

国家自然科学基金委重大项目

《北京谱仪BESIII实验上粲夸克 衰变中标准模型的精确检验》之课题二

粲强子的强子末态衰变机制研究

董燎原(高能所)

承担单位:中国科学院高能物理研究所 **一国科学** 合作单位:南华大学

2023年BESIII粲强子物理研讨会 2023/04/07 中国科学技术大学, 安徽合肥市

标准模型(SM)是当前描述微观世界最成功的模型, 量子色动力学(QCD)描述强相互作用,是SM的两个组分之一

QCD的两个重要性质:

- ◎ 高能下QCD的渐近自由得到实验精确检验(2004年获诺贝尔奖)
- 。QCD<mark>色禁闭本质有待发展和检验</mark>
- 低能下非微扰QCD理论不完善,理论工具结合实验观测

⇒ 提高低能QCD理论的预言能力!

粲强子的强子末态衰变

«研究粲夸克与末态轻夸克之间的强、弱作用的场所:

- ◎ 揭示动力学机制,检验SU(2)同位旋对称性和SU(3)味对称性
- 。检验并刻度理论计算非微扰效应的参数化方法和唯象模型
- 。为理论计算D衰变CP破坏和中性D介子混合提供实验输入

◎ 重味物理研究的基础:

- 标定其它粲强子衰变的分支比测量
- 为 B 物理研究提供关键输入

«研究轻强子谱和重子谱,发展和完善基于夸克模型的理论

三. 研究进展

1. 粲强子的强子衰变分支比测量 长 🗉

参考道分支比测量现状

$D^{0} \to K^{-}\pi^{+} \qquad (3.946 \pm 0.030)\%$ $D^{+} \to K^{-}\pi^{+}\pi^{+} \qquad (9.38 \pm 0.16)\%$ $D^{+}_{s} \to K^{+}K^{-}\pi^{+} \qquad (5.39 \pm 0.15)\%$ $\Lambda^{+}_{c} \to pK^{-}\pi^{+} \qquad (6.28 \pm 0.32)\%$

分支比总和测量现状

$D^0 \rightarrow \text{anything}$	< 80%
-----------------------------------	-------

- $D^+ \rightarrow \text{anything} < 85\%$
- $D_s^+ \rightarrow \text{anything} < 60\%$
- $\Lambda_c^+ \rightarrow \text{anything} < 70\%$

。研究现状:

实验上还未能完整理解粲强子的强子衰变
 参考道测量精度不足->**重味物理研究的主要系统误差来源**

。研究内容:

- 。寻找并测量至今未被发现的Cabibbo允许和压低衰变
- 精确测量关键参考道分支比;测量电荷宇称不对称性
- 测量D → 3πX, ηX, K⁰_sX等单举衰变分支比,

为测量轻子普适性参量R_{D*}提供关键输入。

1.粲强子的强子衰变分支比测量

2.93fb⁻¹ @3.773GeV

$\square D \rightarrow K3\pi, D \rightarrow K4\pi$

PRD 106, 032002 (2022)

Decay mode	$\mathcal{B}_{\operatorname{non-}\eta,\omega}$		
$D^0 \rightarrow K^0_S \pi^0 \pi^0 \pi^0$	$5.98 \pm 0.30 \pm 0.29$		
$D^0 \rightarrow K^- \pi^+ \pi^0 \pi^0 \pi^0$	$3.48 \pm 0.30 \pm 0.34$		
$D^0 \rightarrow K^0_S \pi^+ \pi^- \pi^0 \pi^0$	$3.21 \pm 0.45 \pm 0.65$		
$D^+ ightarrow K^0_S \pi^+ \pi^0 \pi^0$	$29.04 \pm 0.62 \pm 0.87$		
$D^+ \rightarrow K_S^{0} \pi^+ \pi^+ \pi^- \pi^0$	$5.99 \pm 0.57 \pm 0.75$		
$D^+ ightarrow K_S^0 \pi^+ \pi^0 \pi^0 \pi^0$	$1.26 \pm 0.44 \pm 0.36$		
$D^+ \to K^- \pi^+ \pi^+ \pi^0 \pi^0$	$4.95 \pm 0.26 \pm 0.19$		

2.93fb⁻¹ @3.773GeV

$D \to K \pi$	τω
PRD	105, 032009 (2022)
Decay mode	$\mathcal{B}_{\mathrm{sig}}$ (%)
$D^0 \to K^- \pi^+ \omega$	$3.392 \pm 0.044 \pm 0.085$
$D^0 o K^0_S \pi^0 \omega$	$0.848 \pm 0.046 \pm 0.031$
$D^+ \to K^0_S \pi^+ \omega$	$0.707 \pm 0.041 \pm 0.029$

D decays involving multipions

PRD 106, 092005 (2022)

共測量了20个decays分支比: $\mathcal{B}(D^0 \to \pi^+ \pi^- \pi^0) = (1.343 \pm 0.013_{\text{stat}} \pm 0.016_{\text{syst}})\%$ $\mathcal{B}(D^0 \to \pi^+ \pi^- 2\pi^0) = (1.002 \pm 0.019_{\text{stat}} \pm 0.024_{\text{syst}})\%$ $\mathcal{B}(D^+ \to 2\pi^+ \pi^- \pi^0) = (1.165 \pm 0.021_{\text{stat}} \pm 0.021_{\text{syst}})\%$ $\mathcal{B}(D^+ \to 2\pi^+ \pi^- 2\pi^0) = (1.074 \pm 0.040_{\text{stat}} \pm 0.030_{\text{syst}})\%$

 $\mathcal{B}(D_s^+ \to \omega \pi^+ \eta) = (0.54 \pm 0.12 \pm 0.04)\%$ PRD 107, 052010 (2023)

1.粲强子的强子衰变分支比测量

 $2.93 \text{fb}^{-1} @ 3.773 \text{GeV}$

PRD 107, 032002 (2023)

$$\mathcal{B}(D^{0} \to \pi^{+}\pi^{+}\pi^{-}X) =$$
(17.60 ± 0.11 ± 0.22)%
$$\mathcal{B}(D^{+} \to \pi^{+}\pi^{+}\pi^{-}X) =$$
(15.25 ± 0.09 ± 0.18)%

3.19fb⁻¹ @4.178GeV

$$\mathbb{D}_s^+ \to \pi^+ \pi^- \overline{\pi^+ X}$$

Submitted to PRD, arXiv:2212.13072

$$\mathcal{B}(D_s^+ \to \pi^+ \pi^+ \pi^- X) =$$

$$(32.81 \pm 0.35_{\text{stat}} \pm 0.82_{\text{syst}}) \%$$
Larger than $B_{\text{exclusive}}^{\text{sum}}$ of ~25%

→ missing decay modes ?

在研:
$$D_s^+ \to \pi^+ \pi^- \pi^+ \eta'$$

Submitted to PRD, arXiv:2302.14488
2.93fb⁻¹@3.773GeV
Decay mode PDG (%) BESIII (%) $\mathcal{B}_{exclusive}^{sum}$ (%)
D⁺ → K_S^0 X 30.5 ± 2.5 32.78 ± 0.13 ± 0.27 31.68 ± 0.32
D⁰ → K_S^0 X 23.5 ± 2.0 20.54 ± 0.12 ± 0.18 18.16 ± 0.72

→ missing decay modes ?

1.粲强子的强子衰变分支比测量 **Hes**

粲强子多体强子衰变研究现状

𝔅 D → K3π、KKππ四体衰变振幅分析不足,现有结果差异大

- $<math> D \rightarrow VV$ 研究不足,导致矢量介子的极化研究缺乏
- 。导致理论无法精确预期D衰变的CP破坏和D⁰介子的混合

𝔅 D → K4π五体衰变至今无振幅分析研究

。 D → AV的实验结果极其缺乏

- ◎ 实验上仅有E791实验基于900个事例的振幅分析结果
- [∞] $\Lambda_c^+ \to B_D P$ 、 $B_n V$ 的实验结果极其缺乏

。振幅分析可以系统理解强子谱、超子谱

2. 多体强子衰变的振幅分析

Kt-

2. 多体强子衰变的振幅分析

2. 多体强子衰变的振幅分析

在研: $D^+ \to K^0_S \pi^+ \pi^0 \pi^0$, $K^- \pi^+ \pi^+ \pi^0$, $D^0 \to \pi^+ \pi^- \pi^{+(0)} \pi^{-(0)}$, $D^+_S \to \pi^+ \pi^- \pi^+ \pi^0$,

$D_s^+ \rightarrow K^+ K^- \pi^+ \pi^- \pi^+$	HEP 09(2022)242
Intermediate process	BF (10^{-3})
$D_s^+[S] \to a_1(1260)^+ \phi, a_1(1260)^+[S] \to \rho^0 \pi^+$	$4.82 \pm 0.40 \pm 0.29$
$D_s^+[P] \to a_1(1260)^+ \phi, a_1(1260)^+[S] \to \rho^0 \pi^+$	$0.34 \pm 0.11 \pm 0.05$
$D_s^+ \to a_1(1260)^+ \phi$	$5.15 \pm 0.41 \pm 0.32$
$D_s^+ \to (K^- K^+ \pi^+ \pi^+ \pi^-)_{\rm NR}$	$1.44 \pm 0.22 \pm 0.10$

在研: $D^0 \to K_S^0 \pi^+ \pi^- \pi^0 \pi^0$, $D_s^+ \to \pi^+ \pi^- \pi^+ \pi^0 \pi^0$, ...

3. 双Cabibbo压低强子衰变研究 HSI

● 理论预期: $\frac{\chi Cabibbo 压低衰变分支比}{ 相应Cabibbo 允许衰变分支比} = tan⁴ θ_C (~0.29%)$

 θ_{C} 为 CKM Cabibbo 混合角

- ⑤ BESIII发现 $D^+ \to K^+ \pi^+ \pi^- \pi^0$ 的比值**比理论预期高三倍**衰变机制的差异,干涉效应?
 PRL125,141802 (2020)
- ◎ 探索更多双Cabibbo压低衰变
- 需要对相关衰变开展振幅分析,研究末态相互作用和内部 共振结构,理解双Cabibbo压低分支比异常的本质

双Cabibbo压低强子衰变研究

 $\mathfrak{D}^+ \to K^+ \pi^0 \pi^0, \ K^+ \pi^0 \eta$

Decay mode	$N_{\rm DT}$	$\epsilon_{ m sig}\left(\% ight)$	$\mathcal{B}_{sig} (\times 10^{-4})$
$D^+ \to K^+ \pi^0 \pi^0$	42.8 ± 7.2	18.08 ± 0.03	$2.1\pm0.4\pm0.1$
$D^+ \to K^+ \pi^0 \eta$	19.2 ± 5.0	20.50 ± 0.03	$2.1\pm0.5\pm0.1$
$D^+ \to K^{*+} \pi^0$	$16.6_{-6.2}^{+6.6}$	13.02 ± 0.03	$3.4^{+1.4}_{-1.3} \pm 0.1$
$D^+ \to K^{*+}\eta$	$10.9^{+4.4}_{-3.8}$	16.60 ± 0.04	$4.4^{+1.8}_{-1.5} \pm 0.2$

Amplitude analysis of 在研: DCS decay $D^+ \rightarrow K^+ \pi^+ \pi^- \pi^0$

4. 测量 $D \rightarrow K_S^0 / K_L^0 X$ 不对称性

測量 $D \rightarrow K_S^0/K_L^0 X (X = \pi^+, \pi^0, \eta, \eta', \omega, \phi)$ 不对称性

。检验理论给出的分支比的不对称性

$$\frac{\mathcal{B}(D^0 \to K_S^0 \pi) - \mathcal{B}(D^0 \to K_L^0 \pi)}{\mathcal{B}(D^0 \to K_S^0 \pi) + \mathcal{B}(D^0 \to K_L^0 \pi)} = 2 \tan^2 \theta_C$$

 θ_C 为 CKM Cabibbo 混合角

。理解CKM机制,为研究SU(3)味对称性破缺提供实验信息

RES

4. 测量 $D \rightarrow K_S^0/K_L^0 X$ 不对称性

[●] $D^0 \rightarrow K^0_L \phi, K^0_L \eta, K^0_L \omega, K^0_L \eta' 分支比测量 PRD 105, 092010 (2022)$

5. 新ψ(3770)(8.0fb⁻¹)数据的研究

发布了2010,2011和2022年ψ(3770)单举MC样本 确保MC和数据的一致性,以降低测量的系统误差 用于分析中估计本底,确定探测效率,估计系统误差

Directory	Process	σ (nb)	Lum Scale	$N_{\rm evt}~(\times 10^6)$
D0D0	$e^+e^- \rightarrow \psi(3770) \rightarrow D^0 \bar{D}^0$	3.615	$80 \times$	180.80×8
D+D-	$e^+e^- \rightarrow \psi(3770) \rightarrow D^+D^-$	2.830	$40 \times$	141.55×4
ditau	$e^+e^- \rightarrow \tau^+\tau^-$	3.0	$40 \times$	150.00×4
nonDD	$e^+e^- \rightarrow \psi(3770) \rightarrow \mathrm{non} - D\bar{D}$	0.5	$40 \times$	25.58×4
qq	$e^+e^- \rightarrow q\bar{q}$	16.86	$40 \times$	845.00×4
RR2S	$e^+e^- \to \gamma_{\rm ISR}\psi(2S)$	3.4	$40 \times$	170.00×4
RR1S	$e^+e^- \to \gamma_{\rm ISR} J/\psi$	1.1	$40 \times$	55.00×4
Bhabha	$e^+e^- \rightarrow e^+e^-$	520.5	$0.25 \times$	650.0
digamma	$e^+e^- \to \gamma\gamma$	24.7	$3 \times$	371.0
dimu	$e^+e^- \rightarrow \mu^+\mu^-$	6.4	$15 \times$	480.0

● 更新衰变卡中 D⁰ 和 D⁺衰变分支比到最新PDG值
 ● 增加28个D⁰/D⁺振幅分析产生子,16个D⁰/D⁺Body3 产生子
 ● 所有ψ(3770)数据(8.0fb⁻¹)和单举MC样本于4月5日正式发布

»利用在阈值附近采集的粲强子样本,开展强子衰变研究,对

- 。检验并刻度理论计算非微扰效应的参数化方法和唯象模型, 。理解粲强子弱衰变机制,
- 。检验SU(3)味对称性和提高粲强子CP破坏的理论预言, 具有重要意义
- ◎ 课题按计划开展了粲强子强子衰变的精密测量工作,进展顺利。

