

Charmed Baryon Ξ_c Decays from Lattice QCD

Qi-An Zhang

Beihang University

9 April 2023 @ BESIII祭强子物理研讨会

OUTLOOK

Motivation

> Brief introduction of LQCD

> Semileptonic decays of Ξ_c

 $\geq \Xi_c - \Xi_c'$ mixing

Summary and outlook

Motivation: indirect test of SM

In the SM, The quark interaction strength is encoded in one unitary matrix (CKM):

0.0 *PDG2020* α -0.5 $V_{CKM} = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) = \left(egin{array}{ccc} 1 - rac{1}{2}\lambda^2 & \lambda & A\lambda^3(
ho - i\eta) \ -\lambda & 1 - rac{1}{2}\lambda^2 & A\lambda^2 \ A\lambda^3(1 -
ho - i\eta) & -A\lambda^2 & 1 \end{array}
ight) + \mathcal{O}(\lambda^4)$ -1.0 CKM fitter $\cos 2\beta < 0$ -1.5 -0.5 0.0 0.5 1.0 1.5 2.0 $0.00361\substack{+0.00011\\-0.00009}$ -1.0 (0.97401 ± 0.00011) 0.22650 ± 0.00048 $\overline{\rho}$ $\begin{array}{r} 0.04053\substack{+0.00083\\-0.00061}\\ 0.999172\substack{+0.000024\\-0.000035}\end{array}$ 0.22636 ± 0.00048 0.97320 ± 0.00011 0.9985 ± 0.0005 $0.00854^{+0.00023}_{-0.00016}$ $0.03978^{+0.00082}_{-0.00060}$ \Rightarrow 10⁻⁴ accuracy \mathbf{V} 1.025 ± 0.022 \Rightarrow 10⁻² accuracy $\mathbf{1.026} \pm \mathbf{0.022}$ 0.9970 ± 0.0018 \Rightarrow 10⁻³ accuracy \Rightarrow 10⁻² accuracy

1.5

1.0

0.5

excluded area has CL > 0.95

 $sin 2\beta$

 $\Delta m_{d} \& \Delta m_{s}$

∆m_d

Motivation: indirect test of SM

Combing experiments + LQCD calculations of <u>"Golden channels"</u> provide the testing of CKM unitary.

Single hadron in initial state and at most one hadron in final state, both hadrons are stable in QCD

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ \pi \to \ell \nu & K \to \ell \nu, \pi \ell \nu & B \to \ell \nu, \pi \ell \nu \\ & & & & & & & \\ V_{cd} & V_{cs} & V_{cb} \\ D \to \ell \nu, \pi \ell \nu & D_s \to \ell \nu, D \to K \ell \nu & B \to D \ell \nu, D^* \ell \nu \\ & & & & & & \\ \Lambda_c \to \Lambda \ell \nu, \Xi_c \to \Xi \ell \nu & \Lambda_b \to \Lambda_c \ell \nu \\ & & & & & & \\ V_{td} & V_{ts} & V_{tb} \\ & & & & & \\ \langle B_d | \bar{B}_d \rangle & \langle B_s | \bar{B}_s \rangle \\ & & & & & & \\ B \to \pi \ell \ell & B \to K \ell \ell \end{pmatrix}$$

Lattice QCD in a nutshell

Lattice	v.s. Contínuum
We símulate:	We want:
😄 Euclidean space	ジ Minkowski space
$\begin{array}{l} igoplus \\ igo$	$\bigcirc a \rightarrow 0$
\bigcirc Finite volume L^3	$\bigcirc L \to \infty$
😄 Lattice regularization	🤥 Some continuum scheme
😄 Some bare input quark masses:	$\stackrel{\textcircled{\tiny{\bullet}}}{=} m_q^{\mathrm{phy}}$
am_l , am_s , am_c , am_b	
In general, $m_\pi^{ ext{lat}} eq m_\pi^{ ext{phy}}$	

Seed to <u>control all limits</u>: particularly simultaneously control FV and discretization

⇒ <u>Universality</u>: different input parameters **must** give converge results.

 $a \ll 1 \, {\rm fm}$

Challenges in heavy flavors from LQCD

Problems of heavy quarks on discrete lattice:

Care about both IR (finite volume) and UV (discretization) regulators:

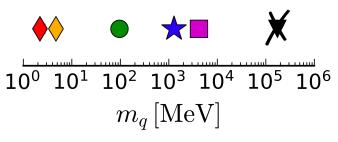
 $m_{\pi}L \gtrsim 4$, and $a^{-1} \gg$ mass scale of interest

 \Rightarrow For $m_{\pi} = m_{\pi}^{\text{phy}} \sim 140 \text{MeV}$, and $m_c \simeq 1.3 \text{GeV}$, $m_b \simeq 4.2 \text{GeV}$, that needs:

11

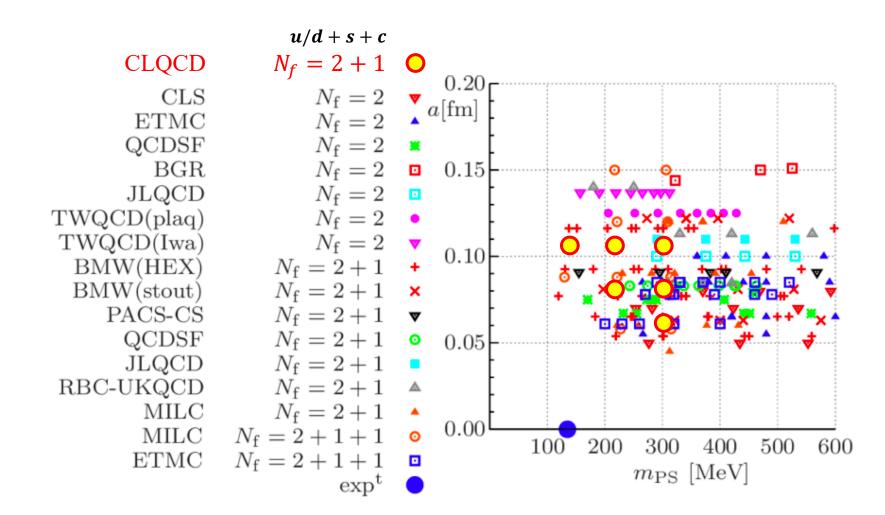
···

- $L \gtrsim 5.6 \text{fm}$,
- $a^{-1} \gg 1.3 \text{GeV} \simeq (0.15 \text{fm})^{-1}$ for charm
- $a^{-1} \gg 4.2 GeV \simeq (0.05 fm)^{-1}$ for bottom



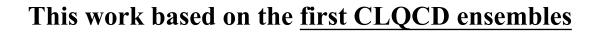
More flavors, need finer lattice

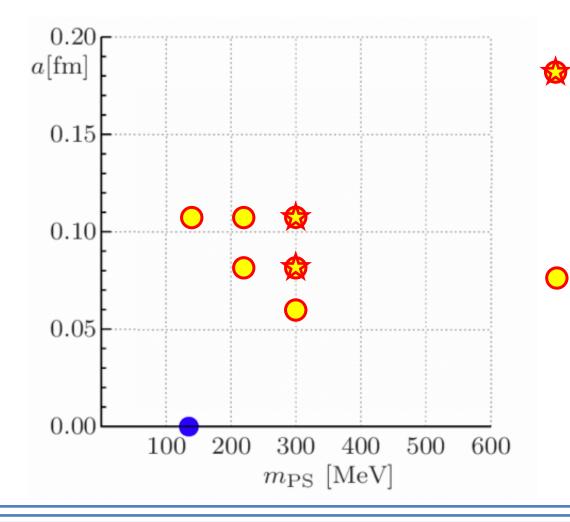
Recover to continuum physics



Source image from K. Jansen et al, added CLQCD (in preparation) in extras.

Recover to continuum physics





Ensembles completed before 2022:

- ✓ Semi-leptonic decays of Ξ_c
 Q-A. Zhang *et al.*, CPC46, 011002 (2022)
- Ensembles completed after 2022:

 $\checkmark \Xi_c - \Xi_c'$ mixing

H. Liu et al., arXiv: hep-lat/2303.17865

Semi-leptonic decays of Ξ_c

- **Determine the CKM matrix element** $|V_{cs}|$;
- $rac{} = \Xi_c$ contains more versatile decay modes, will reveal more QCD dynamics:

A different pattern between inclusive and exclusive decays of Λ_c and D:

 $E_{c} = E_{c}$

- **Experimental researches of heavy baryons:**
 - ✓ Studies of doubly-charmed baryon Ξ_{cc}^{++} decay

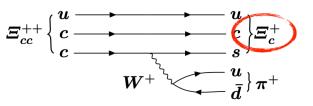
R. Aaij et al. [LHCb], PRL121, 162002 (2018)

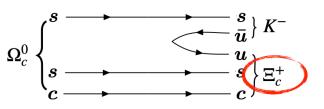
✓ Precision measurement of the lifetime of Ξ_b^0

R. Aaij et al. [LHCb], PRL113, 032001 (2014)

✓ Discovery of new exotic hadron candidates Ω_c

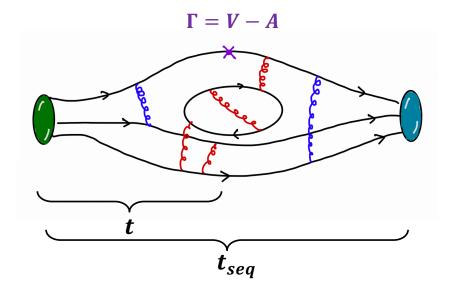
R. Aaij et al. [LHCb], PRL118, 182001(2017)





Semi-leptonic form factors from lattice

✓ LQCD calculations of 2-point & 3-point function



- $t, t_{seq} \rightarrow \infty$ to isolate the ground state;
- $t_{seq} \gg t$, $(t_{seq} t)$

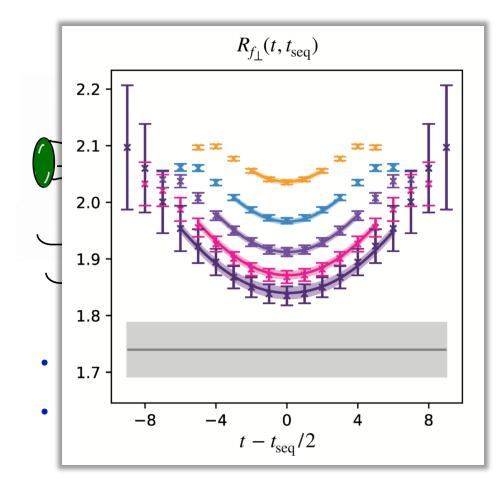
• Ratio between 3pt and 2pt related to the form factors:

$$\begin{split} R(q^2, t, t_{\text{seq}}; T, \Gamma) &= \sqrt{\frac{C_3(q^2, t, t_{\text{seq}}; T, \Gamma)C_3(q^2, t, t_{\text{seq}} - t; T, \Gamma)}{C_2^{\Xi_c}(t_{\text{seq}}; T)C_2^{\Xi}(t_{\text{seq}}; T)}} \\ &\approx F\left[1 + c_1\left(e^{-\Delta Et/2} + e^{-\Delta E(t_{\text{seq}} - t)/2}\right)\right] \end{split}$$

- > F: ground state matrix element with specific Γ and projection T;
- \succ Linear combinations of F give the form factors;

Semi-leptonic form factors from lattice

✓ LQCD calculations of 2-point & 3-point function => Form factors



• Ratio between 3pt and 2pt related to the form factors:

$$\begin{aligned} R(q^{2}, t, t_{\text{seq}}; T, \Gamma) &= \sqrt{\frac{C_{3}(q^{2}, t, t_{\text{seq}}; T, \Gamma)C_{3}(q^{2}, t, t_{\text{seq}} - t; T, \Gamma)}{C_{2}^{\Xi_{c}}(t_{\text{seq}}; T)C_{2}^{\Xi}(t_{\text{seq}}; T)}} \\ &\approx F\left[1 + c_{1}\left(e^{-\Delta Et/2} + e^{-\Delta E(t_{\text{seq}} - t)/2}\right)\right] \end{aligned}$$

- > F: ground state matrix element with specific Γ and projection T;
- \succ Linear combinations of F give the form factors;
- ➤ "Just" do the fit.

Parameterizing q^2 dependence: *z*-expansion

 \bigcirc Discrete datapoints \rightarrow Continuous distribution

Conformal mapping: z-expansion \rightarrow **wider kinematic range**

$$z(q^2) \;=\; rac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

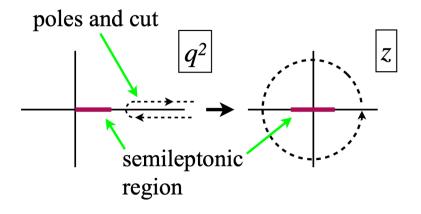
$$t_0 = q_{\max}^2 = (m_{\Xi_c} - m_{\Xi})^2, \quad t_+ = (m_D + m_K)^2$$

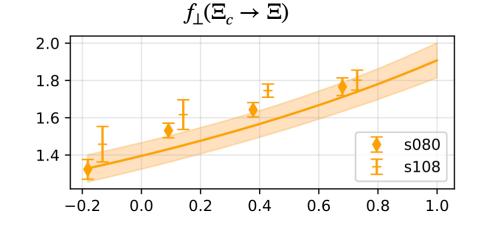
Parametrization of form factors:

PRD79,013008(2009)

$$f(q^2) \;=\; rac{1}{1-q^2/(m_{
m pole}^f)^2} {\displaystyle\sum_{n=0}^{n_{
m max}}}\; (c_n^f + d_n^f a^2) [z(q^2)]^n$$

- > Use D_s pole mass in the form factors;
- > Consider the discretization effects by estimating the $d_n^{\rm f}$ terms.



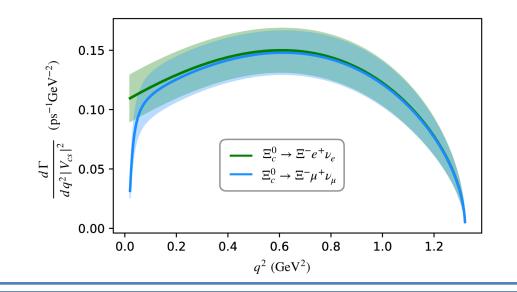


$\Xi_c \rightarrow \Xi$ form factors from LQCD

✓ Branching fractions:

- ✓ Determination of $|V_{cs}|$:
 - \Rightarrow from ALICE results:
 - $|V_{cs}| = 0.983(0.060)_{\text{stat.}}(0.065)_{\text{syst.}}(0.167)_{\text{exp.}}$
 - \Rightarrow from Belle results:
 - $|V_{cs}| = 0.834(0.051)_{\text{stat.}}(0.056)_{\text{syst.}}(0.127)_{\text{exp.}}$
 - \Rightarrow PDG average:
 - $|V_{cs}| = 0.97320 \pm 0.00011$

 $\begin{array}{lll} \label{eq:pdg} \mbox{PDG} & \mathscr{B} \left(\Xi_c^0 \to \Xi^- e^+ \nu_e \right) = (1.8 \pm 1.2) \, \% \\ \mbox{Belle} & \mathscr{B} \left(\Xi_c^0 \to \Xi^- e^+ \nu_e \right) = (1.72 \pm 0.10 \pm 0.12 \pm 0.50) \, \% \\ \mbox{ALICE} & \mathscr{B} \left(\Xi_c^0 \to \Xi^- e^+ \nu_e \right) = (2.43 \pm 0.25 \pm 0.35 \pm 0.72) \, \% \\ \mbox{QCD SR} & \mathscr{B} \left(\Xi_c^0 \to \Xi^- e^+ \nu_e \right) = (3.4 \pm 1.7) \, \% \\ \mbox{LF QM} & \mathscr{B} \left(\Xi_c^0 \to \Xi^- e^+ \nu_e \right) = (3.49 \pm 0.95) \, \% \\ \mbox{LCSR} & \mathscr{B} \left(\Xi_c^0 \to \Xi^- e^+ \nu_e \right) = (2.4^{+0.9}_{-1.0}) \, \% \end{array}$



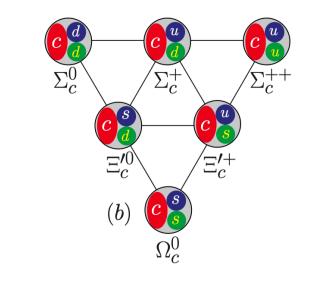
$$\Xi_{\rm c} - \Xi_{c}'$$
 mixing

Mixing between mass eigenstates and flavor eigenstates:

$$\begin{pmatrix} \Xi_c \\ \Xi'_c \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \Xi_c^{\overline{\mathbf{3}}} \\ \Xi_c^{\mathbf{6}} \end{pmatrix}$$

PLB823,136765(2021)

channel	branching ratio(%)			
experimental		fit data(pole model)	fit data(constant).	
$\Lambda_c^+ \to \Lambda^0 e^+ \nu_e$	3.6 ± 0.4	3.61 ± 0.32	3.62 ± 0.32	
$\Lambda_c^+ \to \Lambda^0 \mu^+ \nu_\mu$	3.5 ± 0.5	3.48 ± 0.30	3.45 ± 0.30	
$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	2.3 ± 1.5	3.89 ± 0.73	3.92 ± 0.73	
$\Xi_c^0 \to \Xi^- e^+ \nu_e$	1.54 ± 0.35	1.29 ± 0.24	1.31 ± 0.24	
$\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu$	1.27 ± 0.44	1.24 ± 0.23	1.24 ± 0.23	
fit parameter	$f_1 = 1.01 \pm 0.87, \ \delta f_1 = -0.51 \pm 0.92$		$x^2/d \circ f = 1.6$	
(pole model)	$f_1' = 0.60 \pm 0.49, \ \delta f_1' = -0.23 \pm 0.41 \qquad \chi^2/d.o.f = 1.6$			
fit parameter	$f_1 = 0.86 \pm 0.92, \ \delta f_1 = -0.25 \pm 0.88$		$\chi^2/d.o.f = 1.9$	
(constant)	$f_1' = 0.85 \pm 0.36,$	$\delta f_1' = -0.43 \pm 0.50$	$\chi / u.0.j = 1.9$	



Triplet

 Ξ_c^0

 Λ_c^+

 Ξ_c^+

Sextet

$$T_{c\bar{3}} = \begin{pmatrix} 0 & \Lambda_c^+ & \Xi_c^+ \\ -\Lambda_c^+ & 0 & \Xi_c^0 \\ -\Xi_c^+ & -\Xi_c^0 & 0 \end{pmatrix} \quad T_{c6} = \begin{pmatrix} \Sigma_c^{++} & \frac{\Sigma_c^+}{\sqrt{2}} & \frac{\Xi_c^{+\prime}}{\sqrt{2}} \\ \frac{\Sigma_c^+}{\sqrt{2}} & \Sigma_c^0 & \frac{\Xi_c^{0\prime}}{\sqrt{2}} \\ \frac{\Xi_c^{+\prime}}{\sqrt{2}} & \frac{\Xi_c^{0\prime}}{\sqrt{2}} & \frac{\Xi_c^{0\prime}}{\sqrt{2}} \end{pmatrix}$$

14

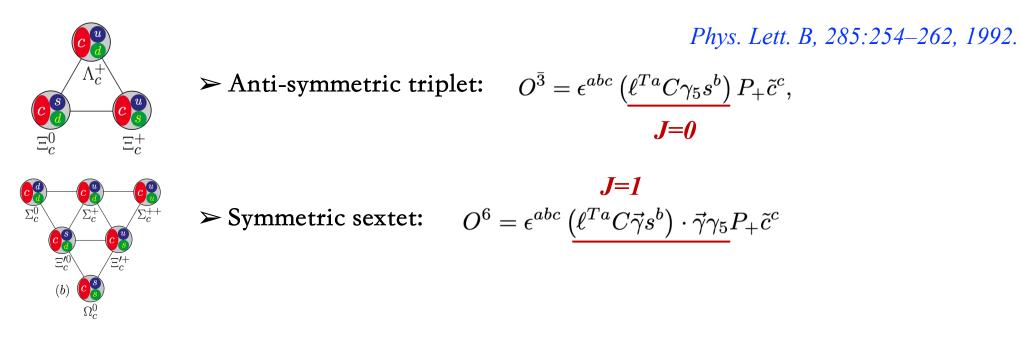
$$\Xi_{\rm c} - \Xi_{c}'$$
 mixing

Several works from various methods are controversial.....

Sum rule	5.5°±1.8°	Phys. Rev. D 83, 016008 (2011);
HQET	$8.12^\circ \pm 0.80^\circ$	Nucl. Phys. A 1008, 122139, (2021);
Quark model	16.27°±2.30°	Phys. Rev. D 105, 096011 (2022);
	24.66°±0.90°	Phys. Lett. B 838, 137736, (2023); Phys. Lett. B 839, 137831, (2023);
Lattice QCD	Negligibly small	Phys. Rev. D 90, 094507, (2014).

$\Xi_{c} - \Xi_{c}'$ mixing from LQCD

Baryonic currents of $SU(3)_F$ eigenstates: $3 \otimes 3 = \overline{3} \oplus 6$



⇒ Build the 2×2 correlation function matrix for lattice calculation:

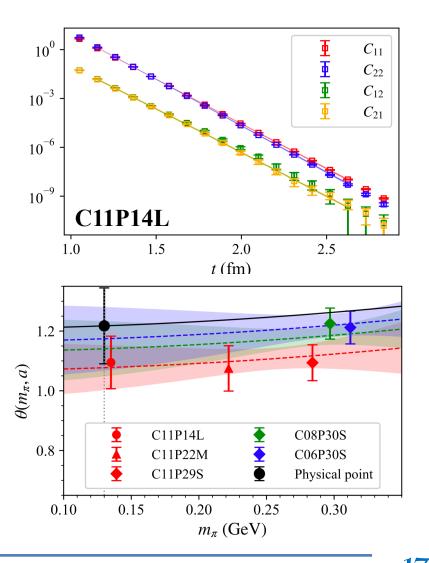
$$\mathcal{C}(t,t_0) = \sum_{\vec{x}} \left(\begin{array}{c} \left\langle O_p^{\bar{3}}(\vec{x},t)\bar{O}_w^{\bar{3}}(\vec{0},t_0) \right\rangle \\ \left\langle O_p^6(\vec{x},t)\bar{O}_w^{\bar{3}}(\vec{0},t_0) \right\rangle \end{array} \begin{array}{c} \left\langle O_p^{\bar{3}}(\vec{x},t)\bar{O}_w^6(\vec{0},t_0) \right\rangle \\ \left\langle O_p^6(\vec{x},t)\bar{O}_w^6(\vec{0},t_0) \right\rangle \end{array} \right)$$

Mixing angle from correlated joint fit

• Parametrization form of correlation function matrix elements:

$$\begin{split} C_{11}(t,t_{0}) =& A_{p}A_{w}^{\dagger} \left[\frac{\cos^{2}\theta}{2m_{\Xi_{c}}} e^{-m_{\Xi_{c}}(t-t_{0})} + \frac{\sin^{2}\theta}{2m_{\Xi_{c}'}} e^{-m_{\Xi_{c}'}(t-t_{0})} \right], \\ C_{12}(t,t_{0}) =& A_{p}B_{w}^{\dagger} \left[\frac{\cos\theta\sin\theta}{2m_{\Xi_{c}}} e^{-m_{\Xi_{c}}(t-t_{0})} - \frac{\cos\theta\sin\theta}{2m_{\Xi_{c}'}} e^{-m_{\Xi_{c}'}(t-t_{0})} \right] \\ C_{21}(t,t_{0}) =& B_{p}A_{w}^{\dagger} \left[\frac{\cos\theta\sin\theta}{2m_{\Xi_{c}}} e^{-m_{\Xi_{c}}(t-t_{0})} - \frac{\cos\theta\sin\theta}{2m_{\Xi_{c}'}} e^{-m_{\Xi_{c}'}(t-t_{0})} \right] \\ C_{22}(t,t_{0}) =& B_{p}B_{w}^{\dagger} \left[\frac{\sin^{2}\theta}{2m_{\Xi_{c}}} e^{-m_{\Xi_{c}}(t-t_{0})} + \frac{\cos^{2}\theta}{2m_{\Xi_{c}'}} e^{-m_{\Xi_{c}'}(t-t_{0})} \right], \end{split}$$

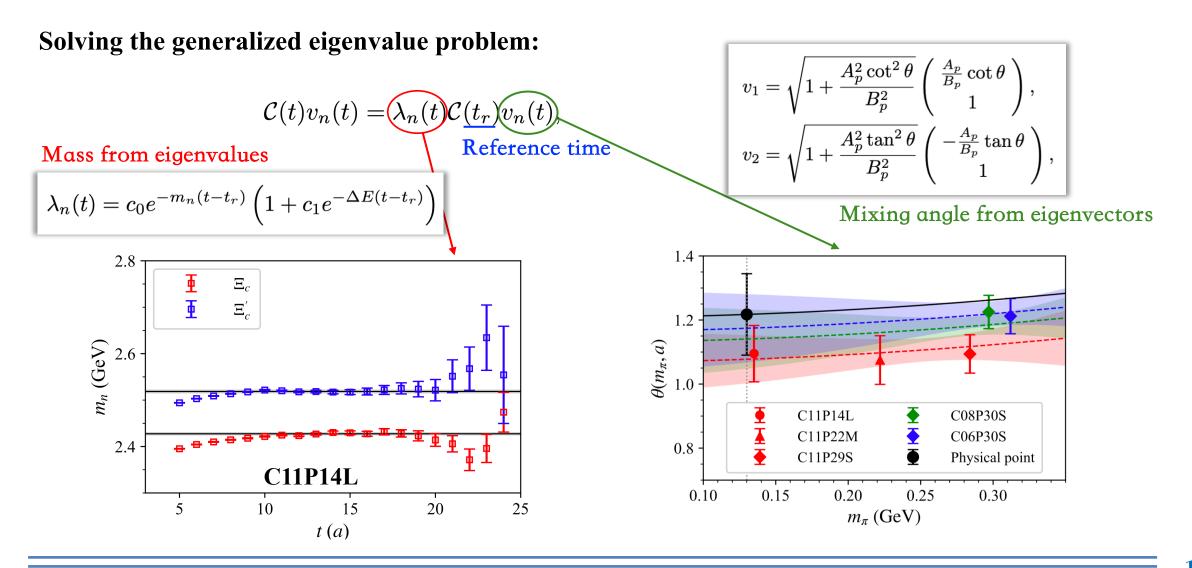
> Parameters: $A_w, A_p, B_w, B_p, m_{\Xi_c}, m_{\Xi'_c}, \theta$



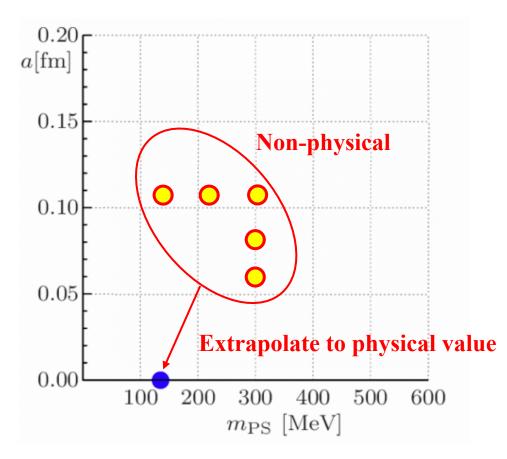
,

,

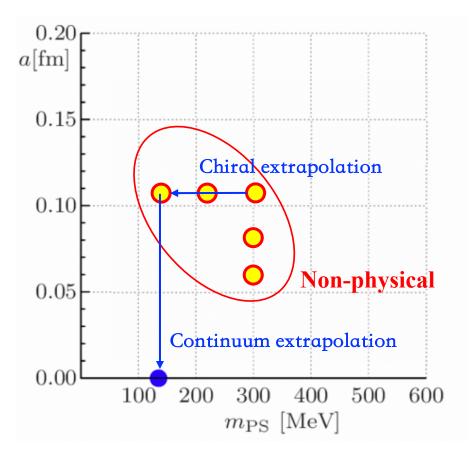
Mixing angle from generalized eigenvalue problem (GEVP)



Chiral and continuum extrapolation



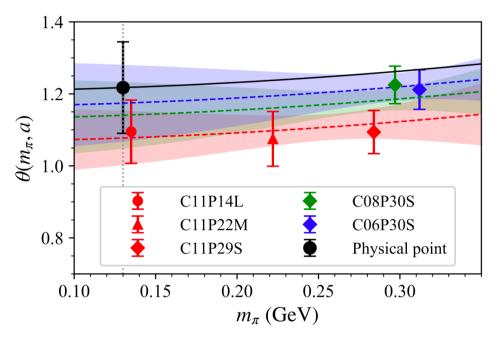
Chiral and continuum extrapolation



Extrapolation formula:

$$egin{aligned} & heta(m_{\pi},a) = heta_{
m phy} + c_1 \left(m_{\pi}^2 - m_{\pi,{
m phy}}^2
ight) + c_2 a^2, \ &m_n(m_{\pi},a) = m_{n,{
m phy}} + c_1 \left(m_{\pi}^2 - m_{\pi,{
m phy}}^2
ight) + c_2 a^2. \end{aligned}$$

⇒ Extrapolated results:



m_c dependence

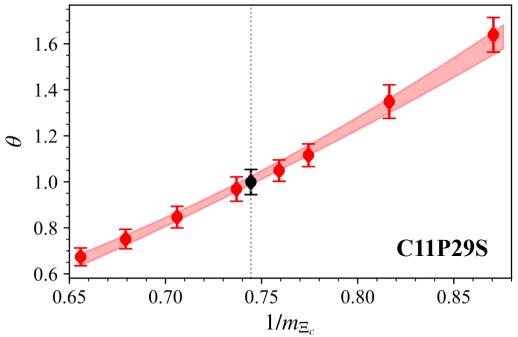
In HQET, the mixing would vanish in the heavy-quark limit.

🤪 Valence quark mass is tunable in lattice QCD…

Solve the baryon masses and mixing angle from different charm quark masses;

 \Rightarrow Then fit the m_c dependence of θ :

$$\theta = \frac{B_1}{m_{\Xi_c}} + \frac{B_2}{m_{\Xi_c}^2}.$$



 $B_1 = -2.78(52)$ GeV and $B_2 = 12.9(1.3)$ GeV² with χ^2 /d.o.f = 0.11.

Summary and outlook

- > Lattice QCD calculations of Ξ_c semi-leptonic decays and $\Xi_c \Xi_c'$ mixing;
- ➤ The first practice of CLQCD ensembles;
- ≻ Charmed Hadrons: testing SM, probing NP, understanding QCD.....

Summary and outlook

- > Lattice QCD calculations of Ξ_c semi-leptonic decays and $\Xi_c \Xi_c'$ mixing;
- ➤ The first practice of CLQCD ensembles;
- ≻ Charmed Hadrons: testing SM, probing NP, understanding QCD.....

More challenges:

- More precise results of Λ_c and Ξ_c decays;
- Ω_c decay and form factors;

• Other matrix elements: lifetime (4-quark current), inclusive decays (4pt)

Summary and outlook

- > Lattice QCD calculations of Ξ_c semi-leptonic decays and $\Xi_c \Xi_c'$ mixing;
- ➤ The first practice of CLQCD ensembles;
- ≻ Charmed Hadrons: testing SM, probing NP, understanding QCD.....

More challenges:

- More precise results of Λ_c and Ξ_c decays;
- Ω_c decay and form factors;

• Other matrix elements: lifetime (4-quark current), inclusive decays (4pt)

Lattice calculations have achieved significant progress in the past years.

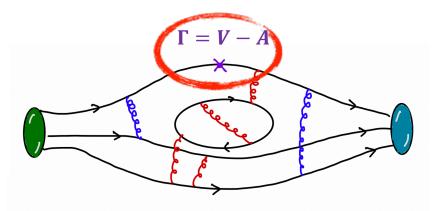
Extensive analyses already in light meson sector.

While heavy flavor physics on lattice is underway.....

Thank you for your attention!

Non-perturbative renormalization

Vector and axial-vector $\mathbf{c} \rightarrow \mathbf{s}$ current

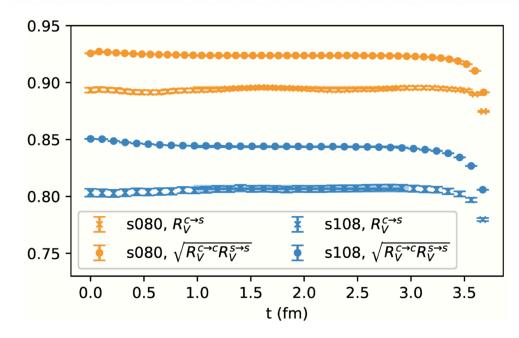


- Z_V from conserved and local vector currents;
- Z_A/Z_V from off-shell quark matrix elements.

 \square Like Z_V :

$$R_{V}^{q_{1} \to q_{2}}(t) = \frac{\left\langle M_{1}\left(\frac{T}{2}\right) \sum_{\vec{x}} V_{c}^{q_{1} \to q_{2}}(\vec{x}, t) M_{2}(0) \right\rangle}{\left\langle M_{1}\left(\frac{T}{2}\right) \sum_{\vec{x}} V^{q_{1} \to q_{2}}(\vec{x}, t) M_{2}(0) \right\rangle} = Z_{V}^{q_{1} \to q_{2}} + \mathcal{O}\left(e^{-\frac{T}{4\Delta E}}\right)$$

with $(M_1, M_2) = (\eta_s, D_s)$ v.s. $\sqrt{(\eta_s, \eta_s) * (\eta_c, \eta_c)}$



26