Computing & Software for SCT detector at BINP: status

A. Sukharev

Joint Workshop on future charm-tau factory hosted by University of Science and Technology of China

November 17th 2020

Detector overview

Requirements:

- Occupancy 300 kHz
- Good energy and momentum resolution
- High detection efficiency of soft tracks
- Best possible π/K and π/μ separations
- Minimal CP detection asymmetry

	subsystem	options		subsystem	options
1	Beam pipe	beryllium	2	Inner tracker	TPC, cGEM, Si-strip
3	Main tracker	drift chamber	4	PID system	FARICH, ASHIPH
5	Calorimeter	Csl, LYSO, LXe	6	Magnet	thin coil?
7	Muon system	Scintillators, RPC	,		

- Login servers and general services based on BINP/GCF
 - local computing farm
 - storage area
 - git, wiki, web, mail list...
- Computing resources of Novosibirsk Scientific Center
 - NUSC & SSCC supercomputers
 - ICT SB RAS storage
 - ...available via isolated 10GbE network (SCN)
- Dedicated network link to Moscow
 - 2 Gbps presently
 - direct access to LHCone network

- Login servers and general services based on BINP/GCF
 - local computing farm \rightarrow **improving**
 - storage area
 - git, wiki, web, mail list...
- Computing resources of Novosibirsk Scientific Center
 - NUSC & SSCC supercomputers
 - ICT SB RAS storage
 - ...available via isolated 10GbE network (SCN)
- Dedicated network link to Moscow
 - 2 Gbps presently
 - direct access to LHCone network

- Login servers and general services based on BINP/GCF
 - local computing farm \rightarrow **improving**
 - ► storage area → upgrading, moving from disk arrays to CEPH
 - git, wiki, web, mail list...
- Computing resources of Novosibirsk Scientific Center
 - NUSC & SSCC supercomputers
 - ICT SB RAS storage
 - ...available via isolated 10GbE network (SCN)
- Dedicated network link to Moscow
 - 2 Gbps presently
 - direct access to LHCone network

- Login servers and general services based on BINP/GCF
 - local computing farm \rightarrow **improving**
 - ▶ storage area → upgrading, moving from disk arrays to CEPH
 - ▶ git, wiki, web, mail list... → new design & software
- Computing resources of Novosibirsk Scientific Center
 - NUSC & SSCC supercomputers
 - ICT SB RAS storage
 - ...available via isolated 10GbE network (SCN)
- Dedicated network link to Moscow
 - 2 Gbps presently
 - direct access to LHCone network

- Login servers and general services based on BINP/GCF
 - local computing farm \rightarrow **improving**
 - ► storage area → upgrading, moving from disk arrays to CEPH
 - git, wiki, web, mail list... \rightarrow new design & software
- Computing resources of Novosibirsk Scientific Center
 - NUSC & SSCC supercomputers
 - ICT SB RAS storage
 - ... available via isolated 10GbE network (SCN)
- Dedicated network link to Moscow
 - 2 Gbps presently
 - direct access to LHCone network

No lack of computing resources for the present stage of the detector project

Offline computing infrastructure development

- Development of the simulation model of HPC system for the Super Charm-Tau factory
 - the goal is to estimate parameters and consider various options for computing farms and storage systems for the experiment
 - in cooperation with ICM&MG SB RAS
- Development of the offline data processing and analysis system based on the BioUML platform
 - in cooperation with ICG SB RAS
- Integration of the simulation model and the BioUML-based system

The prototype using container technologies is deployed at SSCC

The activity is supported by three-year RSF grant 19-72-20114

17.11.2020

Software for the project

HEP software framework

The Aurora framework

- using Gaudi
- build & configuration system inspired by ATLAS Athena
- lcgcmake system to build external packages
- nightly builds
- standard computing environment is Scientific Linux 7 x86_64, GCC8 + Python2&3
- Conventional and recently emerged HEP software tools:
 - ► ROOT, Geant4
 - FCCSW
 - DD4Hep

The Aurora framework

- using Gaudi
- build & configuration system inspired by ATLAS Athena
- lcgcmake system to build external packages ightarrow spack?
- nightly builds
- standard computing environment is Scientific Linux 7 x86_64, GCC8 + Python2&3
- Conventional and recently emerged HEP software tools:
 - ► ROOT, Geant4
 - FCCSW
 - DD4Hep

The Aurora framework

- using Gaudi
- build & configuration system inspired by ATLAS Athena
- lcgcmake system to build external packages ightarrow spack?
- nightly builds
- standard computing environment is Scientific Linux 7 x86_64, GCC8 + Python2&3 → GCC9, pure Python3
- Conventional and recently emerged HEP software tools:
 - ► ROOT, Geant4
 - FCCSW
 - DD4Hep

Standalone studies

- Parametric simulation tool for quick estimations of the detector response
- Background simulations with Fluka
- Gas mixture studies and electric field simulations with Garfield for TPC and DC
- CERN team develops TCP variant & adopts track finding algorithms from iLCSoft

Standalone studies

- Parametric simulation tool for quick estimations of the detector response
 - \rightarrow now incorporating into the framework
- Background simulations with Fluka
- Gas mixture studies and electric field simulations with Garfield for TPC and DC
- CERN team develops TCP variant
 & adopts track finding algorithms from iLCSoft
 → have a prototype, now incorporating into the framework

- Subsystems implemented to the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID (two options)
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)

- Subsystems implemented to the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID (two options)
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)

- Subsystems implemented to the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID (two options)
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)

- Subsystems implemented to the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID (two options)
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)

- Subsystems implemented to the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID (two options)
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)

- Subsystems implemented to the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID (two options)
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)

- Subsystems implemented to the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID (two options)
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)

- Subsystems implemented to the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID (two options)
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)

Geometry in Aurora

- Subsystems implemented to the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID (two options)
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)

We have geometry for at least one option for each subsystem

Geometry in Aurora

- Subsystems implemented to the moment:
 - Beam pipe & final focus magnets
 - Inner tracker (three options)
 - Advanced DC with StereoLayers
 - Particle ID (two options)
 - Crystal calorimeter
 - Simplified s/c coil
 - Muon system & yoke
- Geometry testing tools for CI (overlaps, material scans...)

We have geometry for at least one option for each subsystem

• Major To Do: production-ready magnetic field description

17.11.2020

Reconstruction

- 1st stage: individual subsystem level
 - in preparation by subsystem groups
 - Calorimeter and DC most advanced at the moment
 - testing various options and packages (GenFit, ACTS...)
- 2st stage: combining subsystems, PID...
 - $\rightarrow\,$ scheduled for next year
- no separate Digitization stage yet
 - integrated into reconstruction
 - based on standalone studies
- \bullet the Event Data Model is to be finalized \rightarrow EDM4hep

17.11.2020

Status of the software Event Generation & Data Analysis

- Base set of generators available, with common EvtGen interface
- Adopting Belle II recipes and solutions for analysis
- Base set of analysis algorithms ready:

Detector/Event Display

- Geometry display tool is ready
- Event display (DDEve-based) available, lots of things to improve
 - show events at subsystem segmentation level
 - draw tracks from G4 hits
 - ▶ ...

Conclusions

- Software & computing for the SCTF project at BINP improves continuously,
- despite of external difficulties, good progress achieved:
 - the software framework evolves
 - standalone things merge to the framework
 - new systems introduced
 - geometry generally ready, the primary goal is reconstruction now
- Lots of activities are going to be completed till the end of year
- The first official release is scheduled for the spring.

17.11.2020

Conclusions

- Software & computing for the SCTF project at BINP improves continuously,
- despite of external difficulties, good progress achieved:
 - the software framework evolves
 - standalone things merge to the framework
 - new systems introduced
 - geometry generally ready, the primary goal is reconstruction now
- Lots of activities are going to be completed till the end of year
- The first official release is scheduled for the spring.

Thank you for attention

17.11.2020