Mixing effects of $E_c - E'_c$ in decays Resolving puzzle in $\Xi_c^0 \to \Xi^- e^+ \nu_e$ with $\Xi_c^- - \Xi_c^\prime$ mixing within the quark model Based on arXiv: 2210.07211, 2211.12960, 2212.02971

UCAS

April 9, 2023

Research Motivation - Nonleptonic decays

Asymmetries of anti-triplet charmed baryon decays

C.Q. Geng^{a,b,c,*}, Chia-Wei Liu^b, Tien-Hsueh Tsai^b

^a Chongqing University of Posts & Telecommunications, Chongqing 400065

^b Department of Physics, National Tsing Hua University, Hsinchu 300

^c Physics Division, National Center for Theoretical Sciences, Hsinchu 300

Color symmetry + SU(3) flavor symmetry

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

PLB 794, 19 (Feb 16, 2019)

	channel	data	$SU(3)_F$	Curren
	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)^a$	$4.7 \pm 0.9 \pm 0.1 \pm 0.3$	5.4 ± 0.7	
	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S^0)^a$	$4.8 \pm 1.4 \pm 0.2 \pm 0.3$	5.4 ± 0.7	
	$10^4 \mathcal{B}(\Lambda_c^+ \to n\pi^+)^b$	$6.6 \pm 1.2 \pm 0.4$	8.5 ± 2.0	
	$\alpha(\Lambda_c^+ \to p K_S^0)^c$	$0.18 \pm 0.43 \pm 0.14$	$-0.89\substack{+0.26\\-0.11}$	_
	$\alpha(\Lambda_c^+ \to \Lambda K^+)^d$	$-0.585 \pm 0.049 \pm 0.018$	0.32 ± 0.32	_
	$\alpha(\Lambda_c^+ \to \Sigma^0 K^+)^d$	$-0.55 \pm 0.18 \pm 0.09,$	~ -1	_
	$100\mathcal{B}(\Xi_c^0\to\Xi^-\pi^+)^e$	1.43 ± 0.32	2.21 ± 0.11	(
	$100\mathcal{R}(\Xi_c^0\to\Xi^-K^+)$	$2.75 \pm 0.51 \pm 0.25$	4.4	
	$100\mathcal{R}(\Xi_c^0\to\Sigma^0 K_s^0)^f$	$3.8\pm0.6\pm0.4$	2.3 ± 1.8	<
	$10\mathcal{R}(\Xi_c^0 \to \Sigma^+ K^-)^f$	$1.23 \pm 0.07 \pm 0.10$	2.7 ± 0.5	(
	$100\mathcal{B}(\Xi_c^+\to\Xi^0\pi^+)$	1.6 ± 0.8	0.38 ± 0.20	-
	$\mathcal{R}(\Xi_c^+ \to \Xi^0 \pi^+)$	1.1 ± 0.6	0.17 ± 0.09	(

^aPhys. Rev. D **106**, 052003 (2022). ^bPhys. Rev. Lett. **128**, 142001 (2022). ^cPhys. Rev. D **100**, 072004 (2019). d arXiv:2208.08695 [hep-ex]. ^ePhys. Rev. Lett. **122**, 082001 (2019). $\mathscr{R}(X)$ ^fPhys. Rev. D **105**, L011102 (2022).

$$:= \frac{\mathscr{B}(X)}{\mathscr{B}(\Xi_c^0 \to \Xi^- \pi^+)}$$

Input:

$$10^4 \mathscr{B}(\Lambda_c^+ \to \Sigma^0 K^+)$$

 $100 \mathscr{B}(\Xi_c^0 \to \Xi^- \pi^+)$

 $= 5.2 \pm 0.8$

 $= 1.80 \pm 0.52$

Asymmetries of anti-triplet charmed baryon decays

C.Q. Geng^{a,b,c,*}, Chia-Wei Liu^b, Tien-Hsueh Tsai^b

^a Chongging University of Posts & Telecommunications, Chongging 400065 ^b Department of Physics, National Tsing Hua University, Hsinchu 300 ^c Physics Division, National Center for Theoretical Sciences, Hsinchu 300

	channel	data	$SU(3)_F$	Currer
	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)^a$	$4.7 \pm 0.9 \pm 0.1 \pm 0.3$	5.4 ± 0.7	
	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S^0)^a$	$4.8 \pm 1.4 \pm 0.2 \pm 0.3$	5.4 ± 0.7	

 $A_{(\mathbf{B}_c \to \mathbf{B}_n M)} =$

 $a_0 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}_n)^j_k (M)^l_l + a_1 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}_n)^l_k (M)^j_l + a_2 H(6)_{ij} (\mathbf{B}'_c)^{ik} (M)^l_k (\mathbf{B}_n)^j_l + a_2 H(6)_{ij} (\mathbf{B}'_c)^{ik} (M)^l_k (\mathbf{B}_n)^j_l + a_3 H(6)_{ij} (\mathbf{B}'_c)^{ik} (M)^l_k (\mathbf{B}_n)^j_l + a_4 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}'_c)^{ik} (\mathbf{B}'_n)^j_l + a_4 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}'_n)^j_l + a_4 H(6)_{ij} (\mathbf{B}'_c)^{ik} (\mathbf{B}'_n)^j_l + a_4 H(6)_{ij} (\mathbf{B}'$ $a_{3}H(6)_{ij}(\mathbf{B}_{n})_{k}^{i}(M)_{l}^{j}(\mathbf{B}_{c}^{\prime})^{kl} + a_{0}^{\prime}(\mathbf{B}_{n})_{j}^{i}(M)_{l}^{l}H(\overline{15})_{i}^{jk}(\mathbf{B}_{c})_{k} + a_{4}H(\overline{15})_{k}^{li}(\mathbf{B}_{c})_{j}(M)_{i}^{j}(\mathbf{B}_{n})_{l}^{k} + a_{4}H(\overline{15})_{k}^{li}(\mathbf{B}_{n})_{i}^{k}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{k}^{li}(\mathbf{B}_{n})_{i}^{k}(\mathbf{B}_{n})_{i}^{k}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{i}^{li}(\mathbf{B}_{n})_{i}^{k}(\mathbf{B}_{n})_{i}^{k}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{i}^{li}(\mathbf{B}_{n})_{i}^{k}(\mathbf{B}_{n})_{i}^{k}(\mathbf{B}_{n})_{i}^{k}(\mathbf{B}_{n})_{i}^{k} + a_{4}H(\overline{15})_{i}^{li}(\mathbf{B}_{n})_{i}^{k}($ $a_{5}(\mathbf{B}_{n})_{j}^{i}(M)_{i}^{l}H(\overline{15})_{l}^{jk}(\mathbf{B}_{c})_{k} + a_{6}(\mathbf{B}_{n})_{i}^{j}(M)_{l}^{m}H(\overline{15})_{m}^{li}(\mathbf{B}_{c})_{j} + a_{7}(\mathbf{B}_{n})_{i}^{l}(M)_{j}^{i}H(\overline{15})_{l}^{jk}(\mathbf{B}_{c})_{k},$

- Test the KPW theorem directly
- Protected by the isospin symmetry
- The only two channels in $\mathscr{B}_{c} \to \mathscr{B}P$.

	channel	data	$SU(3)_F$	Curren
	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)^a$	$4.7 \pm 0.9 \pm 0.1 \pm 0.3$	5.4 ± 0.7	
	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S^0)^a$	$4.8 \pm 1.4 \pm 0.2 \pm 0.3$	5.4 ± 0.7	
	$10^4 \mathcal{B}(\Lambda_c^+ \to n\pi^+)^b$	$6.6 \pm 1.2 \pm 0.4$	8.5 ± 2.0	
	$\alpha(\Lambda_c^+ \to p K_S^0)^c$	$0.18 \pm 0.43 \pm 0.14$	$-0.89\substack{+0.26\\-0.11}$	_
	$\alpha(\Lambda_c^+ \to \Lambda K^+)^d$	$-0.585 \pm 0.049 \pm 0.018$	0.32 ± 0.32	_
	$\alpha(\Lambda_c^+ \to \Sigma^0 K^+)^d$	$-0.55 \pm 0.18 \pm 0.09,$	~ -1	_
	$100\mathcal{B}(\Xi_c^0\to\Xi^-\pi^+)^e$	1.43 ± 0.32	2.21 ± 0.11	(
	$100\mathcal{R}(\Xi_c^0\to\Xi^-K^+)$	$2.75 \pm 0.51 \pm 0.25$	4.4	
	$100\mathcal{R}(\Xi_c^0\to\Sigma^0 K_s^0)^f$	$3.8\pm0.6\pm0.4$	2.3 ± 1.8	<
	$10\mathcal{R}(\Xi_c^0 \to \Sigma^+ K^-)^f$	$1.23 \pm 0.07 \pm 0.10$	2.7 ± 0.5	(
	$100\mathcal{B}(\Xi_c^+\to\Xi^0\pi^+)$	1.6 ± 0.8	0.38 ± 0.20	-
	$\mathcal{R}(\Xi_c^+ \to \Xi^0 \pi^+)$	1.1 ± 0.6	0.17 ± 0.09	(

^aPhys. Rev. D **106**, 052003 (2022). ^bPhys. Rev. Lett. **128**, 142001 (2022). ^cPhys. Rev. D **100**, 072004 (2019). d arXiv:2208.08695 [hep-ex]. ^ePhys. Rev. Lett. **122**, 082001 (2019). $\mathscr{R}(X)$ ^fPhys. Rev. D **105**, L011102 (2022).

$$:= \frac{\mathscr{B}(X)}{\mathscr{B}(\Xi_c^0 \to \Xi^- \pi^+)}$$

Input:

$$10^4 \mathscr{B}(\Lambda_c^+ \to \Sigma^0 K^+)$$

 $100 \mathscr{B}(\Xi_c^0 \to \Xi^- \pi^+)$

Research Motivation - Semileptonic decays

$$\Xi_c^0 \to \Xi^- e^+ \nu_e$$

 $\mathscr{B}_{\text{Belle}} = (1.31 \pm 0.04 \pm 0.07 \pm 0.38)\%$ PRL 127 121803 (2021)

 $\mathscr{B}_{AI ICF} = (2.43 \pm 0.25 \pm 0.35 \pm 0.72)\%$ PRL 127 272001 (2021)

 $\mathscr{B}_{LQCD} = (2.38 \pm 0.30 \pm 0.32 \pm 0.07)\%$ CPC 46 011002 (2022)

 $\mathscr{B}_{SU(3)} = (4.05 \pm 0.15)\%$

From $\mathscr{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.56 \pm 0.11 \pm 0.07) \%$

PRL 129, 231803 (2022)

$$\frac{\Gamma(D_s^+ \to \phi e^+ \nu_e)}{\Gamma(D^+ \to \overline{K}^{*0} e^+ \nu_e)} = 0.91 \pm 0.06 \,, \quad \frac{1}{2} \frac{\Gamma(D_s^+ \to K^0 e^+ \nu_e)}{\Gamma(D^+ \to \pi^0 e^+ \nu_e)} = 0.94 \pm 0.16 \,,$$

X. G. He, Fei Huang, W. W., Zhi-Peng Xing PLB 823, 136765 (2021)

Research Motivation - S

$$\Xi_c^0 \to \Xi^- e^+ \nu_e$$

 \mathscr{B} Belle = $(1.31 \pm 0.04 \pm 0.07 \pm 0.38)\%$ PRL **127** 121803 (2021)

 $\mathscr{B}_{ALICE} = (2.43 \pm 0.25 \pm 0.35 \pm 0.72)\%$ PRL **127** 272001 (2021)

 $\mathscr{B}_{LQCD} = (2.38 \pm 0.30 \pm 0.32 \pm 0.07)\%$ CPC 46 011002 (2022)

 $\mathscr{B}_{SU(3)} = (4.05 \pm 0.15)\%$

From $\mathscr{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.56 \pm 0.11 \pm 0.07) \%$

PRL 129, 231803 (2022)

$$\frac{\Gamma(D_s^+ \to \phi e^+ \nu_e)}{\Gamma(D^+ \to \overline{K}^{*0} e^+ \nu_e)} = 0.91 \pm 0.06 \,, \quad \frac{1}{2} \frac{\Gamma(D_s^+ \to K^0 e^+ \nu_e)}{\Gamma(D^+ \to \pi^0 e^+ \nu_e)} = 0.94 \pm 0.16 \,,$$

X. G. He, Fei Huang, W. W., Zhi-Peng Xing PLB 823, 136765 (2021)

6: symmetric in u, d, s

Categorized according to the $SU(3)_F$ group

$\Xi_c' = \cos \theta_c \Xi_c^6 - \sin \theta_c \Xi_c^3.$

Model-Independent Bottom Baryon Mass Predictions in the $1/N_c$

Mass relations Breaking

Elizabeth E. Jenkins

operators

Improved equal spacing rule

$$\stackrel{\text{\tiny\&}}{=} \Xi_c^6 = \Xi_c^* - \frac{1}{2} \left(\Sigma_c^* - \Sigma_c + \Omega_c^* - \Omega_c \right)$$

Expansion

Phys. Rev. D 54, 4515 (1996), Phys. Rev. D 55, 10 (1997), Phys. Rev. D 77, 034012 (2008)

Orders of errors

				-
	Theory	Q = c	Q = b	$(\Lambda, \epsilon \Lambda_{\chi}) \approx (300, 225)$
	$m_Q + N_c \Lambda$	2380^{*}	5687	$c = \frac{1}{m_s} \frac{m_s}{m_s}$
$\left[2_Q + 2\Omega_Q^* \right] $	$2rac{1}{N_c}\Lambda$	207	207	$c = \frac{1}{4} - \frac{1}{\Lambda_{\chi}}$
	$3rac{1}{N_c}rac{\Lambda^2}{m_Q}$	66*	20	
	$rac{3}{2\sqrt{3}}(\epsilon\Lambda_\chi)$	-195^{*}	-195	$\Xi_c^6 = 2.5600(11)$
$_{Q}+2\Omega_{Q}^{*}\Big)\Big]\Big $	$rac{1}{2\sqrt{3}}rac{15}{8}rac{1}{N_c}(\epsilon\Lambda_\chi)$	40.6	40.6	$\Xi_c' = 2.5784(4)$ G
	$rac{3}{4}rac{1}{N_c}rac{\Lambda}{m_Q}(\epsilon\Lambda_\chi)$	11.8	3.5	$\Xi_b^6 = 5.9315(18)$
$\overline{3}\Xi_Q^{\overline{36}}$	$rac{1}{2\sqrt{3}}rac{15}{2}rac{1}{N_c^2}rac{\Lambda}{m_Q}(\epsilon\Lambda_\chi)$	11.3	3.4	$\Xi_b' = 5.93502(5)$
Independent of $m_{\rm O}$	$rac{3}{2}rac{1}{N_c}(\epsilon^2\Lambda_\chi)$	-4.4^{*}	-4.4	$\Xi^6 = \Xi'_{\alpha}$ if $\theta_{\alpha} =$
	$rac{9}{8}rac{1}{N_c^2}rac{\Lambda}{m_Q}(\epsilon^2\Lambda_\chi)$	0.23	0.07	-QQ = Q

 $\underset{b}{\circledast} \stackrel{\bullet}{\circledast} \Xi_{b}^{\mathbf{6}} = \frac{1}{2} \left(\Sigma_{b} + \Omega_{b} \right) - \frac{1}{2} \left(\Sigma_{c}^{*} - 2\Xi_{c}^{*} + \Omega_{c}^{*} \right)$

Model-Independent Bottom Baryon Mass Predictions in the $1/N_c$

Mass relations Breaking

Elizabeth E. Jenkins

operators

Improved equal spacing rule

$$\stackrel{\text{\tiny\&}}{=} \Xi_c^6 = \Xi_c^* - \frac{1}{2} \left(\Sigma_c^* - \Sigma_c + \Omega_c^* - \Omega_c \right)$$

Expansion

Phys. Rev. D 54, 4515 (1996), Phys. Rev. D 55, 10 (1997), Phys. Rev. D 77, 034012 (2008)

Orders of errors

				_
	Theory	Q = c	Q = b	$(\Lambda, \epsilon \Lambda_{\chi}) \approx (300, 225)$
	$m_Q + N_c \Lambda$	2380^{*}	5687	$c = \frac{1}{m_s}$
$\left[2_Q + 2\Omega_Q^* \right] $	$2rac{1}{N_c}\Lambda$	207	207	$e - \frac{1}{4} \sim \frac{1}{\Lambda_{\chi}}$
	$3rac{1}{N_c}rac{\Lambda^2}{m_Q}$	66*	20	
	$rac{3}{2\sqrt{3}}(\epsilon\Lambda_\chi)$	-195^{*}	-195	$\Xi_c^{6} = 2.5600(11)$
$_{Q}+2\Omega_{Q}^{*}\Big)\Big]$	$rac{1}{2\sqrt{3}}rac{15}{8}rac{1}{N_c}(\epsilon\Lambda_\chi)$	40.6	40.6	$ \theta_c = 0.137(5)\pi$
	$rac{3}{4}rac{1}{N_c}rac{\Lambda}{m_Q}(\epsilon\Lambda_\chi)$	11.8	3.5	$\Xi_b^6 = 5.9315(18)$
$\overline{\overline{3}}\Xi_Q^{\overline{36}}$	$rac{1}{2\sqrt{3}}rac{15}{2}rac{1}{N_c^2}rac{\Lambda}{m_Q}(\epsilon\Lambda_\chi)$	11.3	3.4	$ \theta_b = 0.049(13)\pi$
Independent of m_{Ω}	$rac{3}{2}rac{1}{N_c}(\epsilon^2\Lambda_\chi)$	-4.4^{*}	-4.4	$\theta_b/\theta_c = m_c/m_b \approx$
	$rac{9}{8}rac{1}{N_c^2}rac{\Lambda}{m_Q}(\epsilon^2\Lambda_\chi)$	0.23	0.07	$\Xi_c^{\overline{3}6} \approx 40 \text{ MeV}$
7				

 $\underset{b}{\circledast} \stackrel{\bullet}{\circledast} \Xi_{b}^{\mathbf{6}} = \frac{1}{2} \left(\Sigma_{b} + \Omega_{b} \right) - \frac{1}{2} \left(\Sigma_{c}^{*} - 2\Xi_{c}^{*} + \Omega_{c}^{*} \right)$

Mass relations

Mixing Angle of $\Xi_Q - \Xi'_Q$ in Heavy Quark Effective Therory

> Yoshimitsu Matsui * Faculty of Law, Aichi University, Nagoya, Aichi 453-8777, Japan

$$\begin{split} M\left(\Xi_{Q}\right) &= m_{Q} + \cos^{2}\theta_{Q} \,\bar{A}_{0^{+}}^{\prime} + \sin^{2}\theta_{Q} \,\bar{A}_{1^{+}}^{\prime} \\ &- \cos^{2}\theta_{Q} \,\frac{\lambda_{1}^{0^{+}}}{2m_{Q}} - \sin^{2}\theta_{Q} \left(\frac{\lambda_{1}^{1^{+}}}{2m_{Q}} \pm 4\frac{\lambda_{2}^{1^{+}}}{2m_{Q}}\right) \\ M\left(\Xi_{Q}^{\prime}\right) &= m_{Q} + \sin^{2}\theta_{Q} \,\bar{A}_{0^{+}}^{\prime} + \cos^{2}\theta_{Q} \,\bar{A}_{1^{+}}^{\prime} \\ &- \sin^{2}\theta_{Q} \,\frac{\lambda_{1}^{0^{+}}}{2m_{Q}} - \cos^{2}\theta_{Q} \left(\frac{\lambda_{1}^{1^{+}}}{2m_{Q}} \pm 4\frac{\lambda_{2}^{1^{+}}}{2m_{Q}}\right) \\ M\left(\Xi_{Q}^{*}\right) &= m_{Q} + \bar{A}_{1^{+}}^{\prime} - \frac{\lambda_{1}^{1^{+}}}{2m_{Q}} + 2\frac{\lambda_{2}^{1^{+}}}{2m_{Q}}. \end{split}$$

Assume $\lambda'_2 = \lambda_2$, where λ'_2 describes the chromointeraction among the heavy and light quarks. HQET: $|\theta_c| = 8.12^\circ \pm 0.80^\circ$

obtained from mass relations : $|\theta_c| \approx 25^\circ$

$$\begin{split} M\left(\Lambda_{Q}\right) &= m_{Q} + \bar{\Lambda}_{0} - \frac{\lambda_{1}}{2m_{Q}} \\ M\left(\Sigma_{Q}\right) &= m_{Q} + \bar{\Lambda}_{1} - \frac{\lambda_{1}}{2m_{Q}} - 4\frac{\lambda_{2}}{2m_{Q}} \\ M\left(\Sigma_{Q}^{*}\right) &= m_{Q} + \bar{\Lambda}_{1} - \frac{\lambda_{1}}{2m_{Q}} + 2\frac{\lambda_{2}}{2m_{Q}} \\ M\left(\Omega_{Q}\right) &= m_{Q} + \bar{\Lambda}_{1}^{\prime\prime} - \frac{\lambda_{1}}{2m_{Q}} - 4\frac{\lambda_{2}^{\prime}}{2m_{Q}} \\ M\left(\Omega_{Q}^{*}\right) &= m_{Q} + \bar{\Lambda}_{1}^{\prime\prime} - \frac{\lambda_{1}}{2m_{Q}} + 2\frac{\lambda_{2}^{\prime}}{2m_{Q}} \\ M\left(\Omega_{Q}^{*}\right) &= m_{Q} + cos^{2}\theta_{Q}\bar{\Lambda}_{0}^{\prime} + sin^{2}\theta_{Q}\bar{\Lambda}_{1}^{\prime} \\ &- cos^{2}\theta_{Q}\frac{\lambda_{1}}{2m_{Q}} - sin^{2}\theta_{Q}\left(\frac{\lambda_{1}}{2m_{Q}} + \frac{\lambda_{2}^{\prime} + \lambda_{2}}{m_{Q}}\right) \\ M\left(\Xi_{Q}^{\prime}\right) &= m_{Q} + sin^{2}\theta_{Q}\bar{\Lambda}_{0}^{\prime} + cos^{2}\theta_{Q}\bar{\Lambda}_{1}^{\prime} \\ &- sin^{2}\theta_{Q}\frac{\lambda_{1}}{2m_{Q}} - cos^{2}\theta_{Q}\left(\frac{\lambda_{1}}{2m_{Q}} + \frac{\lambda_{2}^{\prime} + \lambda_{2}}{m_{Q}}\right) \\ + sin(2\theta_{Q})\sqrt{3}\frac{(\lambda_{2}^{\prime} - \lambda_{1}}{4m_{Q}} \\ M\left(\Xi_{Q}^{*}\right) &= m_{Q} + \bar{\Lambda}_{1}^{\prime} - \frac{\lambda_{1}}{2m_{Q}} + \frac{\lambda_{2}^{\prime} + \lambda_{2}}{2m_{Q}} \end{split}$$

HQET after revised^{*} : $\theta_c \approx -24^\circ$

*The sign depends on the convention

The mixing effects in Ξ_c semileptonic decays

$$\mathscr{A}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = \cos \theta_c \mathscr{A}(\Xi_c^{0\overline{3}} \to \Xi^- e^+ \nu_e) \qquad ^1 + \sin \theta_c \mathscr{A}(\Xi_c^{0\overline{6}} \to \Xi^- e^+ \nu_e)$$

$$\mathscr{A}(\Xi_c^0 \to \Xi^- e^+ \nu_e) \approx \cos \theta_c \mathscr{A}(\Xi_c^{0\overline{3}} \to \Xi^- e^+ \nu_e)$$

- $\mathscr{A}(\Xi_c \to \Xi' e^+ \nu_e) = \cos \theta_c \mathscr{A}(\Xi_c^3 \to \Xi' e^+ \nu_e)$ $+\sin\theta_c \mathscr{A}(\Xi_c^6 \to \Xi' e^+ \nu_{\rho})$
 - $= \sin \theta_c \mathscr{A}(\Xi_c^6 \to \Xi' e^+ \nu_{\rho})$
- $\Gamma(\Xi_c \to \Xi e^+ \nu_{\rho}) = \sin^2 \theta_c \Gamma(\Xi_c^6 \to \Xi' e^+ \nu_{\rho})$ Forbidden for $\theta_c = 0$

Prediction $\rightarrow \Xi'^- e^+ \nu_e) = (4.4 \pm 0.5) \times 10^{-3}$ $\mathscr{B}(\Xi^0)$ $\mathscr{B}(\Xi_c^+ \to \Xi'^0 e^+ \nu_e) = (1.3 \pm 0.2)\%$

Can be recommended to lattice QCD.

The mixing effects in Ξ_c nonleptonic decays Might solve the discrepancy See $\widehat{\$}$ is slide $(6.88^{+16.62}_{-16.04})^{\circ}$

 $V_{cs}\mathscr{A}(\Xi_c^0\to\Xi^-\pi^+)\neq V_{cd}\mathscr{A}(\Xi_c^0\to\Xi^-K^-)$

	*	$100\mathcal{B}(\Xi_c^0\to\Xi^-\pi^+)^e$	1.43 ± 0.32	2.21 ± 0.11	6.47
+\	*	$100\mathcal{R}(\Xi_c^0\to\Xi^-K^+)$	$2.75 \pm 0.51 \pm 0.25$	4.4	6.0
		$100\mathcal{R}(\Xi_c^0 \to \Sigma^0 K_s^0)^f$	$3.8\pm0.6\pm0.4$	2.3 ± 1.8	< 0.4

$\mathscr{B}\left(\Xi_{c}^{+}\to\Xi^{0}\pi^{+}\right)=\sin^{2}\theta_{c}\mathscr{B}\left(\Xi_{c}^{6+}\to\Xi^{0}\pi^{+}\right)=(3.8\pm0.5)\times10^{-3}$

Forbidden by Körner-Pati-Woo theorem

Phys. Rev. D 46, 3836 (1992); Z. Phys. C 55, 659 (1992); Phys. Rev. D 55, 7067 (1997)

7)

The mixing effects in Ξ_{cc} nonleptonic decays

Current algebra (S wave) + Pole model (P wave)

Channel	A^{fac}	A^{com}	A^{tot}	B^{fac}	B^{ca}	B^{tot}	$\mathcal{B}_{ ext{theo}}$	$\mathcal{B}_{\mathrm{exp}}$ [7]	$lpha_{ m theo}$	$lpha_{ m exp}$
$\Lambda_c^+ \to p\overline{K}^0$	3.45	4.48	7.93	-6.98	-2.06	-9.04	$2.11 imes 10^{-2}$	$(3.18 \pm 0.16)10^{-2}$	2 -0.75	0.18 ± 0.45
$\Lambda_c^+ \to \Lambda \pi^+$	5.34	0	5.34	-14.11	3.60	-10.51	$1.30 imes 10^{-2}$	$(1.30 \pm 0.07) 10^{-2}$	-0.93	-0.84 ± 0.09
$\Lambda_c^+ \to \Sigma^0 \pi^+$	0	7.68	7.68	0	-11.38	-11.38	$2.24 imes 10^{-2}$	$(1.29 \pm 0.07) 10^{-2}$	-0.76	-0.73 ± 0.18
$\Lambda_c^+ \to \Sigma^+ \pi^0$	0	-7.68	-7.68	0	11.34	11.34	$2.24 imes 10^{-2}$	$(1.25 \pm 0.10) 10^{-2}$	-0.76	-0.55 ± 0.11
$\Lambda_c^+ \to \Xi^0 K^+$	0	-4.48	-4.48	0	-12.10	-12.10	$0.73 imes 10^{-2}$	$(0.55 \pm 0.07) 10^{-2}$	2 0.90	
$\Lambda_c^+ \to \Sigma^+ \eta$	0	3.10	3.10	0	-15.54	-15.54	0.74×10^{-2}	$(0.53 \pm 0.15)10^{-2}$	2 -0.95	
$\Lambda_c^+ \to p \pi^0$	0.41	-0.81	-0.40	-0.87	2.07	1.21	1.26×10^{-4}	$< 2.7 \times 10^{-4}$	-0.97	
$\Lambda_c^+ \to p\eta$	-0.96	-1.11	-2.08	1.93	-0.34	1.59	$1.28 imes 10^{-3}$	$(1.24 \pm 0.29)10^{-3}$	-0.55	
$\Lambda_c^+ \to n\pi^+$	1.64	-1.15	0.50	-3.45	2.93	-0.52		_		
$\Lambda_c^+ \to \Lambda K^+$	1.66	-0.08	1.58	-4.43	0.55	-3.70	$1.07 imes 10^{-3}$	$(6.1 \pm 1.2) 10^{-4}$	-0.96	
$\Lambda_c^+ \to \Sigma^0 K^+$	0	1.49	1.49	0	-2.29	-2.29	$7.23 imes 10^{-4}$	$(5.2\pm0.8)10^{-4}$	-0.73	
$\Lambda_c^+ \to \Sigma^+ K^0$	0	2.10	2.10	0	-3.24	-3.24	1.44×10^{-3}	_	-0.73	

Table from PRD **101** 014011 (2020)

 $\mathscr{R}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+}) = 1.41 \pm 0.17 \pm 0.10$ LHCb, JHEP 46 011002 (2022)

 $\mathscr{R}(\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}) = 6.74$

Current algebra, PRD 01 034034 (2022)

The mixing effects in Ξ_{cc} nonleptonic decays

0 - 0.127	\mathbf{SB}	$\theta_c = -$	θ_0	Cheng et	Gut	
$\theta_c = -0.1372$	B	lpha	\mathcal{R}	\mathcal{B} α	\mathcal{R}	${\cal B}$
$\Xi_{cc}^{++}\to \Xi_c^+\pi^+$	2.24	-93	1 4 1	0.69 - 41	0.74	0.71
$\Xi_{cc}^{++}\to\Xi_c^{\prime+}\pi^+$	3.25	-63	1.45	4.65 - 84	0.74	3.39
$\Xi_{cc}^+\to \Xi_c^0\pi^+$	2.26	31	1 1 1 17	3.84 - 31	0.40	Cova
$\Xi_{cc}^+ o \Xi_c^{\prime 0} \pi +$	2.64	-99	1.17	1.55 - 73	0.40	to t
$\Xi_{cc}^+\to \Xi_c^+\pi^0$	2.01	-5	0.05	$2.38\ -25$	0.07	$\theta_c =$
$\Xi_{cc}^+\to \Xi_c^{\prime+}\pi^0$	0.51	-65	0.25	0.17 - 3	0.07	

For comparison with the others and references, please consult arXiv: 2211.12960

 $\theta_c = -0.090(12)\pi, -0.48(1)\pi$

 $(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) = 1.41 \pm 0.17 \pm 0.10$ LHCb, JHEP 46 011002 (2022) $\mathscr{R}(\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+) = 6.74$

Current algebra, PRD **01** 034034 (2022)

Back-up slide: Validity of Körner-Pati-Woo theorem

Eur. Phys. J. C (2022) 82:297 https://doi.org/10.1140/epjc/s10052-022-10224-0

Review

Topological tensor invariants and the current algebra approach: analysis of 196 nonleptonic two-body decays of single and double charm baryons – a review

Stefan Groote^{1,a}, Jürgen G. Körner²

¹ Füüsika Instituut, Tartu Ülikool, W. Ostwaldi 1, 50411 Tartu, Estonia

² PRISMA Cluster of Excellence, Institut für Physik, Johannes-Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany

Back-up slide: Validity of Körner-Pati-Woo theorem

	channel	data	$SU(3)_F$	Curren
	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^0 K^+)^a$	$4.7 \pm 0.9 \pm 0.1 \pm 0.3$	5.4 ± 0.7	
	$10^4 \mathcal{B}(\Lambda_c^+ \to \Sigma^+ K_S^0)^a$	$4.8 \pm 1.4 \pm 0.2 \pm 0.3$	5.4 ± 0.7	
	$10^4 \mathcal{B}(\Lambda_c^+ \to n\pi^+)^b$	$6.6\pm1.2\pm0.4$	8.5 ± 2.0	
	$\alpha(\Lambda_c^+ \to p K_S^0)^c$	$0.18 \pm 0.43 \pm 0.14$	$-0.89^{+0.26}_{-0.11}$	_
	$\alpha(\Lambda_c^+ \to \Lambda K^+)^d$	$-0.585 \pm 0.049 \pm 0.018$	0.32 ± 0.32	_
	$\alpha(\Lambda_c^+ \to \Sigma^0 K^+)^d$	$-0.55 \pm 0.18 \pm 0.09,$	~ -1	_
	$100\mathcal{B}(\Xi_c^0\to\Xi^-\pi^+)^e$	1.43 ± 0.32	2.21 ± 0.11	(
	$100\mathcal{R}(\Xi_c^0\to\Xi^-K^+)$	$2.75 \pm 0.51 \pm 0.25$	4.4	
	$100\mathcal{R}(\Xi_c^0\to\Sigma^0 K_s^0)^f$	$3.8\pm0.6\pm0.4$	2.3 ± 1.8	<
	$10\mathcal{R}(\Xi_c^0 \to \Sigma^+ K^-)^f$	$1.23 \pm 0.07 \pm 0.10$	2.7 ± 0.5	(
	$100\mathcal{B}(\Xi_c^+\to\Xi^0\pi^+)$	1.6 ± 0.8	0.38 ± 0.20	-
	$\mathcal{R}(\Xi_c^+ \to \Xi^0 \pi^+)$	1.1 ± 0.6	0.17 ± 0.09	(
		•		

^aPhys. Rev. D **106**, 052003 (2022). ^bPhys. Rev. Lett. **128**, 142001 (2022). ^cPhys. Rev. D **100**, 072004 (2019). d arXiv:2208.08695 [hep-ex]. ^ePhys. Rev. Lett. **122**, 082001 (2019). $\mathscr{R}(X)$ ^fPhys. Rev. D **105**, L011102 (2022).

$$:= \frac{\mathscr{B}(X)}{\mathscr{B}(\Xi_c^0 \to \Xi^- \pi^+)}$$

Input:

$$10^4 \mathscr{B}(\Lambda_c^+ \to \Sigma^0 K^+)$$

 $100 \mathscr{B}(\Xi_c^0 \to \Xi^- \pi^+)$

Model-Independent Bottom Baryon Mass Predictions in the $1/N_c$

Mass relations

Breaking operators Elizabeth E. Jenkins

$$\begin{aligned} & \textcircled{P}_{c}^{6} = \Xi_{c}^{*} - \frac{1}{2} \left(\Sigma_{c}^{*} - \Sigma_{c} + \Omega_{c}^{*} - \Omega_{c} \right) \\ & \left(\Sigma_{b} + 2\Sigma_{b}^{*} \right) - 2 \left(\Xi_{b}^{\prime} + 2\Xi_{b}^{*} \right) + \left(\Omega_{b} + 2\Omega_{b}^{*} \right) \\ & \swarrow \end{aligned}$$
$$= \left(\Sigma_{c} + 2\Sigma_{c}^{*} \right) - 2 \left(\Xi_{c}^{\prime} + 2\Xi_{c}^{*} \right) + \left(\Omega_{c} + 2\Omega_{c}^{*} \right) \pm 0.3 \text{MeV} \\ & \text{Improved equal spacing rule} \end{aligned}$$

Expansion

Phys. Rev. D 54, 4515 (1996), Phys. Rev. D 55, 10 (1997), Phys. Rev. D 77, 034012 (2008)

Orders of errors

	Theory	Q = c	Q = b	$(\Lambda, \epsilon \Lambda_{\chi}) \approx (300, 225)$
	$m_Q + N_c \Lambda$	2380^{*}	5687	$c = \frac{1}{m_s} m_s$
$\Omega_Q + 2\Omega_Q^* \Big) \Big]$	$2rac{1}{N_c}\Lambda$	207	207	$\epsilon - \frac{1}{4} \sim \frac{1}{\Lambda_{\chi}}$
	$3rac{1}{N_c}rac{\Lambda^2}{m_Q}$	66*	20	
	$rac{3}{2\sqrt{3}}(\epsilon\Lambda_\chi)$	-195^{*}	-195	
$\Omega_Q + 2\Omega_Q^* \Big) \Big]$	$rac{1}{2\sqrt{3}}rac{15}{8}rac{1}{N_c}(\epsilon\Lambda_\chi)$	40.6	40.6	
	$rac{3}{4}rac{1}{N_c}rac{\Lambda}{m_Q}(\epsilon\Lambda_\chi)$	11.8	3.5	
$\frac{5}{\sqrt{3}} \Xi_Q^{\overline{36}}$	$rac{1}{2\sqrt{3}}rac{15}{2}rac{1}{N_c^2}rac{\Lambda}{m_Q}(\epsilon\Lambda_\chi)$	11.3	3.4	
Independent of m_{o}	$rac{3}{2}rac{1}{N_c}(\epsilon^2\Lambda_\chi)$	-4.4^{*}	-4.4	
er mg	${9\over 8}{1\over N_c^2}{\Lambda\over m_Q}(\epsilon^2\Lambda_\chi)$	0.23	0.07	
M_Q	$= \begin{pmatrix} \Xi_Q^{\overline{3}} & \Xi_Q^{\overline{3}6} \\ \Xi_Q^{\overline{3}6} & \Xi_Q^{6} \end{pmatrix}$		$-\cos 2$ $-\sin 2$	$ \begin{array}{l} \theta_Q & -\sin 2\theta_Q \\ \theta_Q & \cos 2\theta_Q \end{array} \end{array} M_Q^{\Delta} - $
$ \begin{pmatrix} \Xi_Q \\ \Xi'_Q \end{pmatrix} $	$ = \begin{pmatrix} \cos \theta_Q & \sin Q \\ -\sin \theta_Q & \cos Q \end{pmatrix} $	$\left(n \theta_Q \right)$	$\left(\begin{array}{c} \Xi_Q^{\overline{3}} \\ \Xi_Q^{6} \end{array}\right)$	$M_Q^{\Delta} = \frac{1}{2} (\Xi$ $M_Q^0 = \frac{1}{2} (\Xi$

