_+}/a_0^{g_\perp}$

Study of the kinematics in $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$ decay:

Comparisons between data and LQCD prediction

Comparisons between data and LQCD prediction

Observation of $\Lambda_{e}^{+} \rightarrow pK^{-}e^{+}\nu_{e}$

□ The new observed SL decay mode:

Measurement

Phys. Rev. D 106, 112010 (2023)

$$BF(\Lambda_{c}^{+} \rightarrow pK^{-}e^{+}\nu_{e}) = (0.88 \pm 0.15 \pm 0.07) \times 10^{-3}$$
Significance: 8.2 σ
This work provide a clear confirmation that the SL Λ_{c}^{+} decays are not saturated by the $\Lambda\ell^{+}\nu_{\ell}$ final state.
$$IO = Study of pK^{-}$$
 mass spectrum can be used to understand the nature of excited Λ^{*} states.
$$U = \frac{B(\Lambda_{c}^{+} \rightarrow (152)e^{+}\nu_{c})}{Constituent quark model [8]} = \frac{B(\Lambda_{c}^{+} \rightarrow (152)e^{+}\nu_{c})}{0.512 \pm 0.082} = \frac{B(\Lambda_{c}^{+} \rightarrow (1405)e^{+}\nu_{c})}{0.512 \pm 0.082} = \frac{B(\Lambda_{c}^{+} \rightarrow (150)e^{+}\nu_{c})}{0.512 \pm 0.082} = \frac{B(\Lambda_$$

 $1.02 \pm 0.52 \pm 0.11$

 $0.42{\pm}0.19{\pm}0.04$

 $\overline{\mathcal{B}(\Lambda(1405) \rightarrow pK^{-})}$

Evidence of $\Lambda_c^+ \rightarrow \Lambda^* (\rightarrow pK^-)e^+\nu_e$

Phys. Rev. D 106, 112010 (2023)

BF($\Lambda_c^+ \to \Lambda(1520)$ [→ pK⁻]e⁺ν_e) = (0.23 ± 0.12 ± 0.02)×10⁻³ 信号显著性 3.3σ BF($\Lambda_c^+ \to \Lambda(1405)$ [→ pK⁻]e⁺ν_e) = (0.42 ± 0.19 ± 0.04)×10⁻³ 信号显著性 3.2σ

Inclusive SL decay $\Lambda_c^+ \rightarrow e^+X$

 $N^{ST} = 115437 \pm 446$

 Unfolding method to obtain true signal yields. The matrix can be obtained using selected control samples.

$$\begin{bmatrix} N_e^{\text{obs}} \\ N_{\pi}^{\text{obs}} \\ N_K^{\text{obs}} \\ N_p^{\text{obs}} \end{bmatrix} = \begin{bmatrix} P_{e \to e} & P_{\pi \to e} & P_{K \to e} & P_{p \to e} \\ P_{e \to \pi} & P_{\pi \to \pi} & P_{K \to \pi} & P_{p \to \pi} \\ P_{e \to K} & P_{\pi \to K} & P_{K \to F} & P_{p \to K} \\ P_{e \to p} & P_{\pi \to p} & P_{K \to p} & P_{p \to p} \end{bmatrix} \begin{bmatrix} N_e^{\text{true}} \\ N_{\pi}^{\text{true}} \\ N_K^{\text{true}} \\ N_p^{\text{true}} \end{bmatrix}_{\Im}$$

Inclusive SL decay $\Lambda_c^+ \rightarrow e^+X$

$$BF(\Lambda_{c}^{+} \to \Lambda e^{+}\nu_{e}) = (4.06 \pm 0.10 \pm 0.09)\%$$

$$BF(\Lambda_{c}^{+} \to \Lambda e^{+}\nu_{e}) = (3.56 \pm 0.11 \pm 0.07)\%$$

$$BF(\Lambda_{c}^{+} \to pK^{-}e^{+}\nu_{e}) = (0.88 \pm 0.15 \pm 0.07) \times 10^{-3}$$

$$Unknown decay: 0.5\%$$

$$27$$

Search for $\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^- e^+ \nu_e$ and $\Lambda_c^+ \rightarrow p K_s^0 \pi^- e^+ \nu_e$

Searches for SL decay modes using 4.5/fb data

arXiv: 2302.07529

Decay mode	$N^{ m obs}$	$arepsilon^{\mathrm{sig}}$ (%)	$N_{ m bkg1}^{ m SB}$	$N_{ m bkg2}^{ m MC}\pm\sigma_{ m bkg2}^{ m MC}$	$N^{ m DT}$
$\Lambda_c^+ o \Lambda \pi^+ \pi^- e^+ \nu_e$	3	9.69 ± 0.03	9	4.8 ± 0.4	2.9
$\Lambda_c^+ o p K_{ m S}^0 \pi^- e^+ u_e$	2	13.58 ± 0.02	0	2.2 ± 0.3	3.8
					Upper lin

The BFs are set at 90% C.L. for the two decays.

Upper limits at 90% C.L.

Summary

■ Recent results on Λ_c^+ SL decays at BESIII are reported.

In addition to these published/submitted papers, some other works are also ongoing with good status. Such as:

$$\Lambda_{\rm c}^+ \rightarrow {\rm ne}^+ \nu_{\rm e}, \quad \Lambda_{\rm c}^+ \rightarrow \Sigma \pi {\rm e}^+ \nu_{\rm e}, \quad \Lambda_{\rm c}^+ \rightarrow \Lambda \mu^+ \nu_{\mu}$$

More works will be reported in the future.

THANKS!

Thanks!

Unfolding method to obtain true signal yields:

$$\begin{bmatrix} N_e^{\text{obs}} \\ N_\pi^{\text{obs}} \\ N_K^{\text{obs}} \\ N_p^{\text{obs}} \end{bmatrix} = \begin{bmatrix} P_{e \to e} & P_{\pi \to e} & P_{K \to e} & P_{p \to e} \\ P_{e \to \pi} & P_{\pi \to \pi} & P_{K \to \pi} & P_{p \to \pi} \\ P_{e \to K} & P_{\pi \to K} & P_{K \to K} & P_{p \to K} \\ P_{e \to p} & P_{\pi \to p} & P_{K \to p} & P_{p \to p} \end{bmatrix} \begin{bmatrix} N_e^{\text{true}} \\ N_\pi^{\text{true}} \\ N_p^{\text{true}} \end{bmatrix}$$

Previous FF measurements in $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

