

超子类时电磁形状因子 及其振荡行为

谢聚军

中国科学院近代物理研究所

2022年12月4日@2022年超级陶粲装置研究进展研讨会(Online)

目录

1、引言: 电磁形状因子

2、VMD模型与重子电磁形状因子

3、重子有效形状因子的振荡行为

4、总结与展望

电磁形状因子 (space-like)

S. Pacetti, R. Baldini Ferroli and E. Tomasi-Gustafsson, "Proton electromagnetic form factors: Basic notions, present achievements and future perspectives," **Phys. Rept. 550-551, 1-103 (2015).**

索墨菲因子:**末态库仑相互作用**

图: pp产生过程的末态库仑修正因子 C 关于能量的依赖关系.

阈值增强: 末态正反重子强相互作用

I.T. Lorenz, H.W. Hammer and U.G. Meissner, ``New structures in the proton-antiproton system," Phys. Rev. D92, 034018 (2015).

类时电磁形状因子的实验测量

能量扫描

初态辐射

Σ超子的电磁形状因子---实验现状

BESIII, Phys. Lett. B 814, 136110 (2021); Phys. Lett. B 831, 137187 (2022).

The ratio $\Sigma^+ \overline{\Sigma}^-$: $\Sigma^0 \overline{\Sigma}^0$: $\Sigma^- \overline{\Sigma}^+$ is about 9.7 ± 1.3 : 3.3 ± 0.7 : 1.

VMD: 矢量介子为主模型

Σ^+ 和 Σ^- 的电磁形状因子(VMD)

$$\begin{split} F_{1\Sigma^{+}}^{S}\left(Q^{2}\right) &= \frac{1}{2}g_{1}\left(Q^{2}\right) \left[\left(1-\beta_{\omega}-\beta_{\phi}\right)+\beta_{\omega}\frac{m_{\omega}^{2}}{m_{\omega}^{2}+Q^{2}}+\beta_{\phi}\frac{m_{\phi}^{2}}{m_{\phi}^{2}+Q^{2}}\right] \\ F_{1\Sigma^{+}}^{V}\left(Q^{2}\right) &= \frac{1}{2}g_{1}\left(Q^{2}\right) \left[\left(1-\beta_{\rho}\right)+\beta_{\rho}\frac{m_{\rho}^{2}}{m_{\rho}^{2}+Q^{2}}\right] \\ F_{2\Sigma^{+}}^{S}\left(Q^{2}\right) &= \frac{1}{2}g_{1}\left(Q^{2}\right) \left[\left(4.224-\alpha_{\phi}-\alpha_{\rho}\right)\frac{m_{\omega}^{2}}{m_{\omega}^{2}+Q^{2}}+\alpha_{\phi}\frac{m_{\phi}^{2}}{m_{\phi}^{2}+Q^{2}}\right] \\ F_{2\Sigma^{+}}^{V}\left(Q^{2}\right) &= \frac{1}{2}g_{1}\left(Q^{2}\right) \left[\alpha_{\rho}\frac{m_{\rho}^{2}}{m_{\rho}^{2}+Q^{2}}\right] \\ F_{1\Sigma^{-}}^{S}\left(Q^{2}\right) &= \frac{1}{2}g_{2}\left(Q^{2}\right) \left[\left(-1-\beta_{\omega}-\beta_{\phi}\right)+\beta_{\omega}\frac{m_{\omega}^{2}}{m_{\omega}^{2}+Q^{2}}+\beta_{\phi}\frac{m_{\phi}^{2}}{m_{\phi}^{2}+Q^{2}}\right] \\ F_{1\Sigma^{-}}^{V}\left(Q^{2}\right) &= \frac{1}{2}g_{2}\left(Q^{2}\right) \left[\left(-1-\beta_{\rho}\right)+\beta_{\rho}\frac{m_{\rho}^{2}}{m_{\rho}^{2}+Q^{2}}\right] \\ F_{2\Sigma^{-}}^{S}\left(Q^{2}\right) &= \frac{1}{2}g_{2}\left(Q^{2}\right) \left[\left(-0.958-\alpha_{\phi}-\alpha_{\rho}\right)\frac{m_{\omega}^{2}}{m_{\omega}^{2}+Q^{2}}+\alpha_{\phi}\frac{m_{\phi}^{2}}{m_{\phi}^{2}+Q^{2}}\right] \\ F_{2\Sigma^{-}}^{V}\left(Q^{2}\right) &= \frac{1}{2}g_{2}\left(Q^{2}\right) \left[\alpha_{\rho}\frac{m_{\rho}^{2}}{m_{\rho}^{2}+Q^{2}}\right], \end{split}$$

1.035

 γ_1 = 0.46±0.01 GeV⁻² 和 γ_2 = 1.18±0.13 GeV⁻².

-0.441

0.434

 β_{ϕ}

 β_{ω}

Z. Y. Li and J. J. Xie, Commun. Theor. Phys. 73, 055201(2021).

 α_{ϕ}

 $G_E = F_1 + \tau F_2, \quad G_M = F_1 + F_2,$

The ratio $\Sigma^+ \bar{\Sigma}^-$: $\Sigma^0 \bar{\Sigma}^0$: $\Sigma^- \bar{\Sigma}^+$ is about 9.7 ± 1.3 : 3.3 ± 0.7 : 1.

$$\begin{split} |1,0\rangle_A &= \frac{1}{\sqrt{2}} \{ |1,1\rangle_{\Sigma} |1,-1\rangle_{\bar{\Sigma}} - |1,-1\rangle_{\Sigma} |1,1\rangle_{\bar{\Sigma}} \} \\ &= \frac{1}{\sqrt{2}} \{ |\Sigma^+ \bar{\Sigma}^- \rangle - |\Sigma^- \bar{\Sigma}^+ \rangle \} \\ |0,0\rangle &= \frac{1}{\sqrt{3}} \{ |1,1\rangle_{\Sigma} |1,-1\rangle_{\bar{\Sigma}} - |1,0\rangle_{\Sigma} |1,0\rangle_{\bar{\Sigma}} + |1,-1\rangle_{\Sigma} |1,1\rangle_{\bar{\Sigma}} \} \\ &= \frac{1}{\sqrt{3}} \{ |\Sigma^+ \bar{\Sigma}^- \rangle - |\Sigma^0 \bar{\Sigma}^0 \rangle + |\Sigma^- \bar{\Sigma}^+ \rangle \} \end{split}$$

Λ的电磁形状因子(动机)

J. Haidenbauer and U. G. Meißner, Phys. Lett. B 761, 456-461(2016).

State	Mass	Width	State	Mass	Width
$\omega(782)$ [55]	782	8.1	$\phi(1020)$ [56]	1019	4.2
$\omega(1420)$ [57]	1418	104	$\phi(1680)$ [57]	1674	165
$\omega(1650)$ [57]	1679	121	$\phi(2170)$ [58]	2171	128

fit. In the present scenario, there are 16 experimental data and 10 free parameters. The value of intrinsic parameter γ is fitted to be 0.336 GeV⁻² and the other parameters are summarized in Table II. It should be noticed that $g(q^2)$

Y. Yang, D. Y. Chen and Z. Lu, Phys. Rev. D 100, 073007 (2019).

∧的电磁形状因子(新方案)

Table: Values of model parameters determined in this work.

Parameter	Value	Parameter	Value
$\gamma ({\rm GeV}^{-2})$	0.43	eta_{ω}	-1.13
$eta_{oldsymbol{\phi}}$	1.35	$lpha_{\phi}$	-0.40
eta_x	0.0015	$m_x \; ({ m MeV})$	2230.9
$\Gamma_x({\rm MeV})$	4.7		

Z. Y. Li, A. X. Dai and J. J. Xie, Chin. Phys. Lett. 39, 011201 (2022).

X(2231)存在吗?在哪?

M. Ablikim, et al., Phys. Rev. D 100, 032009(2019).

Flatte function

$$\frac{\mathrm{d}\sigma_i}{\mathrm{d}m} = C \left| \frac{m_{\mathrm{R}} \sqrt{\Gamma_0 \Gamma_i}}{m_{\mathrm{R}}^2 - m^2 - \mathrm{i}m_{\mathrm{R}} (\Gamma_{\pi\eta} + \Gamma_{\mathrm{K}\overline{\mathrm{K}}})} \right|^2$$

$$\Gamma_{\pi\eta} = g_{\eta} q_{\eta}$$

$$\Gamma_{\mathrm{K}\overline{\mathrm{K}}} = \begin{cases} g_{\mathrm{K}} \sqrt{(1/4)m^2 - m_{\mathrm{K}}^2} & \text{above threshold} \\ \mathrm{i}g_{\mathrm{K}} \sqrt{m_{\mathrm{K}}^2 - (1/4)m^2} & \text{below threshold} \end{cases}$$

S.M. Flatte, Phys. Lett. B 63, 224-227 (1976).

On the other hand, if one takes a Flatté form for the total decay width of $\omega(1420)$, $\omega(1650)$, $\phi(1680)$, and $\phi(2170)$, the experimental data can also be well reproduced with a strong coupling of these resonances to the $A\bar{A}$ channel.

Parameter	Value	Parameter	Value
γ (GeV ⁻²)	0.57 ± 0.21	$\beta_{\omega\phi}$	-0.3 ± 0.31
β_x	-0.03 ± 0.09	m_x (MeV)	2237.7 ± 50.2
Γ_0 (MeV)	8.8 ^{+75.9} -8.8	$g_{\Lambda ar{\Lambda}}$	3.0±1.9

Z. Y. Li, A. X. Dai and J. J. Xie, Chin. Phys. Lett. 39, 011201 (2022).

有效形状因子的dipole衰减行为

图: $p, n, \Lambda, \Sigma^+, \Sigma^0 n \Sigma^-$ 的类时有效形状因子测量结果。

$$G_D(q^2) = \frac{c_0}{(1 - \gamma q^2)^2}$$

有效形状因子的振荡行为

有效形状因子的振荡行为(新方案)

$$G_{osc} = A \cdot \frac{c_0}{(1 - \gamma \cdot s)^2} \cdot \cos\left(C \cdot \sqrt{s} + D\right)$$

$$G_D(q^2) = \frac{c_0}{(1 - \gamma q^2)^2}$$

电中性重子有效形状因子的振荡行为

Λ超子有效形状因子的振荡部分拟合

 Σ^0 超子有效形状因子的振荡部分拟合

A.X. Dai, Z.Y. Li, L. Chang and J.J. Xie, Chin. Phys. C 46, 073104 (2022).

New experimental results

Eur. Phys. J. C (2022) 82:761 https://doi.org/10.1140/epjc/s10052-022-10696-0

THE EUROPEAN **PHYSICAL JOURNAL C**

3

E (GeV)

Regular Article - Experimental Physics

Experimental study of the $e^+e^- \rightarrow n\bar{n}$ process at the VEPP-2000 e^+e^- collider with the SND detector $F(s) = F_0(s) + F_{\rm osc}(s),$

SND Collaboration

总结与展望

一、正反重子对产生截面阈值增强(平台)行为

末态相互作用 Flatte (强阈值耦合)

二、有效形状因子振荡行为

经验规律 机制尚不明确 (矢量介子共振态??)

一切都是刚刚起步!!!

We need more efforts, both on theoretical and experimental sides.

Thank you very much for your attention!