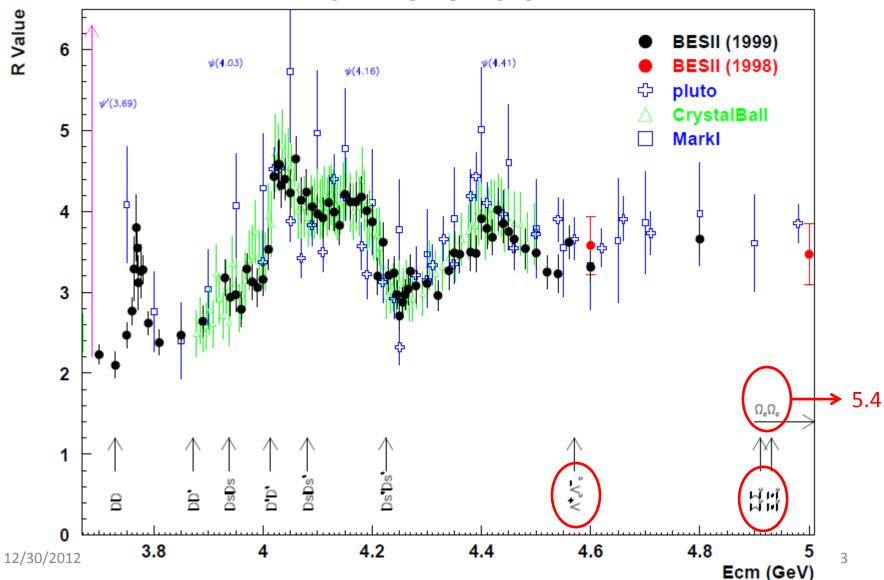
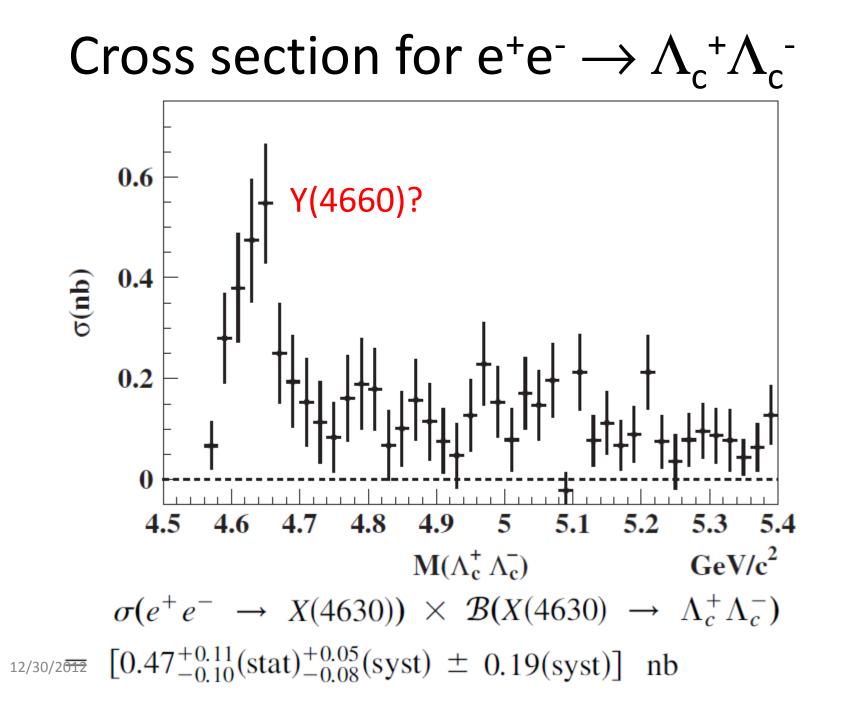

$\Lambda_{\rm c}$ at STC


Guangshun Huang & Haibo Li First STC workshop Dec.30, 2012, IHEP

Charm baryon vs. strange baryon

2


Charmed baryon thresholds around 4.6 – 5.5 GeV

$\Lambda_{\rm c}{}^{\rm +}$ branching fractions

- Most Λ_c^+ branching fractions are measured relative to $B(\Lambda_c^+ \rightarrow pK^-\pi^+)$, which itself is not a model-independent measurement:
 - (4.14±0.91)% from B(B $\rightarrow \Lambda_c^+ X) \cdot B(\Lambda_c^+ \rightarrow pK^-\pi^+);$
 - (7.3±1.4)%·fF from $B(\Lambda_c^{+} \rightarrow pK^{-}\pi^{+})/B(\Lambda_c^{+} \rightarrow \Lambda I^{+}\nu_{|});$
 - PDG average (5.0±1.3)%;
 - Same result from CLEO $e^+e^- \rightarrow DpX$, X = $\Lambda_c^+ + ...$;
- Any change in $B(\Lambda_c^+ \to pK^-\pi^+)$ will affect most of the Λ_c^+ decay width;
- An absolute measurement is absolutely needed.

$e^+e^- \rightarrow \Lambda_c^+\Lambda_c^-$ from ISR (Belle) $M = [4634^{+8}_{-7}(\text{stat})^{+5}_{-8}(\text{syst})] \text{ MeV}/c^2$ 695 fb⁻¹ data **40** • $\Gamma_{\text{tot}} = [92^{+40}_{-24}(\text{stat})^{+10}_{-21}(\text{syst})] \text{ MeV}$ 30 8.2σ 20 PRL 101, 172001 10 (2008)N/20 MeV/c² 300 Cross section (pb) BABAR DM2 **(b)** 10 Different pattern 2005 100 0 4.7 4.8 4.9 5.1 5.2 4.5 5.3 5.4 4.6 5 0 2.8 2.4 2.6 2.2 $M_{\Lambda\bar{\Lambda}}^{2.0}$ (GeV/c²) 12/30/2012 GeV/c² $M(\Lambda_c^+ \Lambda_c^-)$

Scan around 4.60GeV

1600 pb⁻¹ @ 9 energy points (3*10³² cm⁻²s⁻¹) 4.55 4.60 4.61 4.62 4.63 4.64 4.65 4.70 4.75 GeV 50 270 350 420 470 420 360 180 100 pb 300, 200, 150, 100, 100, 100, 150, 200, 300 pb⁻¹

 Λ^+_{c} can be fully reconstructed and antiproton are used As tag to suppress backgrounds.

First absolute measurements of Λc decays may be available at BES-III.

2009-5-15

12/30/2012

4

Summary

- There have been no improvements in the Λ_c^+ branching fraction measurements since 1998;
- If BEPCII can run slightly above 4.6 GeV, we will be able to study $\Lambda_{\rm c}{}^{\rm +}$, but it is unlikely;
- A super tau-charm factory will provide unique opportunity for charmed baryon study if it operates in 4.6 – 5.5 GeV;
- Especially for $\Lambda_c^{+}\Lambda_c^{-}$ pair, if peak cross section is 0.47 nb around 4.63 GeV, at a luminosity of 10^{35} cm⁻²s⁻¹, the production rate would be 47 Hz, which is equivalently 4 M events per day. Assuming track selection efficiency is 80%, just for the $\Lambda_c^{+} \rightarrow pK^{-}\pi^{+}$ mode, the single/double tagging efficiency would be ~50%/25%, and this gives 200k singly tagged Λ_c^{\pm} , or 2.5k doubly tagged $\Lambda_c^{+}\Lambda_c^{-}$.