Hadron Spectroscopy from Lattice QCD

Ying Chen

Institute of High Energy Physics, Chinese Academy of Sciences, China

> HIEPA2015, USTC, Hefei Jan. 14, 2015

For more detailed reviews, please refer to:

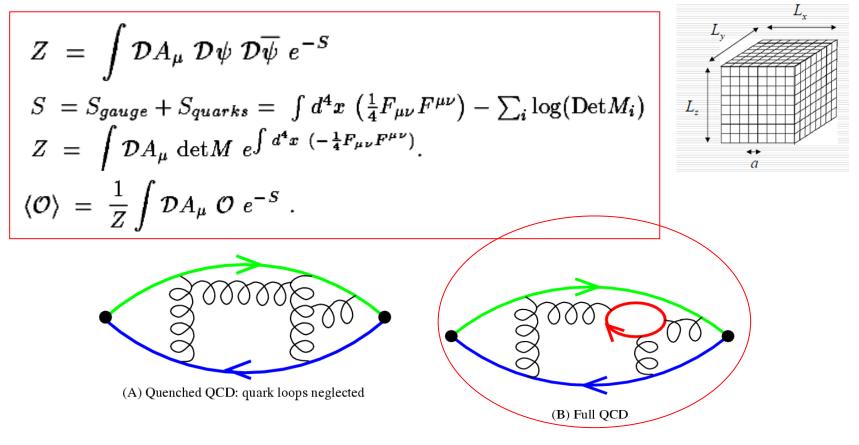
- "Hadron spectroscopy" Sasa Prelovsek, plenary talk given in the Lattice 2014 conference https://indico.bnl.gov/contributionListDisplay.py?confld=736
- "Hadron Spectroscopy" Sasa Prelovsek, arXiv:1411.0405 (hep-lat)

I. Introduction

Lattice methods on the spectroscopic study

II. Single-particle treatment of hadron spectrum from lattice QCD

Light hadrons below the threshold Charmonium spectrum (below open-charm threshold)


III. Resonance and bound state study

Bound state vs. X(3872),Ds*(2317), Ds(2460) Zc particles Resonances

IV Summary

I. Introduction

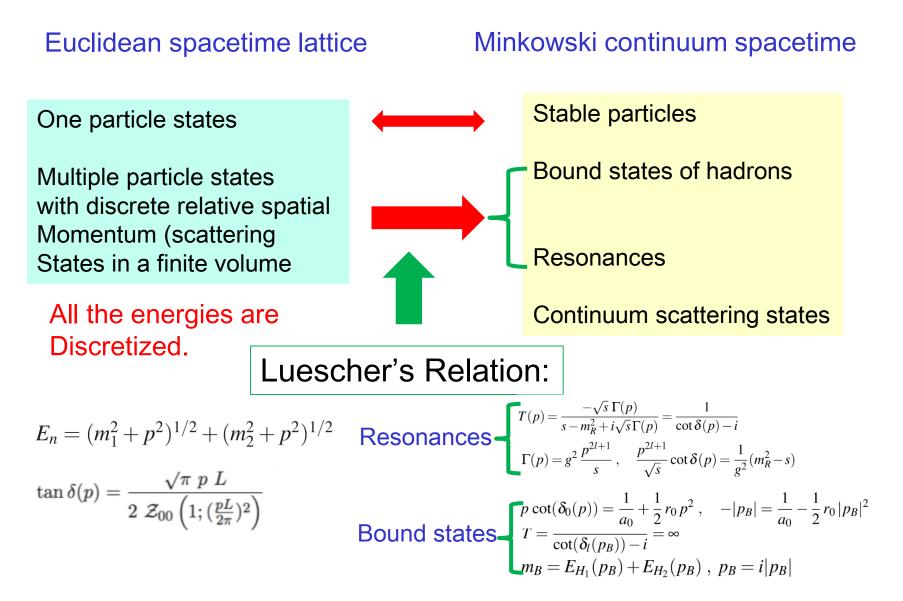
1. The lattice formulation of QCD---Lattice QCD

Dominated in the present era

2. The methods for the hadron spectroscoapy in lattice QCD

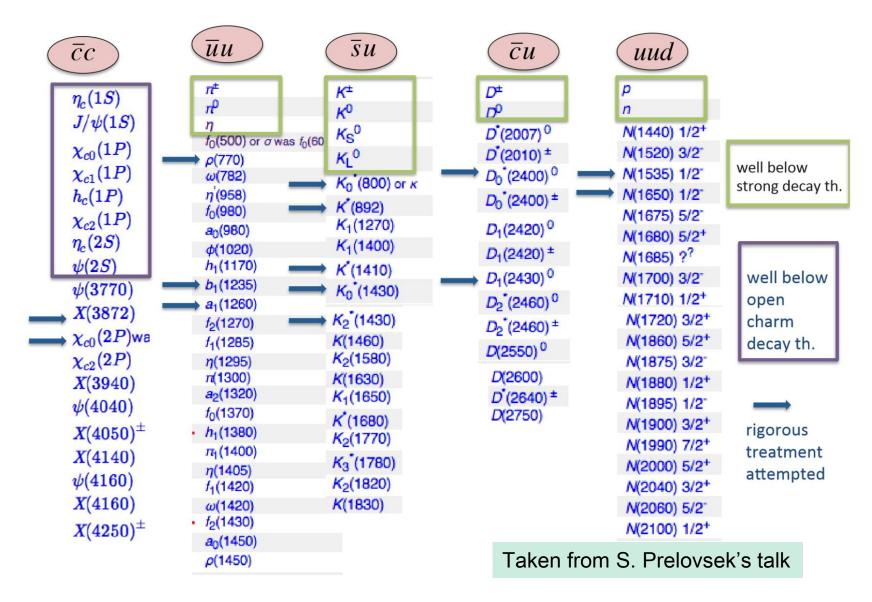
 Interpolation field operators --- starting point for a meson (-like) system with given J^{PC} and flavor quantrum numbers:

 $\mathcal{O}_i: \quad \bar{q}_1 \Gamma q_2 \quad [\bar{q}_1 \Gamma_1 q] [\bar{q} \Gamma_2 q_2] \quad [q_1^T \Gamma_1 q] [\bar{q} \Gamma_2 \bar{q}_2^T], \dots$


• Two-point functions --- Observables

$$\mathcal{C}_{ij}(t) = \left\langle 0 \left| \mathcal{O}_i(t) \mathcal{O}_j^+(0) \right| 0 \right\rangle$$
$$= \sum_n \langle 0 | \mathcal{O}_i | n \rangle \left\langle n \left| \mathcal{O}_j^+ \right| 0 \right\rangle e^{-E_n t}$$

In principle, all the physical states with the same quantum numbers $|n\rangle$ contribute to the two point functions $C_{ij}(t)$ as the eigenstates of the QCD Hamiltonian with the energy eigenvalue E_n :


- "one-particle state": $E_n = m_n$
- "two-particle state": $E_n = \sqrt{m_1^2 + \vec{p}^2} + \sqrt{m_2^2 + \vec{p}^2} + \Delta E, \ \vec{p} = \frac{2\pi}{L}\vec{n}$

Comparison of the hadron spectra

3. Present status

Experimental hadron spectroscopy --- most are resonances

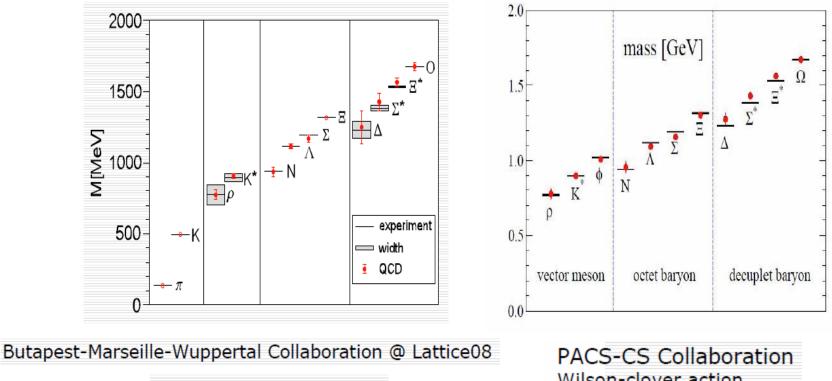
• Experimental hadron spectroscopy --- XYZ particles

TABLE 10: Quarkonium-like states at the open flavor thresholds.	For charged states, the C-parity is given for the neutral
members of the corresponding isotriplets.	—

State	M, MeV	Γ , MeV	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
(X(3872))	3871.68 ± 0.17	< 1.2	1^{++}	$B o K(\pi^+\pi^- J/\psi)$	Belle [772, 992] (>10), BaBar [993] (8.6)	2003	Ok
				$par{p} ightarrow (\pi^+\pi^- J/\psi) \dots$	CDF [994, 995] (11.6), D0 [996] (5.2)	2003	Ok
				$pp ightarrow (\pi^+\pi^- J/\psi) \dots$	LHCb [997, 998] (np)	2012	Ok
				$B \rightarrow K(\pi^+\pi^-\pi^0 J/\psi)$	Belle $[999]$ (4.3), BaBar $[1000]$ (4.0)	2005	Ok
				$B o K(\gamma J/\psi)$	Belle $[1001]$ (5.5), BaBar $[1002]$ (3.5)	2005	Ok
					LHCb [1003] (> 10)		
				$B ightarrow K(\gamma \psi(2S))$	BaBar [1002] (3.6), Belle [1001] (0.2)	2008	NC!
\frown				_	LHCb [1003] (4.4)		
				$B o K(Dar{D}^{\star})$	Belle $[1004]$ (6.4), BaBar $[1005]$ (4.9)	2006	Ok
$Z_{c}(3885)^{+}$	3883.9 ± 4.5	25 ± 12		$Y(4260) \to \pi^- (D\bar{D}^*)^+$	BES III [1006] (np)	2013	NC!
$Z_{c}(3900)^{+}$	3891.2 ± 3.3	40 ± 8	??-	$Y(4260) \rightarrow \pi^-(\pi^+ J/\psi)$	BES III [1007] (8), Belle [1008] (5.2)	2013	Ok
					T. Xiao et al. [CLEO data] [1009] (>5)		
$Z_{c}(4020)^{+}$	4022.9 ± 2.8	7.9 ± 3.7	??-	$Y(4260, 4360) \rightarrow \pi^{-}(\pi^{+}h_{c})$	BES III [1010] (8.9)	2013	NC!
$Z_{c}(4025)^{+}$	4026.3 ± 4.5	$\textbf{24.8} \pm \textbf{9.5}$??-	$Y(4260) \to \pi^- (D^* \bar{D}^*)^+$	BES III [1011] (10)	2013	NC!
$Z_b(10610)^+$	10607.2 ± 2.0	18.4 ± 2.4	1+-	$\Upsilon(10860) \rightarrow \pi(\pi\Upsilon(1S, 2S, 3S))$	Belle [1012–1014] (>10)	2011	Ok
				$\Upsilon(10860) \to \pi^-(\pi^+h_b(1P,2P))$	Belle [1013] (16)	2011	Ok
				$\Upsilon(10860) ightarrow \pi^- (Bar{B}^*)^+$	Belle [1015] (8)	2012	NC!
$Z_b(10650)^+$	10652.2 ± 1.5	11.5 ± 2.2	1^{+-}	$\Upsilon(10860) \rightarrow \pi^{-}(\pi^{+}\Upsilon(1S, 2S, 3S))$	Belle [1012, 1013] (>10)	2 011	Ok
				$\Upsilon(10860) \to \pi^-(\pi^+h_b(1P,2P))$	Belle [1013] (16)	2011	Ok
				$\Upsilon(10860) \to \pi^- (B^* \bar{B}^*)^+$	Belle [1015] (6.8)	2012	NC!

Brambilla et al., arXiv:1404.2723

State	M, MeV	$\Gamma,\ MeV$		Process (mode)	Experiment $(\#\sigma)$	Year	Status
Y(3915)	3918.4 ± 1.9	20 ± 5	0/2?+	$B \rightarrow K(\omega J/\psi)$	Belle [1050] (8), BaBar [1000, 1051] (19)	2004	Ok
				$e^+e^- ightarrow e^+e^-(\omega J/\psi)$	Belle [1052] (7.7), BaBar [1053] (7.6)	2009	Ok
$\chi_{c2}(2P)$	3927.2 ± 2.6	24 ± 6	2++	$e^+e^- \rightarrow e^+e^-(D\bar{D})$	Belle [1054] (5.3), BaBar [1055] (5.8)	2005	Ok
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	?7+	$e^+e^- ightarrow J/\psi \left(D \bar{D}^* ight)$	Belle [1048, 1049] (6)	2005	NC!
Y(4008)	3891 ± 42	255 ± 42	1	$e^+e^- ightarrow (\pi^+\pi^- J/\psi)$	Belle [1008, 1056] (7.4)	2007	NC!
$\psi(4040)$	4039 ± 1	80 ± 10	1	$e^+e^- \to (D^{(*)}\bar{D}^{(*)}(\pi))$	PDG [1]	1978	Ok
				$e^+e^- ightarrow (\eta J/\psi)$	Belle [1057] (6.0)	2013	NC!
$Z(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	??+	$\bar{B}^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle [1058] (5.0), BaBar [1059] (1.1)	2008	NC!
Y(4140)	4145.8 ± 2.6	18 ± 8	??+	$B^+ \rightarrow K^+(\phi J/\psi)$	CDF [1060] (5.0), Belle [1061] (1.9),	2009	NCI
					LHCb [1062] (1.4), CMS [1063] (>5)		
					D0 [1064] (3.1)		
$\psi(4160)$	4153 ± 3	103 ± 8	1	$e^+e^- \to (D^{(*)}\bar{D}^{(*)})$	PDG [1]	1978	Ok
				$e^+e^- ightarrow (\eta J/\psi)$	Belle [1057] (6.5)	2013	NC!
X(4160)	4156^{+29}_{-25}	$139^{+113}_{-65} \\ 370^{+99}_{-110}$??+	$e^+e^- \rightarrow J/\psi \left(D^*\bar{D}^*\right)$	Belle [1049] (5.5)	2007	NC!
$Z(4200)^+$	4196-30	370+99	1+-	$\bar{B}^0 \rightarrow K^-(\pi^+ J/\psi)$	Belle [1065] (7.2)	2014	NC!
$Z(4250)^{+}$	4248_{-45}^{+185}	177^{+321}_{-72}	??+	$\bar{B}^0 \rightarrow K^-(\pi^+\chi_{c1})$	Belle [1058] (5.0), BaBar [1059] (2.0)	2008	NC!
Y(4260) 4250 ± 9 108 ± 12 1	1	$e^+e^- ightarrow (\pi\pi J/\psi)$	BaBar [1066, 1067] (8), CLEO [1068, 1069] (11)	2005	Ok		
					Belle [1008, 1056] (15), BES III [1007] (np)		
				$e^+e^- ightarrow (f_0(980)J/\psi)$	BaBar [1067] (np), Belle [1008] (np)	2012	Ok
				$e^+e^- \rightarrow (\pi^- Z_c(3900)^+)$	BES III [1007] (8), Belle [1008] (5.2)	2013	Ok
				$e^+e^- ightarrow (\gamma X(3872))$	BES III [1070] (5.3)	2013	NC!
Y(4274)	$\frac{4293 \pm 20}{4293 \pm 20}$	35 ± 16	3_{5+}	$B^+ \to K^+(\phi J/\psi)$	CDF [1060] (3.1), LHCb [1062] (1.0), CMS [1063] (>3), D0 [1064] (np)	2011	NC!
X(4350)	$4350.6^{+4.6}_{-5.1}$	13^{+18}_{-10}	$0/2^{?+}$	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [1071] (3.2)	2009	NC!
Y(4360)	4354 ± 11	78 ± 16	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1072] (8), BaBar [1073] (np)	2007	Ok
$Z(4430)^+$	4458 ± 15	166^{+37}_{-32}	1+-	$\bar{B}^0 \to K^-(\pi^+ \psi(2S))$	Belle [1074, 1075] (6.4), BaBar [1076] (2.4)	2007	Ok
					LHCb [1077] (13.9)		
	10	e e 1.41	Sec. St. 1	$\bar{B}^0 \to K^-(\pi^+ J/\psi)$	Belle [1065] (4.0)	2014	NC!
X(4630)	4634_{-11}^{+9}	92^{+41}_{-32}	1	$e^+e^- ightarrow (\Lambda_c^+ ar{\Lambda}_c^-)$	Belle [1078] (8.2)	2007	NC!
Y(4660)	4665 ± 10	53 ± 14	1	$e^+e^- \rightarrow (\pi^+\pi^-\psi(2S))$	Belle [1072] (5.8), BaBar [1073] (5)	2007	Ok
Υ(10860)	10876 ± 11	55 ± 28	1	$e^+e^- ightarrow (B^{(*)}_{(s)} \bar{B}^{(*)}_{(s)}(\pi))$	PDG [1]	1985	Ok
				$e^+e^- \rightarrow (\pi\pi\Upsilon(1S,2S,3S))$	Belle [1013, 1014, 1079] (>10)	2007	Ok
				$e^+e^- ightarrow (f_0(980)\Upsilon(1S))$	Belle [1013, 1014] (>5)	2011	Ok
				$e^+e^- \to (\pi Z_b(10610,10650))$	Belle [1013, 1014] (>10)	2011	Ok
				$e^+e^- ightarrow (\eta \Upsilon(1S,2S))$	Belle [948] (10)	2012	Ok
				$e^+e^- ightarrow (\pi^+\pi^-\Upsilon(1D))$	Belle [948] (9)	2012	Ok
$Y_{b}(10888)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(nS))$	Belle [1080] (2.3)	2008	NC!

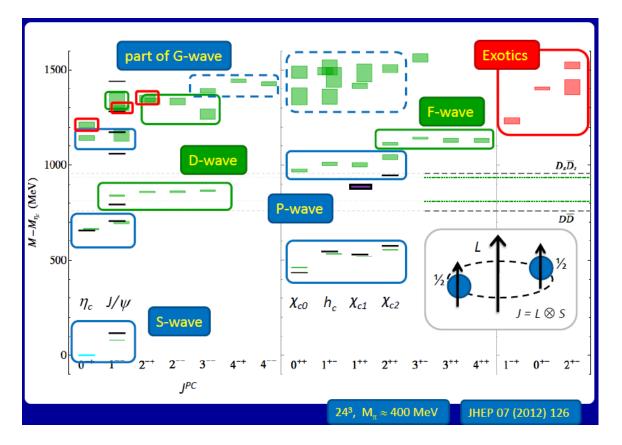

TABLE 12: Quarkonium-like states above the corresponding open flavor thresholds. For charged states, the C-parity is given for the neutral members of the corresponding isotriplets.

II. Single-particle Treatment of the Hadron Spectrum from Lattice QCD

- Just quark bilinear (for mesons) operators
- All the hadrons are taken as stable states
- QCD ground states are reproduced very well
- This treatment is going to the history for the near-threshold hadrons and those above the threshold.

1. Light hadron spectrum

Expemerimental spectrum is well reproduced by (lattice) QCD Single-particle treatment, all systematic uncertainties are under control..

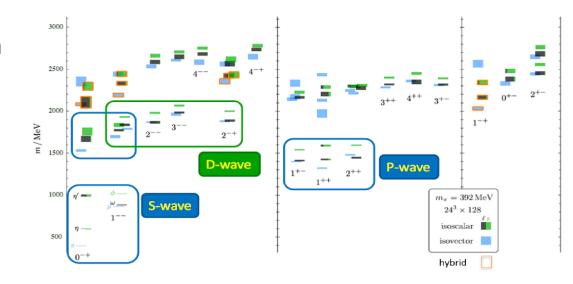


Wilson-clover action Nf=2+1 full QCD 3 lattice spacing and continuum extrapolated PACS-CS Collaboration Wilson-clover action Nf=2+1 full QCD 32³x64 a=0.09fm

hep-lat arXiv:0807.1661v1

2. Charmonium spectrum

- Latest charmonium spectrum from lattice QCD
- Single-particle threatment
- Spectrum compatible with the $n^{2S+1}L_I$ multiplet assignment in QM



Liu et al. [HSC], JHEP 07 (2012)126, arXiv:1204.5425

3. Isocalar meson spectrum

- Similar to charmonium
- In addition,

$$\begin{pmatrix} |\mathfrak{a}\rangle \\ |\mathfrak{b}\rangle \end{pmatrix} = \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} |\ell\rangle \\ |s\rangle \end{pmatrix}$$
$$|\ell\rangle \equiv \frac{1}{\sqrt{2}} \left(|u\bar{u}\rangle + |d\bar{d}\rangle \right)$$
$$|s\rangle \equiv |s\bar{s}\rangle$$

Dudek et al. [Hadron Spectrum Coll.] PRD88(2013)094505,arXiv:1309.2608

4. Baryon spectrum

Bulava et al. [Hadron Spectrum Coll.] PRD82(2010)014507, arXiv:1004.5072

Lin, CJP49(2011), arXiv:1106.1608 (a review article)

III. Bound State and Resonance Study

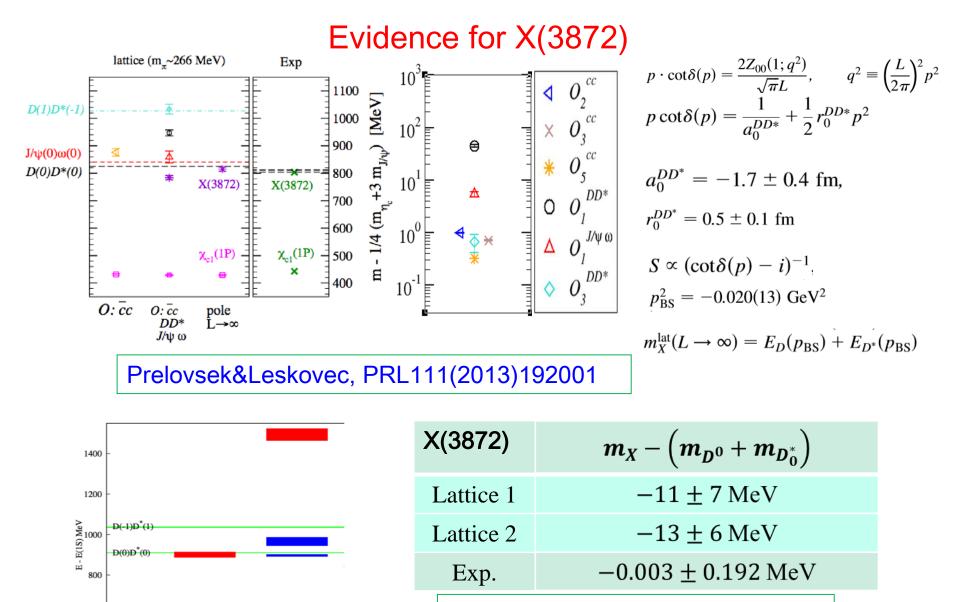
- Near and above threshold mesons
- Possible multi-quark states
- More operators (including multi-hadron operators)
- Hadron-hadron scattering
- Bound state identification and Resonance parameters

Experimental status:

- $I^G J^{PC} = 0^+ 1^{++}, M_X = 3871.68 \pm 0.17 \text{MeV}, \Gamma_X < 1.2 \text{ MeV}$
- Below but very close to the $D\overline{D}^*$ threshold
- Isospin violation suggests molecular picture of X(3872)

$$\frac{B(X \to J/\psi\omega)}{B(X \to J/\psi\rho)} = 0.8 \pm 0.3$$

• Radiative decays are compatible with the $c\bar{c}$ assignment $\frac{B(X \to \psi' \gamma)}{B(\to J/\psi \gamma)} \sim 2-3$


Latest lattice studies:

• Lattice 1: operators $c\bar{c}$, $D\bar{D}^*$, $J\psi\omega$

[S. Prelovsek and L. Leskovec, PRL111(2013)192001]

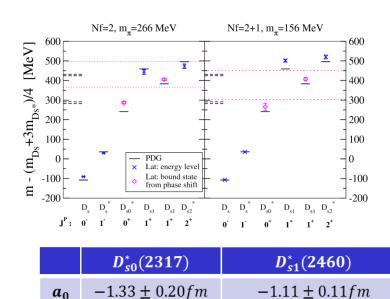
• Lattice 2: operators $c\bar{c}$, $D\bar{D}^*$

[C. DeTar and S. Lee, poster in Lattice 2014]

Exp. : A. Tomaradze et al., arXiv:1501.01658 (hep-ex)

DeTar&Lee. Lattice 2014

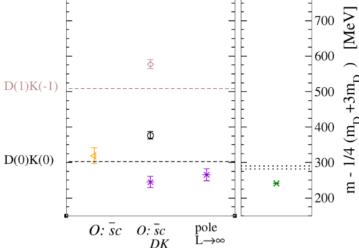
 $O: cc + DD^*$ (I=0)


O: cc (I=0)

600

400

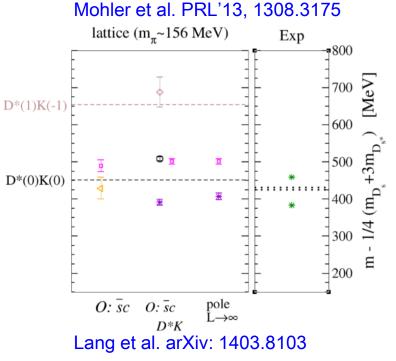
2. Ds*(2317) and Ds*(2460)


- Ds*(2317) and Ds*(2460) are slightly below the DK and D*K thresholds, respectively.
- QM predicts the masses of 0+ and 1+ Ds mesons are higher than these thresholds.
- They might be shallow bound states of DK and D*K in the s-wave.
- A large and negative scattering length a0 can be an indication of a shallow bound state.

 $0.10 \pm 0.10 fm$

 $0.27 \pm 0.17 fm$

 r_0



lattice ($m_{\pi} \sim 156 \text{ MeV}$)

Exp

800

Ξ

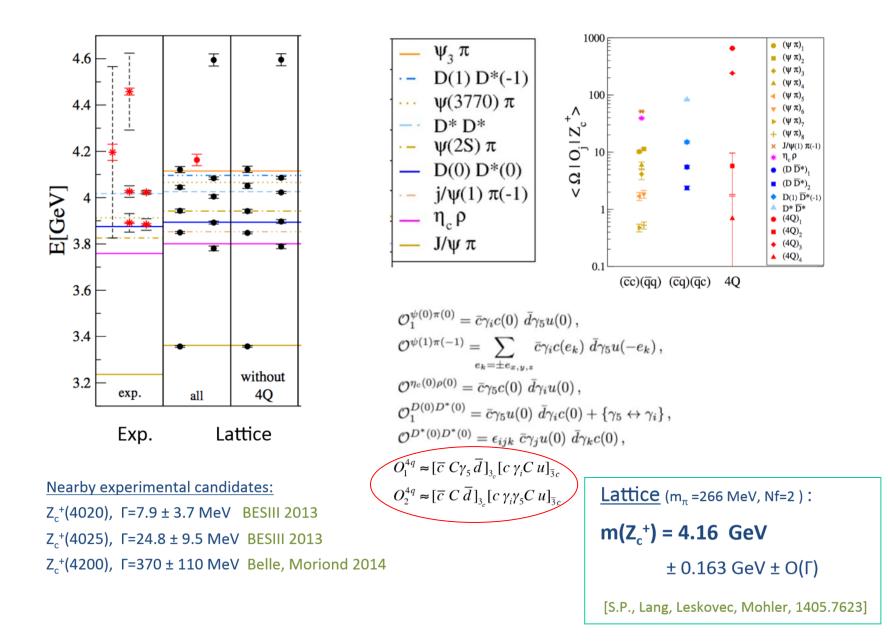


3. Z_c^+ particles

- These are charged particles with closed charm.
- If exist, their minimal quark configuration should be $c\bar{c}u\bar{d}$
- Can be the good multiquark candidates.
- Near $D\overline{D}$ threshold states.

particle	C	JP	decay	year	coll
Z+(4430)	-	1+	ψ(2S) π ⁺	2008	Belle, BABAR , LHCb
Z _c ⁺ (3900)	-	?	J/ψ π+	2013	BESIII, Belle, CLEOc
Z _c ⁺ (3885)	-	1+	(DD*)+	2013	BESIII
Z _c ⁺ (4020)	-	?	h _c (1Ρ) π ⁺	2013	BESIII
Z _c ⁺ (4025)	-	?	(D* D*)+	2013	BES III
Z+(4200)	-	1+	J/ψ π ⁺	2014	Belle
Z ⁺ (4050)	+	?	$\chi_{c1} \pi^+$	2008	Belle
Z+(4250)	+	?	$\chi_{c1} \pi^+$	2008	Belle

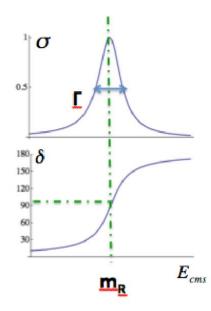
Taken from S. Prelovsek's talk

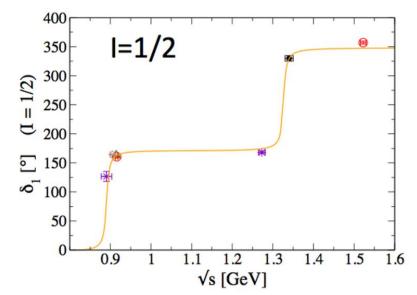

• $Z_c^+(4430)$ and $D\overline{D}_1$ scattering $(J^P = (0,1,2)^-)$

in quenched approximation the scattering length a0 indicates a weak attractive interaction. No bound state observed. [Meng et al., (CLQCD Collab.), PRD 09, 0905.0752]

- Search for $Z_c^+(3900)$ with $\psi \pi$ and $D\overline{D}^*$ operators $N_f = 2, m_{\pi}=266$ MeV. Only two-particle states found [Prelovsek and Leskovec, PLB 13, 1308.2097]
- $Z_c^+(3900)$ and $D\overline{D}^*$ scattering $(I^G J^P = 1^+ 1^+)$

 $N_f = 2$, three sea quark masses. the scattering length a0 indicates a weak repulsive interaction. [Chen et al., (CLQCD Collab.), PRD 14, 1403.1318]


- These are negative results for Z_c states.
- Search for Z⁺_c states in the energy E < 4.3 GeV with more operators N_f = 2, m_π=266 MeV. [Prelovsek et al., arXiv:1405.7623] tetraquark operators are added

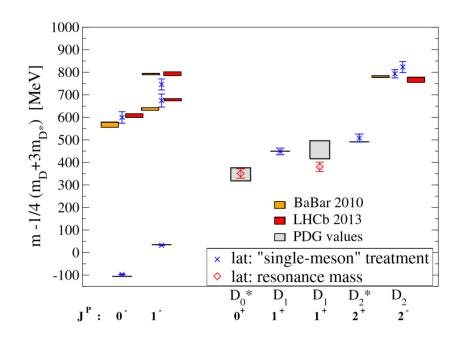

3. Hadron resonances

Breit-Wigner ansatz

$$T(p) = \frac{-\sqrt{s} \Gamma(p)}{s - m_R^2 + i\sqrt{s}\Gamma(p)} = \frac{1}{\cot\delta(p) - i}$$
$$\Gamma(p) = g^2 \frac{p^{2l+1}}{s}, \quad \frac{p^{2l+1}}{\sqrt{s}} \cot\delta(p) = \frac{1}{g^2} (m_R^2 - s)$$

- ρ resonance in the $\pi\pi(I=1)$ scattering
- K^* resonance in the $\pi K(I = 1/2)$ scattering (see the review of T. Yamzaki on Lattice 2014 (plenary talk).

	$m_{K^{ullet}(892)} \ [{ m MeV}]$	$g_{K^*(892)}$ [no unit]
lat	891 ± 14	5.7 ± 1.6
exp	891.66 ± 0.26	5.72 ± 0.06

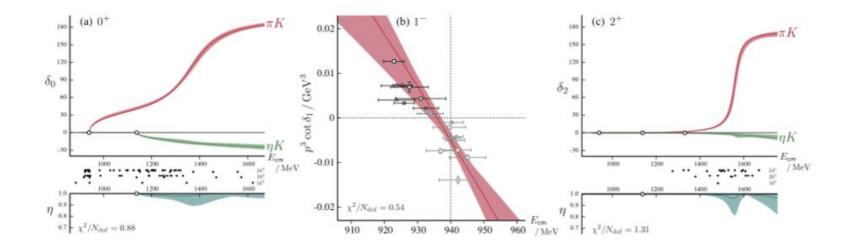

 D resonances in the Dπ and D*π scattering Mohler et al., PRD 13, 1208.4059

$J^{P}=0^{+}:\ D\ \pi$

D ₀ *(2400)	m - 1/4(mD+3 mD*)	g
lat	351 ± 21 MeV	2.55 ± 0.21 GeV
exp	347 ± 29 MeV	1.92 ± 0.14 GeV

 $J^{P}=1^{+}: D^{*}\pi$

D ₁ (2430)	m - 1/4(mD+3 mD*)	g
lat	381 ± 20 MeV	$2.01 \pm 0.15 \text{ GeV}$
exp	456 ± 40 MeV	2.50 ± 0.40 GeV


a₁(1260) and b₁(1235)
 Lang et al., JHEP 14, 1401.2088

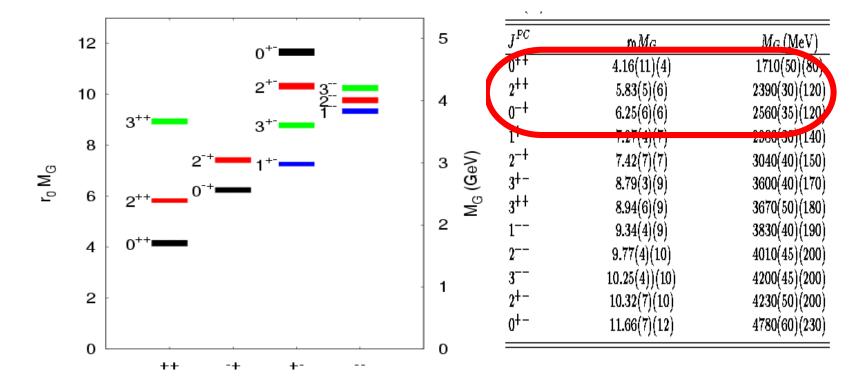
resonance	$a_1(1260)$			$b_1(1235)$	
quantity	$m_{a_1}^{ m res}$	$g_{a_1 ho\pi}$	$a_{l=0}^{ ho\pi}$	$m_{b_1}^{ m res}$	$g_{b_1\omega\pi}$
	[GeV]	[GeV]	[fm]	[GeV]	[GeV]
lat	$1.435(53)(^{+0}_{-109})$	1.71(39)	0.62(28)	$1.414(36)(^{+0}_{-83})$	input
exp	1.230(40)	1.35(30)	-	1.2295(32)	0.787(25)

Kπ and Kη scattering in coupled channels
 Dudek et al., PRL'14, 1406.4158; 1411.2004(more details)

Couple-channel treatment is used for the first time to the study of hadron-hadron scattering

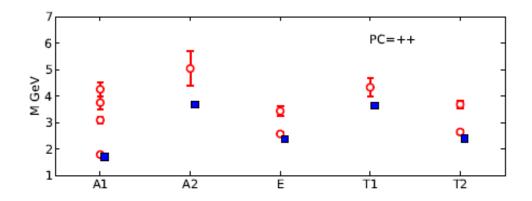
$$\det\left[\delta_{ij}\delta_{JJ'} + i\rho_i t_{ij}^{(J)}(E_{\mathsf{cm}})\left(\delta_{JJ'} + i\mathcal{M}_{JJ'}^{\vec{P}\Lambda}(p_iL)\right)\right] = 0$$
$$t_{ii} = \frac{(\eta e^{2i\delta_i} - 1)}{2i\rho_i}, t_{ij} = \frac{\sqrt{1 - \eta^2} e^{i(\delta_i + \delta_j)}}{2\sqrt{\rho_i \rho_j}}$$

IV. Conclusions

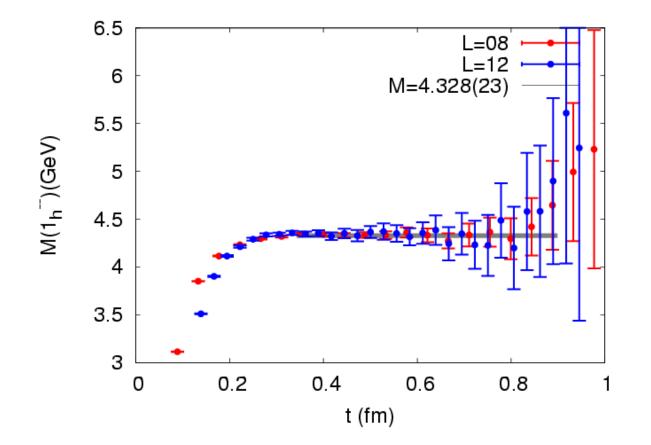

Last several years witness a rapid progress in the lattice QCD study on the hadron spectroscopy

- The lowest-lying hadron spectrum is well reproduced with rigorously controlled systematic uncertainties.
 ---testifying QCD?
- Quite a few hadron resonances are investigated through the hadron-hadron scattering study.
- Shed light on the nature of the near-threshold states such as X(3872), Ds*(2317), Ds(2460)
- There are still many challenges: scalar mesons glueballs and hybrids XYZ particles above thresholds

Thanks!


II. Glueballs on the lattice

- I). Glueball mass spectrum
 - Quenched LQCD predicts glueball spectrum Lowest-lying glueballs have masses in the range 1~3GeV


Y. Chen et al, Phys. Rev. D 73, 014516 (2006)

 Latest results of glueball masses from 2+1 flavor dynamical lattice QCD study, which confirm the prediction of the quenched lattice QCD.
 [E.Gregory et al, JHEP 10 (2012) 170, arXiv:1208.1858(hep-lat)]

Open circles are full-QCD results, and the filled squares are from quenched lattice QCD studies

Linearly combine the correlation functions with different r we can eliminate the conventional vector charmonium and get a relatively clean signal of the exotic vector meson.

