Overall Design Considerations for a Detector System at HIEPA

plus more specific considerations for tracking subdetectors

Jianbei Liu

For the USTC HIEPA detector team State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

> HIEPA Workshop-2018 UCAS Huairou Campus, Beijing March 21, 2018

High Intensity Electron Positron Accelerator

 HIEPA : a natural extension of BEPCII and a viable option for a post-BEPCII HEP project in China.

- $E_{cm} = 2.7 \text{ GeV}, L=1 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} @4 \text{ GeV}$
- Symmetrical collision
- double-ring, 600-1000m
- Crab waist scheme
- Single beam polarized

An super **τ-c** machine far beyond BEPCII

HIEPA in Perspective

A Glimpse of Final States at HIEPA

- Final-state particles are largely of low momentum /energy (< 1GeV/c)
- Designs of the HIEPA detector have to match this important feature of final states.

More Specific about Low Momentum

More Extreme Cases

Other Physics Requirements

- E_{cm} of up to 7 GeV demands PID in a large momentum range.
- D⁰D^{0bar} mixing studies requires superior PID (pi/K) capability.
- Measurement with semi-leptonic decays of D mesons and search for cLFV (tau->γμ) call for muon identification with low threshold, high efficiency and purity.

••••

Requirements from Accelerator

- High luminosity ~10³⁵ cm⁻²s⁻¹
 - High rate and high radiation level
- Constrains from IR design
- Detailed MDI studies are required

Detector Requirements for HIEPA

Overall requirements

- Efficient and fast triggering
- Efficient and precise reconstruction of exclusive final states
- High rate capability and radiation tolerance around IP and in forward regions
- Vertexing (or inner tracking)
 - Vertexing not very critical for HIEPA, more to combine with a central tracker for tracking, particularly low p tracking (down to ~50 MeV)
- Central tracking
 - large acceptance, low mass, high efficiency (p down to ~0.1 GeV) and high resolution (p <~ 1GeV)

Detector Requirements for HIEPA

- PID
 - $\, \pi/{\rm K}$ separation up to 2GeV, compact and low mass
- e/γ measurement
 - Good energy and position resolution in 0.02-3
 GeV
- μ detection
 - Low momentum threshold (p <~0.4GeV)</p>
 - high μ efficiency and $\,\pi\,$ suppression power
- Magnet
 - Desirable to be adjustable from 0.5- 1.0 T

Inner & Outer Trackers

- Dominant factors in low p tracking: multiple scattering and energy loss
- So driving force in design of tracking system: low mass.
- Special design is required for inner tracking to cope with the very high level of radiation close to IP
 - An inner-outer separate design is optimal.
- Detector technology options
 - Inner tracker
 - Low mass silicon detectors: DEPFET, MAPS ...
 - MPGD: cylindrical GEM/MicroMegas/uRWELL
 - Outer tracker: a low mass drift chamber

Inner Tracker Technologies

DEPFET

Two layers of PXD: 1.8 cm and 2.2 cm in radius, consisting of 8 and 12 modules for innermost layer and the second, respectively.

	Number of pixels per module 250 x 1536					
	Pixel size (r-phi, z)	50µm x (60-75) µ				
	Frame time	20 µs				
	Material budget per layer	0.15% X ₀				
	Resolution (r-phi, z)	<10µm, < 20µm				
	Occupancy at 1.8 cm radius	0.2 hits µm ⁻² s ⁻¹				
	Radiation environment	~1 Mrad/year				

Cylindrical GEM

MAPS (ALPIDE)

Pixel size: 29*27µm, high resistivity epitaxial, deep PWELL, reverse bias, global shutter (<10 μ s), triggered or continuous readout, resolution < 5um, material budget <0.3%X_o

Cylindrical MicroMegas

A new MPGD : uRWELL

 Very compact, spark protected, simple to assemble, flexible in shapes (rather easy to make a cylindrical detector)

 A possible solution to HIEPA inner tracking. R&D underway at USTC.

Outer Tracker: A Drift Chamber

- BESIII drift chamber can serve as a good starting point
 - R_{in} has to be enlarged to avoid the very high rate region at HIEPA
 - Smaller cell size for inner layers to accommodate a higher count rate
 - No Au coating on Al wires and thinner W wires to reduce material
 - A lighter working gas to reduce material
 - Sharing field wire layers at the axial-stereo boundaries to reduce material

$$\sigma_{x} \sim 130 \,\mu m$$

$$\frac{\sigma_{P}}{P} \sim 0.5\% @1 \text{GeV/C}$$

$$\frac{\sigma_{\frac{dE}{dx}}}{\frac{dE}{dx}} \sim 6\%$$

BESIII Drift Chamber

A Drift Chamber for HIEPA

- Rin = 15 cm, Rout = 85 cm, L = 2.4 m
- B = 1 T
- He/C₂H₆ (60/40)
- Cell size =1.0cm(inner), 1.6cm(outer)
- Sense wire: 20 um W
- Field wire: 110 um Al
- # of layers = 44
- Layer configuration: 8A-6U-6V-6A-6U-6V-6A
- Carbon fiber for both inner and outer walls
- Expected spatial resolution: <130μm
- Expected dE/dx resolution: <7%

Combination of inner and outer trackers

Detector	radius (cm)	material (%X ₀)	resolution (μm)
MDC Outer 9-48	23.5-82	0.0045 /layer	130
MDC Inner 1-8	15-22	0.0051 /layer	130
PXD 3 rd layer	10	0.15	50
PXD 2 layers	3/6	0.15 /layer	50
Beam pipe	2	0.15	-

PID Detector

- π/K separation up to 2GeV.
 - Cherenkov-based technology is favorable.
 - Very low p region (<~0.6GeV) covered by trackers through dE/dx
- Compact (<20cm) and low mass (<0.5X_∩)
- Detector options
 - RICH, DIRC-like, ...

€400mm

Κ

totons

L~2m

A RICH Design for HIEPA

- Proximity focusing RICH, similar to ALICE HMPID design, but with CsIcoated MPGD readout
 - avoid photon feedback
 - less ion backflow to Csl
 - Fast response, high rate capacity
 - Radiation hard
- Proximity gap ~10cm
- Radiator: liquid C₆F₁₄, n~1.3, UV detection

Performance Simulation

- C

MPGD Photon Detector R&D

- A double-mesh Mircromegas detector is being developed at USTC
 - High gain and very low ion backflow
 - Very suitable for single photon detection (with a proper photon-electron converter)
 - A promising photon detector option for RICH

IBF ~ 0.05%

Gain ~ 3×10⁶

DIRC-like TOF for Endcaps

- DIRC-like forward TOF detector (FTOF: quartz + MCP-PMT) was developed at LAL for the SuperB factory project.
- Also an endcap PID option for HIEPA.
 - Flight length ~ 1.4 m for endcaps. ~30ps time resolution is required for pi/K separation to reach 2GeV.

EMC

- Main performance requirements
 - High efficiency for low energy $\boldsymbol{\gamma}$
 - Good energy resolution in low energy region
 - Good position resolution (for γ)
 - Fast response
 - Radiation hardened
- Technology option
 - Crystal + novel photon detector (e.g. SiPM)

Crystal Options

Crystal	CsI(TI)	CsI	BSO	PbWO4	LYSO(Ce)
Density (g/cm³)	4.51	4.51	6.8	8.3	7.40
Melting Point (°C)	621	621	1030	1123	2050
Radiation Length (cm)	1.86	1.86	1.15	0.89	1.14
Molière Radius (cm)	3.57	3.57	2.2	2.0	2.07
Interaction Len. (cm)	39.3	39.3	23.1	20.7	20.9
Hygroscopicity	Slight	Slight	No	No	No
Peak Luminescence (nm)	550	310	480	425/420	420
Decay Time ^b (ns)	1220	30 6	100	30 10	40
Light Yield ^{b,c} (%)	165	3.6 1.1	3.4 0.5/0.25	0.30 0.077	85
LY in 100 ns	13	4.6	2.9	0.37 <i>(2-3x t)</i>	78
LY in 30 ns	4	3.3	1.5	0.26 (2-3׆)	45
d(LY)/dT ^b (%/ °C)	0.4	-1.4	-2.0	-2.5	-0.2
Radiation hardness (rad)	10 ³	104-5	106-7	106-7	108
Dose rate dependent	no	no	yes	yes	
Experiment	CLEO, BABAR, Belle, BES III	KTeV,E787 Belle2 1 st SuperB 2 nd	Belle2 3 rd	CMS, ALICE PANDA Belle2 2 nd	SuperB 1 st (Hybrid)

Different options for barrel and endcaps

R&D on BSO

SiPM Technology

- SiPM: a novel and rapidly-developing photosensor technology
 - High gain, low equivalent noise, B-field resistant, good time resolution
- R&D at USTC

Aspects Other Than Energy

The position resolution of ECAL has a significant impact on object/event reconstruction involving $\boldsymbol{\gamma}$.

→ Energy resolution is not everything, position resolution is also important.

Precise ECAL timing is very useful in suppressing γ background

Muon Detector

- Idea to lower muon detection threshold: measuring time of flight at entrance to iron yoke — a timing muon detector.
- Can be realized with MRPC technology
 - Rate capability a concern in certain detector regions

Long-Strip MRPC Module

- Active area: 87 x 52 cm²
- Read out strip: 87 cm x 3.8 cm
- Gas gaps: 0.25 mm x 5

Performance:

- Efficiency: > 98%
- Time resolution: < 80 ps
- Spatial resolution: 0.6 cm

Low Momentum μ/π Separation

- 3.5 Time of flight (ns) Layer0, intrinsic σ_{τ} = 50ps • A few MRPC layers pion muon for precise timing 2.5 1.5^L $\leftarrow 20 \rightarrow \longleftarrow 50 \longrightarrow \leftarrow 25 \rightarrow \leftarrow 25 \rightarrow \longleftarrow$ cm 0.5 Momentum (GeV/c) Time of flight (ns) 4.5 1 <u>GeV</u> μ⁻ pion 3.5 muon Layer3, intrinsic σ_{τ} = 50ps
 - Below 400MeV, μ and π can be well separated

0.5

Momentum (GeV/c)

– Below 300MeV, μ can't reach iron yoke

1.5

1.5

Design Consideration

- 2-3 inner layers with MRPC for precise timing
- ~8 outer layers with RPC
- RPC operation modes
 - Barrel: streamer
 - Endcap: avalanche
- pi rejection power ~ 30

Conceptual Detector Layout

Summary

- Have presented preliminary considerations on the design of a detector system at HIEPA
 - Inner tracker: low mass silicon or MPGD
 - Outer tracker: small-cell drift chamber with helium gas
 - PID: RICH, or DIRC-like TOF for endcaps
 - EMC: fast crystal + SiPM (preferably with timing capability)
 - MUD: MRPC timing layers + RPC layers
- See previous slide for expected/required detector performance