

Hadronic Inputs to the $(g-2)_{\mu}$ Puzzle

March 19, 2018 | Christoph Florian Redmer

2nd International Workshop on High Intensity Electron Positron Accelerator at China Yanqihu Campus, UCAS

Magnetic moment of μ : $\vec{\mu}_{\mu} = g_{\mu} \frac{e}{2m_{\mu}} \vec{s}$

Dirac theory: $g_{\mu}=2$

JG

$(g-2)_{\mu}$

Magnetic moment of μ : $\vec{\mu}_{\mu} = g_{\mu} \frac{e}{2m_{\mu}} \vec{s}$

Dirac theory: $g_{\mu} = 2$

Quantum Field Theory: $g_{\mu} \neq 2$

Muon anomaly: $a_{\mu} = \frac{g_{\mu} - 2}{2}$

$$a_{\mu}^{theo} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{hadr}$$

Contribution in units of 10⁻¹⁰
Schwinger 11620000

J.S. Schwinger (1948):

$$a_{\mu}^{QED,LO} = \frac{\alpha}{2\pi}$$

JG

$(g-2)_{L}$

Magnetic moment of μ : $\vec{\mu}_{\mu} = g_{\mu} \frac{e}{2m_{\mu}} \vec{s}$

Dirac theory: $g_{\mu} = 2$

Quantum Field Theory: $g_{\mu} \neq 2$

Muon anomaly: $a_{\mu} = \frac{g_{\mu} - 2}{2}$

$$a_{\mu}^{theo} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{hadr}$$

Some examples for higher order QED corrections:

Total number of diagrams: 7 72 891 12672

Contribution	in units of 10 ⁻¹⁰		
Schwinger	11620000		
QED	11658471.895 ± 0.008		

Kinoshita et al., PRL 109 (2012) 111808

JG

(g-2)_µ

Magnetic moment of μ : $\vec{\mu}_{\mu} = g_{\mu} \frac{e}{2m_{\mu}} \vec{s}$

Dirac theory: $g_{\mu}=2$

Quantum Field Theory: $g_{\mu} \neq 2$

Muon anomaly: $a_{\mu} = \frac{g_{\mu} - 2}{2}$

$$a_{\mu}^{theo} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{hadr}$$

Contribution	in units of 10 ⁻¹⁰
QED	11658471.895 ± 0.008
Weak	15.4 ± 0.2

Kinoshita et al., Czarnecki et al.,

PRL 109 (2012) 111808 PRD 67 (2003) 073006 + Erratum

$(g-2)_{u}$

 $\vec{\mu}_{\mu} = g_{\mu} \frac{e}{2m_{\mu}} \vec{s}$ Magnetic moment of μ :

Dirac theory: $g_{\mu}=2$

 $g_{\mu} \neq 2$ Quantum Field Theory:

 $a_{\mu} = \frac{g_{\mu} - 2}{2}$ Muon anomaly:

$$a_{\mu}^{theo} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{hadr}$$

Hadronic Light-by-Light Scattering

Contribution	in units of 10^{-10}	
QED	11658471.895 ± 0.00	8 Kinoshita et al., PRL 109 (2012) 111808
Weak	15.4 ± 0.2	Czarnecki et al., PRD 67 (2003) 073006 + Erratum
HVP(leading order)	692.3 ± 4.2	Davier et al., EPJC 17 (2011) 1515 + Erratum
HVP(higher order)	-9.79 ± 0.0	Hagiwara et al., CPC 34 (2010) 728
HLBL	11.6 ± 4.0	Jegerlehner, Nyffler, Phys.Rept. 477 (2009) 1
Total	11659181.4 ± 5.8	

JG|U

Direct Measurement

- $\pi^+ \to \mu^+ \nu_\mu$ (longitudinally polarized μ^+ due to P violation)
- Precession in magnetic field and focusing electric field

$$\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c$$

$$= -\frac{e}{m_\mu} (a_\mu \vec{B} - [a_\mu - \frac{1}{\gamma^2 - 1}] \vec{v} \times \vec{E})$$

 \blacksquare Select " Magic γ " to be independent of \vec{E}

$$\gamma = \sqrt{1+1/\mathsf{a}_{\mu}} = 29.3 \qquad \Rightarrow \qquad \mathsf{p}_{\mu} = 3.094 \mathsf{GeV/c}$$

Bennet et al., PRD 73 (2006) 072003

- Detect e⁺ from $\mu^+
 ightarrow$ e⁺ $\bar{
 u}_{\mu}
 u_{
 m e}$
 - Direction of e^+ influenced by polarization of μ^+
 - Rate of measured e^+ modulated with $\vec{\omega}_a$

Direct Measurement

Long History of direct Measurements:

Experiment	Years	Polarity	$a_{\mu} imes 10^{10}$	Precision [ppm]
CERN I	1961	μ^+	11 450 000(220 000)	4300
CERN II	1962-1968	μ^+	11 661 600(3100)	270
CERN III	1974-1976	μ^+	11 659 100(110)	10
CERN III	1975-1976	μ^-	11659360(120)	10
BNL	1997	μ^+	11 659 251 (150)	13
BNL	1998	μ^+	11 659 191(59)	5
BNL	1999	μ^+	11659202(15)	1.3
BNL	2000	μ^+	11 659 204(9)	0.73
BNL	2001	μ^-	11 659 214(9)	0.72
Average			11 659 208.0(6.3)	0.54

Latest High Precision Measurement of a_{μ} : BNL-E821

Bennet et al., PRD 73 (2006) 072003

$$a_{\rm u}^{\rm exp} = 11659208.9 \pm 6.3 \cdot 10^{-10}$$

Discrepancy of $3-4\sigma$ compared to SM predictions!

Hint for New Physics?

JG|U

New Measurements

Fermilab E989

- Reusing the BNL ring
- Higher statistics
- Improved systematics

J-PARC

- Ultra cold muons
- No electric field
- $\bullet \delta a_{\mu} \sim 10 \times 10^{-11}$

Nucl.Phys.Proc.Suppl.218 (2011) 242

Experiment vs Theory

Improvement of δa_{μ} by a factor 4 by new experiments

Theory has to keep up with the precision!

Contribution	in units of 10^{-10}		
QED	11658471.895	± 0.008	
Weak	15.4	± 0.2	
HVP(leading order)	692.3	± 4.2	
HVP(higher order)	-9.79	± 0.07	
HLBL	11.6	± 4.0	
Total	11659181.4	± 5.8	

Hadronic Light-by-Light Scattering

Hadronic contributions completely dominate the uncertainty of the Standard Model prediction!

Challenge: Perturbative methods cannot be applied in the relevant energy regime

Experimental Input needed!

related to hadronic cross sections by optical theorem

Dispersion Integral:

$$a_{\mu}^{\rm hVP,LO} = \frac{1}{4\pi^3} \int\limits_{4m_{\pi}^2}^{\infty} K(s) \sigma(e^+e^- \to {\rm hadr}) ds$$

Energy Scan Measurements:

CMD, SND (Novosibirsk) BESIII (Beijing)

Initial State Radiation Measurements:

- Photon emitted in initial state
- Measurement a different energy possible

KLOE (Frascati)
BaBar (Stanford)
BESIII (Beijing)
Belle2 (Tsukuba)

$$e^+e^- \to \pi^+\pi^-$$
 accounts for 75% of a_μ^{hVP} — Good knowledge important !

KLOE and BaBar measurements dominate world average

March 19, 2018 C.F. Redmer - Hadronic Inputs to (g-2)µ

Hadronic Vacuum Polarization

$$e^+e^- \rightarrow \pi^+\pi^-$$
 measurement at BESIII

Phys.Lett.B753 (2016) 629

- 2.9 fb⁻¹ on ψ(3770) peak
- Tagged ISR technique
- $\mu \pi$ separation with ANN
- Careful evaluation of systematics
 - Total uncertainty of 0.9% achieved
 - Dominated by:
 - Luminosity measurement (0.5%)
 - Uncertainty of radiator function (0.5%)
- Evaluation for $0.6 \le m_{\pi\pi} \le 0.9$
 - 70% of total 2π contribution
 - 50% of a_{μ}^{hVP} contribution

Normalization to $\mu^+\mu^-$ limited by statistics

- Systematic uncertainties cancel
- 20 fb⁻¹ needed
- Approx. 5 years data taking at BESIII

Hadronic Vacuum Polarization

$$e^+e^- \rightarrow \pi^+\pi^-$$
 measurement at BESIII

Phys.Lett.B753 (2016) 629

- 2.9 fb⁻¹ on ψ(3770) peak
- Tagged ISR technique
- $\mu \pi$ separation with ANN
- Careful evaluation of systematics
 - Total uncertainty of 0.9% achieved
 - Dominated by:
 - Luminosity measurement (0.5%)
 - Uncertainty of radiator function (0.5%)
- Evaluation for $0.6 \le m_{\pi\pi} \le 0.9$
 - 70% of total 2π contribution
 - 50% of a_{μ}^{hVP} contribution

Comparison to previous measurements:

- Systematic shift in pion form factor
 - below ρ/ω interference w.r.t. BaBar
 - **above** ρ/ω interference w.r.t. KLOE

Ablikim et al., Phys.Lett.B753 (2016) 629

- Precision competitive to measurements by BaBar and KLOE
- Good agreement with all KLOE results
- BESIII result confirms $a_{\mu}^{\rm theo,SM} a_{\mu}^{\rm exp} > 3\sigma$
- New evaluations of a_{μ}^{hVP} including BESIII result available

Davier et al. Teubner et al. EPJ C77 (2018) 822 arXiv:1802.02995

Hadronic Light-by-Light

 a_{μ}^{hLBL} not directly related to measurable quantities

- Interaction of virtual mesons with real/virtual photons
 - ChPT at lowest energies
 - pQCD at high energies
 - Intermediate region ?
- "classic" approach: Hadronic models
 - "Glasgow Consensus" arXiv:0901.0306
 - Jegerlehner, Nyffeler Phys. Rep. 477 (2009) 1

- Models can be validated with experimental data
- \blacksquare Error estimates for a_{μ}^{hLBL} are model dependent

G Relevant Processes and Energies

Counting scheme for contributions to a_{u}^{hLBL}

(de Rafael, Phys.Lett. B322 (1994) 239)

3D integral representation for pion-pole contribution (Nyffeler, Phys.Rev. D94 (2016) 093006)

JG U space-like Transition Form Factors

Can be investigated at e⁺e⁻ colliders:

- Exchange of two photons in e⁺e⁻ collisions
- Pseudoscalar, axial, and tensor states accessible
- $\sigma \propto \alpha^2 \ln^2 E$
- ${\color{red} \bullet} \ \sigma \propto F^2(Q_1^2,Q_2^2)$, with $Q_i^2=-q_i^2$

- Forward peaked kinematic
 - Experimentally challenging
- Single-tag to study momentum dependence
 - Detect only one scattered lepton
 - Require small virtuality for second photon

$$F^2(Q_1^2, Q_2^2) \Rightarrow F^2(Q_1^2, 0) \Rightarrow F^2(Q^2)$$

TFF should factorize at lowest energies

$$F_{\pi\gamma^*\gamma^*}(Q_1^2, Q_2^2) \sim F_{\pi\gamma^*\gamma}(Q_1^2, 0) \times F_{\pi\gamma^*\gamma}(0, Q_2^2)$$

π⁰ Transition Form Factor

- Results from B-factories cover large Q² (5 < Q² [GeV²] < 40)
 - Discrepancy for π^0 between BaBar and Belle
- Data scarce at lowest Q²
 - Region of relevance for (g-2)µ

CELLO: Z.Phys.C49 (1991) 401 CLEO: Phys.Rev.D57 (1998) 33

BaBar: Phys.Rev.D80 (2009) 052002 Belle: Phys.Rev.D86 (2012) 092007

π⁰ Transition Form Factor

- Results from B-factories cover large Q^2 ($5 < Q^2$ [GeV²] < 40)
 - Discrepancy for π^0 between BaBar and Belle
- Data scarce at lowest Q²
 - Region of relevance for (g-2)µ

CELLO: Z.Phys.C49 (1991) 401 CLEO: Phys.Rev.D57 (1998) 33 BaBar: Phys.Rev.D80 (2009) 052002 Belle: Phys.Rev.D86 (2012) 092007

Prospects for BESIII

- 2.9 fb⁻¹ analyzed at $\psi(3770)$ peak
- Covering 0.3 < Q² [GeV²] < 3.1
 - Unprecedented statistical accuracy expected for $Q^2 < 1.5 \text{ GeV}^2$
- Limited by statistics above 3 GeV²

π⁰ Transition Form Factor

- Results from B-factories cover large Q^2 (5 < Q^2 [GeV²] < 40)
 - Discrepancy for π^0 between BaBar and Belle
- Data scarce at lowest Q²
 - Region of relevance for (g-2)µ

CELLO: Z.Phys.C49 (1991) 401 CLEO: Phys.Rev.D57 (1998) 33 BaBar: Phys.Rev.D80 (2009) 052002 Belle: Phys.Rev.D86 (2012) 092007

Prospects for KLOE-2

- Special tagging detectors installed
- Covering 0.01 < Q² [GeV²] < 0.1
- 6% statistical accuracy expected from 5 fb⁻¹ at φ peak

Babusci et al., EPJC 72 (2012) 1917

First single-tag measurement by Belle Phys.Rev.D93 (2016) 032003

- 759 fb⁻¹
- 3 < Q² [GeV²] < 30
- 0.5 < W [GeV/c²] < 2.1
- $|\cos \theta^*| < 1.0$
- Determination of partial-wave amplitudes
- Measurement of TFF for $f_2(1270)$ and $f_0(980)$

$\gamma^* \gamma \to \pi \pi$

First single-tag measurement by Belle

Phys.Rev.D93 (2016) 032003

- 759 fb⁻¹
- 3 < Q² [GeV²] < 30
- 0.5 < W [GeV/c²] < 2.1
- $|\cos \theta^*| < 1.0$
- Determination of partial-wave amplitudes
- Measurement of TFF for $f_2(1270)$ and $f_0(980)$

- 0.2 < Q² [GeV²] < 2.0
- $m_{\pi^+\pi^-} < M [GeV] < 2.0$
- $|\cos \theta^*| < 1.0$

Data Driven Approaches

- Padé Approximants
 - Parametrize TFF by series of rational approximants
 - Fit free parameters to experimental data
 - Estimate for systematic uncertainty provided
 - Space-like and time-like data can be used

Escribano, Masjuan, et al. PRD 86 (2012) 094021 EPJC 75 (2015) 414

- Dispersive approaches to a_{μ}^{hLBL}
 - Describe dominating contributions with dispersion relations
 - Relation to measurable quantities
 - Reduce model dependency
 - Give more reliable error estimates
 - Goal 10 20 %

Bern (Colangelo, Hoferichter, et al.)

Mainz (Pauk, Vanderhaegen, et al.)

JHEP 1409 (2014) 091 PLB 738 (2014) 6 EPJ C74 (2014) 3180 JHEP 1509 (2015) 074 PRD 90 (2014) 113012 hep-ph:1403.7503

Dispersive Approach

Measurable quantities needed:

- TFF $F_{\pi\gamma^*\gamma^*}(Q_1^2,Q_2^2)$ for arbitrary virtualities
- Partial waves for $\gamma^* \gamma^* \to \pi \pi$

Both can be constructed from other input:

Final ingredients to a^{hLBL}_μ
 Input
 Measurement/Calculation

Colangelo, Hoferichter, Kubis, Procura, Stoffer Phys.Lett. B738 (2014) 6

Double-tagged Measurements

Measurement of $F_{\pi^0\gamma\gamma}(Q_1^2,Q_2^2)$

- Full information
- Model independent information

First test at BESIII

- ~ 10 fb⁻¹ between 3.773 and 4.6 GeV
- Only $\mathcal{O}(10^2)$ event candidates expected

Calculations: A. Nyffeler Phys.Rev. D94, 2016, 053006

Clearly a case for a Super Tau Charm Factory!

Summary

SM prediction of a_u limited by hadronic contributions

Experimental input needed to solve the puzzle

- hadronic Vacuum Polarization a_{μ}^{hVP}
 - Direct relation to hadronic cross sections $\sigma(e^+e^- \rightarrow hadrons)$
 - High precision data needed → HIEPA
- hadronic Light-by-Light scattering a_{μ}^{hLbL}
 - Realistic error estimates from data-driven approaches
 - Transition form factor $F_{\pi\gamma^*\gamma^*}(Q_1^2,Q_2^2)$ and partial waves $\gamma^*\gamma^* \to \pi\pi$
 - High intensity machine with tagging detectors needed → HIEPA
 - In view of anticipated experimental accuracy $\delta a_{\mu}^{\rm exp} \sim 1.6 \times 10^{-10}$ contributions of η and η' become relevant! $a^{hLbL,\eta} \sim 1.5 \times 10^{-10} \ {\rm g}^{-1.5} \sim 1.5 \times 10^{-10} \$

 $a_\mu^{hLbL,\eta}\sim 1.5\times 10^{-10}$ Knecht,Nyffeler Phys.Rev.D65 (2002) 073034 $a_\mu^{hLbL,\eta'}\sim 1.5\times 10^{-10}$

Great prospects and opportunities for a Super Tau Charm Factory!