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Part I:
Introduction to Light-Front QCD
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Introduction

FT
20

Solving QCD in the non-perturbative regime from first principles is one of
the central tasks in nuclear physics
» quantum chromodynamics is the underlying theory of strong
interaction
» features: asymptotic freedom, confinement, chiral symmetry
breaking
» mass spectroscopy and structures of hadrons, deriving realistic
nuclear forces, useful tool for Standard Model and beyond, ...
Ab initio calculation of quantum field theory (QFT) remains one of the
most challenging problems in theoretical and computational physics.




Non-Perturbative Approaches

Lagrangian formalism Hamiltonian formalism

Euclidean space Minkowski space

correlators: (O(x1,--+,2p))
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Lattice QCD, DS/BSE
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tamed gauge symmetry access to distributions, real-time
The Hamiltonian and Lagrangian approaches are complementary to each
other.
“Quantum field theory is the way it is because it is the only way to reconcile
the principles of quantum mechanics with those of special relativity.”

— S. Weinberg, The Quantum Theory of Fields,
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Dirac’s Forms of Relativistic Dynamics  [pirac, Rev.Mod.Phys. ag]
Due to relativity, we have the liberty to choose the direction of the

dynamical evolution.
Dirac’s front form gives maximal number of kinematical operators (7/10).

prapiy pd PL A (P P?), 2t 220140 3 £ (2! 2?), B' = M,
Et=M"" F=M"' K =M" J = 1" M*

instant form front form point form
time variable t =10 ot & 0 + 3 A2 252 g2

quantization
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Light-Front Dynamics [Reviews: e.g. Burkardt '96, Carbonell ‘98, Brodsky '08]
Light-front quantization defines a system on the light front ¢t + z/c =0
» light-front energy: p—, momenta: (p*,p!,p?), where pT = p° F p3
» dispersion relation (cf. non-relativistic dispersion relation)
9 { PP = \/m, equal-time

o, =m° =
g p~ = (p® +m?)/p*, light-front

» spectral condition: p™ >0, p~ >0 [Leutwyler '78]

Pl/

AN i i) Implication

pz ’Iight—front vacuum is simple!! ‘
SV,

zt
E——

Dynamical evolution in 2 direction (27 = 20 + 23):

Y(ah)) = 5P (a™)).

8:c+ prea

Hadron spectroscopy and light-front wavefunctions:

(PTP™ = PP)lyn) = M |yn).
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Fock Space Representation
LFD is particularly suitable for Fock space expansion:
> intuitive picture;
> vacuum pair production/annihilation is suppressed;
> all three boost transformations are kinematical;

th P_], Z/anwh/n {li_axlﬂ)‘} )l{pzu)‘} >

The Fock sector projections 1/Jh/n({ku,$z, Aitn) = ({pi, Ai}nlton) are called
the light-front wavefunctions (LFWFs).

In Fock space, QFT becomes a many-body problem.

By working with Hic = P, P" = Ptp- — ﬁf we only need to deal with the
relative degrees of freedom.

LFWFs describes the intrinsic structure of hadrons. [Brodsky '98]
Thanks to the kinematical nature of LFD, the LFWFs are frame-independent
(boost invariant) and only depend on the intrinsic (boost-invariant) momenta.

Ep;‘—/PJr, EiL Eﬁuf:cipl = lezl,ZEu:O f'

1 1
“Hadron Physics without LFWFs is like Biology without DNA!"
— Stanley J. Brodsky

10/1



Light-Front Wavefunctions
LFWFs provides intrinsic information of the structure of hadrons:
» Structure functions are the square of LFWFs
» Form factors (e.m., gravitational ...) are the overlap of LFWFs

Alg®) = Z/an Z wp (LKL, wi A} ) ({kiL, i Nidy)
n f=1

> { /;u_ + (1 —;)dL, for struck partons

kil —xiq1, for spectators.
» Distributions (hadron tomography) [Ji '97&'98]

il =

ki <7, AL &by
[Lorce & Pasquini "11]

» LFWHFs are indispensable for exclusive processes in DIS
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Diagrammatic Representation [Weinberg 62, Carbonell ‘98, Brodsky '98]

Hamiltonian perturbation theory: zT-ordered diagrams
» all particles are on their mass-shells p? = m?;
> Iongitudinal and transverse momenta are conserved at each vertex;
03, /) — PN )= (>, —1); ¢ Z /),77/’ ) < 62 >, L

> the light-front energy is not conserved (' ofF the energy shell”);

> energy denominator for intermediate states;

no72 2
ky ; K ; = (k 4+ k ) Z M
_ 27 - 1 )
ko :q kb sp— M = T,
3= (ki +q + k) M is the mass eigenvalue

Extended to non-perturbative regime by introducing vertex functions I';,

Ly = (sn — M?)ibn.

T',, are also boost invariants.
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Light-Front QCD within Light-Cone Gauge (A" = 0)

1 —.
jYM = _ZF;LVCFHVC + I/J(Z],D - m)"/}
U
light-front quantization in light-cone gauge
[Dirac '56, Brodsky '98]

4

PL;QCD = %/ {w +%¢+AL (laL) A‘] 7t
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o SRED, & QED vertices QCD vertices
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Renormalization

e QFT is defined with bare parameters (equivalently, counterterms).
Renormalization relates these bare parameters to “physical” quantities.
The bare parameters may contain divergences which is allowed as they are
not physical observables.

e Renormalization depends on the regularization scheme.

Infinities may arise and the theory has to be regularized first.

e After renormalization, the theory should be free of divergences in all
sectors (e.g. bound states) even in the non-perturbative regime.
Ensuring exactly cancellation of divergences (within the numerical
precision) in the non-perturbative regime is often a challenge as finding
the solutions often relies on numerical procedures.

e Mass renormalization: imposing the physical mass M — mypp

e Coupling constant renormalization: imposing the physical coupling
on the vertex I's(k* ,2*) = gonv/Z at some chosen kinematic point
(k*,x*) or s*.

e Wavefunction renormalization: simply the normalization of the
LFWFs! 3= [dD,|¢,|> =1

15/1



Advantages of Light-Front Dynamics [Bakker '13]

©

©

©

©

Non-perturbative based on first principles in Minkowski space;

It provides access to real-time information of the quantum system.

Light-front boost transformations are kinematical,

In particular, LFWFs are boost invariant, i.e., frame independent.
light-front wavefunction # equal-time wavefunction in rest frame  [see e.g. Jarvinen '05]

LFWFs provide intrinsic information of the structure of the system;
© structure functions are the square of LFWFs [Lepage '80]
© form factors are the overlap of LFWFs

Light-front vacuum is simple;
Pl/’
o 6(pf +p3 +k7)
P2
o
Light-front kinetic energy resembles the non-relativistic one;
IF: M2 = (zi\/ﬁ?jumi) - P PR M2 =y, Bl P2
Light-front dynamics is directly related to the infinite momentum

frame in deep inelastic scattering.
16/1




Challenges in Light-Front Dynamics

® Transverse rotations are dynamical, [see, e.g., Carbonell '98]

P2|'l/1h(p, S, )‘)> :M}2L|¢h(p? S, )‘)>a
§2|¢h(p, 5, )‘)> :5(8 + 1)|"/}h(p7 S, >‘)>

spin operator: §% = —W?/P? WH = -1t M, Py
® Fock sectors are not gauge invariants;
® Zero-mode issue: p;-" =0;

LFQCD often offers a drastically different physical picture from
Lagrangian formalism. [e.g. Brodsky '10]

“Light-front QCD is not for the faint of heart, but for a few good candidates it
is a chance to be a Ideader in a much smaller community of researchers than
one faces in the major areas of high-energy physics, with, | believe, unusual
promise for interesting and unexpected results.” — Kenneth G. Wilson, The
Origins of Lattice Gauge Theory, 2005

Yang Li, lowa State U, June 3, 2016 17/1



Some Perspectives on Non-Perturbative LFQCD

LF Tamm-Dancoff coupled integral equations [Perry '90]
» systematic Fock sector truncation with sector dependent
renormalization schemes. [see, e.g., YL et al. Phys.Lett.B '15]
» wave-equation/few-body approach [Hiller, Karmanov, Chabysheva, Li]
Direct diagonalization: large sparse matrix eigenvalue problem
» many-body approach: DLCQ, BLFQ, ... [e.g., Pauli '89, Vary '10]
» in parallel with ab initio nuclear structure calculations [Barrett '13]
configuration interaction, Green function Monte-Carlo, coupled cluster ...
> need effective eigensolvers suitable for HPC [work in progress!]
Collective modes [e.g., Vary '05, Misra '00, More '12, Chabysheva '12]

» coherent basis, LF coupled cluster, ...

Transverse lattice [Burkardt, Dalley, Van de Sande, Chakrabarti]
Effective operator [Wilson, Gtazek, Perry]
» Bloch method [Wilson '76] "

» flow equation/similarity renormalization group (SRG) [Gtazek '94] |[m

Holographic light-front QCD [Brodsky 06}
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Part |l
Basis Light-Front Quantization
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PHYSICAL REVIEW C 81, 035205 (2010)
Hamiltonian light-front field theory in a basis function approach

J. P. Vary,! H. Honkanen,' Jun Li,! P. Maris,' S. J. Brodsky,? A. Harindranath,® G. F. de Teramond,* P. Sternberg,>*
E.G.Ng.’ and C. Yang®

Discretized Light Cone Quantization
Pauli & Brodsky c1985

J

Basis Light Front Quantization*

0(%) = X[ f.(F)a; + f2(F)a,]

o

where {a,} satisfy usual (anti-) commutation rules.
Furthermore, f,(X) are arbitrary except for conditions:

Orthonormal: _[ AE; )d*x Spr
Complete: 2 VAE; )=8(F-%)

=> Wide range of chorces for f,(x)and our initial choice is

L(F)=Ne" ¥, (p.0)=Ne"" f,. (P)x,(®)
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Steps to implement Basis Light-Front Quantization

» Enumerate Fock space basis subject to symmetry constraints and
regularizations; (keep the bookkeeping under control: cf. No-Core Shell Model)

Evaluate the LC Hamiltonian operator H, in that basis;
Diagonalization (Lanczos, QR, ...);
Evaluate observables using LFWFs;

vV v vvY

Repeat previous steps for new regulators, and extrapolate to
continuum limit.

Above achieved for QED test cases — electron in a trap
H. Honkanen, P. Maris, J.P. Vary, S.J. Brodsky, Phys. Rev. Lett. 106, 061603 (2011)

Improvements for QED test cases: trap independence, renormalization, ...
X. Zhao, H. Honkanen, P. Maris, J.P. Vary, S.J. Brodsky, Phys. Lett. B 737, 65 (2014)

Positronium at strong coupling in harmonic oscillator basis:  (first bound-state application)
P. Wiecki, YL, X. Zhao, P. Maris, J.P. Vary, Phys. Rev. D 91, 105009 (2015)

Heavy Quarkonium in a Holographic basis:
YL, P. Maris, X. Zhao, J.P. Vary, Phys. Lett. B 758, 118 (2016)
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Symmetries and Constraints

Symmetries & Constraints

Yb=B
:E: =0
Z(mi +5,)=1J,

k=K -
] Finite basis regulators
Y [2n+1m 1+1]< N, —

All J > J_ states obtained
in a single calculation

i

Global Color Singlets (QCD)
Light Front Gauge

Optional - Fock space cutoffs
H—H+ AH,, Thanks to the kinematical nature of , 4

consistent choice of basis and
truncation.
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Basis Light-Front Quantization (BLFQ) [Vary, Phys.Rev.C '10]

>

BLFQ adopts basis function expansion and basis regularization.
Optimal basis is the key to numerical efficiency. The basis functions can
be chosen to approximate the solution (e.g. AdS/QCD basis).

BLFQ exploits the kinematic symmetries of the Hamiltonian.
especially: preserves J, while allows separation of center of mass motion
BLFQ is designed as a many-body method in parallel with the
configuration interaction (Cl) method in strong coupling
non-relativisitic many-body problems.

We can learn from non-relativistic many-body problems.

BLFQ vyields large sparse matrix eigenvalue problems, which need to
be solved with modern high performance computing (HPC).

Time-dependent Basis Light-Front Quantization (tBLFQ).  [zhao '13]

Key insight: nonrelativistic and light-front Hamiltonian problems have

much in common. We need effective eigensolvers suitable for modern
HPC, similar to e.g., many-fermion dynamics (MFDn) in No-Core Shell
Model (NCSM).
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What motivates this BLFQ approach?

» Exact treatment of all symmetries (dynamical & kinematical)

> Success in ab-initio nuclear many-body theory (equal time, non-relativistic)
» High precision results from No-Core Full Configuration (NCFC) approach
» Advances in solving sparse matrix problems on parallel computers

» Growth in the size/capacity of parallel computers

25

Harmonic Oscillator with mQ2/2 = 1
"6hQ" configuration

8

Parameters of
the HO basis space

@

Rymg =[N/ma ]

Potential Energy
B

nax =6
configuration Nes

@

N _ =0 N=t
min NeZnet=0

5 5
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E|eCtI’0n [Honkanen '10, Zhao '14, cf. Hiller and Brodsky '98]

Physical electron is obtained from diagonalizing the (regularized &
truncated) QED Hamiltonian in the single-electron sector.
legn) =€) +lex) +lev7) + [ece) + fecen) -

Truncation up to e~ is equivalent to 1-loop QED correction. Note that BLFQ provides the

electron wavefunction.

Electron AMM (a.) — a benchmark calculation for QFT:

%FQ(Q2) = (eph(P+ ), T |JT(0)|eph(p),4), (ae = F2(0))

T T T T Noow
0.115 E 0.002

L Schwinger result = 0.1125395...

0.11 | 0.0015 7
o 0105 |
S ok 0.001 |

0.095 | even Ny /2 0.0005 |

odd Npax /2 x
0.09 £ even Npmax/2 fit ]
0dd g2 fit . E(z,t =0)
0 0.05 0.1 0.15 0.2 0 0.2 04 06
(Nmax = K—1/2)71/2

Largest calculation with basis dimension > 28 billion
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Positronium [Wiecki, YL, Zhao, Maris, Vary PRD 91, 105009 (2015)]

e Positronium is a gold-plated bound-state system in QFT.

e Positronia are obtained from diagonalizing the (regularized &
truncated) QED Hamiltonian in the eé sector.

|Ps) = |e€) + |eev)+|v) + |eeyy) + |eeee) + |eeeey) - - -
o one-photon exchange: neglecting the annihilation vertex
o use an artificially large coupling a = 0.3

Effective Hamiltonian approach is employed where Hg is obtained
from Bloch method with perturbative expansion.
[Krautgartner '93, Trittmann '97, Lamm '14, Wiecki '15]

Heff_§+il+%

The theory is solved in the single-particle 2D HO + 1D DLCQ basis
to demonstrate the scalability (esp. separation of c.m. motion).

Extensive extrapolation is employed to reach the continuum limit.
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Positronium in QED at Strong Coupling
Covariant Basis Light-Front Quantization (BLFQ)

2.001 2.005
q 23p2 0.05
] —_— - . ,
1 0.04
24 K=75
: K=45 —.—m—t—(ﬁ)@"’_/
1,999
11 K =85 o
E’ K=45
% 1.998 002
< 4 =03
= 1 b=0.Im, - - -
] Examine this region
1,997 - N with greater resolution
b — = in the next slide
1.996 UL LI
4 0.04 0.06 0.08 0.1
] K= im, =001 Almg
1.895 T X Pert. theory at a* o -
0 0.01 0.02 0.03 0.04 0.05 0.06
N pax

P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary, Phys. Rev. D 91, 105009 (2015)
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Positronium in QED at Strong Coupling
Covariant Basis Light-Front Quantization (BLFQ)

2.01

2.005

X Pert. theory at a*

©
@
|

1

] 1's,

1.97 frr e
0 0005 001 0015 002 0025 003

,Lt/mf

P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary, Phys. Rev. D 91, 105009 (2015); & to be published

28/1



Tomography of Positronium [Adhikari et al., Phys.Rev.C 93, 055202 (2016)]

Generalized parton distributions (GPDs) [Ji 97 & '98]
dZ_ iz Pt 2~ — 1
Ho¢.t) =4 [ e (Pa-don ot i) L
q=P — P, (=q"/PF t=¢
Impact parameter dependent GPDs: [Burkardt 01]

. d2A X7
q(z,by) = / (%; AL (2 ¢ =0,t=—A2).

. . -2
> partonic interpretation: [ d?b, fol da|g(z,b1)]" = 1.
» Light-front wavefunction representation [Brodsky '01, Diehl '03]

\ \\
%

)
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Heavy Quarkonium

First application of BLFQ to QCD bound-state problems

&,{({0

Ideal laboratory to study the interplay between perturbative and
non-perturbative QCD. [Brambilla '11]

> extensive experimental measurements: BaBar, Belle, CLEO, LHC ...
» many mysteries: XYZ, quark-gluon hybrids, ...
» important for: hadron reactions, SM parameters, ...

Physical picture: [e.g., Eichten '75, Godfrey '83]
» non-relativistic potential model: confinement plus Coulomb;

> relativity necessary for getting the hyperfine structure;

Theoretical approaches: [Brambilla '14] _‘
Lattice QCD, Effective Field Theory, Dyson-Schwinger/Bethe-Salpeter Equation, I[H]
Constituent Quark Model, ... ﬂf‘
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Effective Hamiltonian | [YL et al., Phys.Lett.B 758, 118 (2016)]
Effective one-gluon exchange from the Bloch method: [Wilson '74]
[¥n/qa) = la@) + ladg)+laagg) + ladaq) + laqaag) + -

R R
1
Hog = PH, H H
g =PHoP+P Q%(eiJref)fQHoQQ P

Bloch Hamiltonian is based on weak coupling expansion, which is only justified

at short-distance.
For long-distance physics, we adopt a confining potential inspired by
light-front holographic QCD [Brodsky '06]

V(¢1) = k*¢2 4 const. (¢ =zl —z)ry)

AdS/QCD: first approximation to QCD inspired by AdS/CFT
soft-wall AdS/QCD produces Regge trajectory [Karch "06] gl
LF holography relates AdS/QCD to LF Schrédinger equation

successful applications: spectrum, form factors, S-function, ...
31/1
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Effective Hamiltonian Il [YL et al., Phys.Lett.B 758, 118 (2016)]
Quark masses and longitudinal dynamics:

> Soft-wall confinement is purely transverse and were derived for

massless quarks
2 Ei +m? l;i +m§

1 . EL q
» Invariant mass ansatz: s 7 T T T

[Brodsky '08]

We proposed a longitudinal confinement:
> It generates distribution amplitudes that match pQCD asymptotics:

xe(x) ~z%(1 - J;)BPE(Q’B)(QQU - 1), Pé(a’b) Jacobi polynomial
> In massless limit, it restores the soft-wall model

» In nonrelativistic limit, it sits on equal footing with the transverse

confinement
transverse & longitudinal confinements form a 3D HO potential

» No extra free parameters

LF kinetic energy longitudinal confinement one-glue exchange
_ k:i +m.3 k:i—}—:'ﬂé A2 w1 e A -
Hyp= =2+ —521 + 6'C - iyl (e(l-2)0:) + W

dilaton field ~ e "~ new for heavy quarkonium!
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Confining Potential

Semi-Classical Light-Front Schrédinger equation: [Brodsky '05]
k2 +m?2 - . .
L V(R1, ) |Wn g (R, @) = M3 gq(F, )
z(1— )
» Holographic QCD or AdS/QCD [e.g., Erlich '05, Karch '06]
> inspired by the string/gauge duality or AdS/CFT [Maldacena '98]

> fields in AdSs directly matched to hadrons
> introduce dilaton field ¢(z) to break the conformal symmetry
soft-wall model: ¢(z) ~ x*2* produces the Regge trajectory

» Light-Front Holography relates the semi-classical LF Schrodinger

equation to AdS/QCD [Brodsky '06-'15]
(L 2Vzx(1—2)F. +— 2z (the 5" dimension)
1 " 1 12 3 /
Voo 590 ()4 197() - 5 ¢ (2)

> the soft-wall confining potential: V(¢1) = x*¢3 + const.
» connection established for arbitrary spin mesons and baryons

» application: spectrum, form factors, S-function, ...
33/1




Basis Representation [YL et al., Phys.Lett.B 758, 118 (2016)]
The Hamiltonian is analytically solvable without the one-gluon exchange:
» transverse: 2D HO in holographic variables (bnm(lﬂ/\/m)
> longitudinal: y,(z) = z2%(1 — x)%BPf(a’ﬂ)@x -1)
a = 2mg(mgq + mg)/K?, B = 2mg(mq + mg)/K?, Péa’b)(z) Jacobi polynomials
> mass eigenvalues:
M2, = (mg +mg)? + 25220+ [m| + £+ 3/2) + Gtz €0 +1)

nml —

We adopt these functions (soft-wall LFWFs) as the basis:

wh/qq(/a_,m,s, 5) = Z\I/h/qq(n,m,l,s,g) (bnm(ﬁ)m( x)

n,m,l
» implement LF holographic QCD for first approximation
» transverse 2D HO functions are scalable in the many-body sector
(factorization of c.m. motion) [YL '13]
> basis truncation: 2n + |m| + 1 < Nyax, ! < Liax i ﬁ
» quantum number identification (esp. mirror parity) [Soper '72] i‘m‘
= 1

We fix as and fit x, my to the experimentally measured masses.
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Mass Spectroscopy [YL et al., Phys.Lett.B 758, 118 (2016)]

o 108 e
(4160) L | =
42t 35 ] F 3p — B ]
’ t . Pp, 3P T2 3Gy
o W(4040) -| 1061 ‘&: —— __E= _ BBthresholdd
4. 38) 2 i s 3P 2'Ds 23p, 2°Ds i
. (38 b ) 1 3
I'Fy 1, I°F
L 10.4- Y(33) P Ik B
1Dy r e ==
3.8 W(3T70) 1'D; = A r _ = = ]
: f— = [ I(2P) —— v (ZPX2(2P)
st - 10.2- 3 Xo0(2P) 11D, Y(D) 13 B
r = DD threshold] r o —
7s) ¥2S) . r 7]
s hdIP) xa(1P) el 1 1w0f =% B
o L s, YOS
- = — = E FOS T an P
Yeo(1P) EI r xeo(IP) — 4
3.4 — ] F — =
9.8+ —
3.2 N L i
== This Work | 96
[ — JRTS) —_ PDG l [ — === This Work |
L nas) [ _ Yas ]
sSp— | Belle 9'4, n(1S) — PDG
e T T e e
charmonium spectrum in GeV bottomonium spectrum in GeV

Masses show weak m ; dependence due to the violation of rotational symmetry. We use boxes to
indicate the spread of masses (dashed bars: averaged masses).

as pe (GeV) K (GeV)  my (GeV) §M (MeV) Nmax = Lmax

cc  0.3595 0.938 1.522 52 (8 states)

. 24
bb  0.2500 1.490 4.763 50 (14 states)
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Mass Spectroscopy [YL et al., Phys.Lett.B 758, 118 (2016)]

LF Holography: Gutsche '14

o 108 e e L
Y(4160) [ [T === R ]
421 o B [ S, R VP G,

r W(A4040) - 10-6; ‘ﬁ — —_—— BB threshold™=
4.- 5 i. 4 r = 0GP 2Dy pap, 2D, J
o P i . 'E, P PR

[ ot 10.4F YG38) P —_ ==
D 1°Dy r :__EE
X(38 D, = i
3.8\~ YT3TT0) == G T [ _ P —
— (] J— 4(2P) — 2(2P)
EEEERLRy ey e 10.2- N e le(llﬂm&”h 11Dy YUD) 13 —
r = DD threshold] r o _ —
e RZES)] —_ . ] r . 7]
36 he(1P) ,, 2db 10 = ]
vai(1P) . 2s)
L = — = - r M(IP) ) 2(1P)
Yeo(1P) EI r — (P — N
3.4 — ] F —
— 9.81 = 4
== This Work L 7]
3.2 - L . 4
—— LF Holography 9'6, === This Work
3 708) JRATS) — PDG ] [ *:_Tj —— LF Holography 7]
[ s _ [ __Yas 4
M= Belle 9'4, (1S) — PDG
e L e T
charmonium spectrum in GeV bottomonium spectrum in GeV

Masses show weak m ; dependence due to the violation of rotational symmetry. We use boxes to
indicate the spread of masses (dashed bars: averaged masses).

as pe (GeV) K (GeV)  my (GeV) §M (MeV) Nmax = Lmax

ce 0.3595 0.02 0.938 1.522 52 (8 states) o4

bb  0.2500 1.490 4.763 50 (14 states)
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Mass Spectroscopy: Improvement [work in progress]

Running coupling implements important UV physics:

2 2
2y _ as(M;) V. = 4 dmas (Q7) _ TS
as(Q7) = PR 9="3 X 7@2 Ut Y U Ts Yy
L+ au(M2)Bo In (4052 )
IR Z
— — 108 ‘ ‘ —
sol s YD preliminary ] L = T by : preliminary ]

[ — == r . 0 1’Gs

[ nds) . 1 106F Ys) = BB threshold™|

b 2 i, = [ == = 2D i 2

= _ X5(3P) 2 23p, 2°Ds -
4L nos = (o2P) B xalP) ] [ 3 S i VEs gy LR

L — xes» — pp, | 1040 pED) L -
38; W(3770) ==yl B [ - —= %} 1

- = — Yo (2P0

b T o 10.2- s e et 11D, YUD) 13p, B

r DD threshold) r LDy —_——

F —_ U(2S) ’ 7
3.6 (25 xe(1P) - r —

L he(1P) Yei(1P) 10.- ,ﬁ] Y(28) 7

- = f— - r (P (1pKe(P)

E yal1P) B33 r — P — — 7]
34- — 7 et o J
32 ! : 5 [ B

L IHAS) =3 This Work 9.6r

[ - —_ PDG 7 [ — — == This Work 7|

g m 1 g4l Y09 ]

e Belle AL mas) — PDG

[ T T T T T e e e 0 1= 17 0F 17 2% 27 2 3— 3+ 37 47
charmonium spectrum in GeV bottomonium spectrum in GeV

The running coupling improves the one-gluon exchange kernel. The m j-dependence of masses
becomes weaker. The overall mass spectrum is improved: §M = 28 MeV (charmonium) 43 MeV;
(bottomonium) (Nmax = Lmax = 16, a5(0) = 0.6)
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Model Parameters and Regulator Sensitivity

> For HO basis, Qx ~ b/v/Nmax, Quv ~ b/ Nmax. [Coon '12]
» Positronium: continuum limit Npax — 00, Lmax — 00, ptg — 0 can be
reached through successive extrapolations. [Wiecki '15, Vary '15]

> Quarkonium, Nmax = Lmax = 87 167 24
> K, mq refitted and turned out to be very close (< 1% changes).
> The r.m.s. mass deviations are also comparable.

as g (GeV) kK (GeV) my (GeV) §M (MeV) Nmax

cc 0.3595 0.963 1.492 56 (8 states)

_ 0.02 8
bb  0.2500 1.492 4.758 55 (14 states)

c . . 1.51 2
CE 0.3595 0.02 0.950 510 52 (8 states) 16
bb  0.2500 1.491 4.761 51 (14 states)

c . . 1.522 2
ce  0.3595 0.02 0.938 5 52 (8 states)
bb  0.2500 1.490 4763 50 (14 states)

c 0.979 1.587 28 (8 stat
“as@Q 002 (B states) ¢

bb 1.451 4.890 43 (14 states)
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Charge Form Factors [YL et al., Phys.Lett.B 758, 118 (2016)]

Form factors are defined from the matrix
elements of the “good current”,

L0 (@) = (P NI (0)|PA)/(2PT),
where g = P/ — P, Q% = —¢>.

5L s B B s B s 10.——

—
[ Ne ] [— m ]
[ 3 [ ]
3. [ ]

Sk N; L X0
3T 3 e .
~2r ~,F ]
gt g4/ ]
$or $ .
S <o 2f Bra(Q -
r L/ CiNex8TatO(0%)f ]
r I ]
[/ ol b
ol L L L ] Coo v b ]
0 5 20 10 20 30 40 0

@ (Gev?) Q@ (GeV))

» Impulse approximation with only the two-body contribution.

» GK prescription for (axial-)vectors [Grach '84] il
» pQCD asymptotics: Q?Fp(Q?) ~ 8mas f3 [Lepage & Brodsky '80] Im‘
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Charge Radii [YL et al., Phys.Lett.B 758, 118 (2016)]

The charge radius:
0
(r*) = —63T?2G0(Q2)|Q2_>0_

> test long-distance physics (cf. decay constants)

LT B I I I I | I ]

0.4 4 Lattice 1 Ninax =24 —|

[ v DSE © ° T KNM extr. ]

Co This Work T ]

E 03 & + -

=, . { I o]

w [* I ]

=1 C A4 1 < L4 -
5 s

g 02¢ s T ® .

5 L I ]

E T o o ]

0.1 T .

C_| | | | | T | | | | | 1 ]

ne JW xo n. ¥ m Y xw M Y Xio

[DSE: Maris '07; Lattice: Dudeck '06]
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Decay Constants [YL et al., Phys.Lett.B 758, 118 (2016)]

(0lpy"v°¢| P(p)) =ip" fp,

— o r+
O]y 9|Va(p)) =e\(p)mv fv J
e I | I I I I T T I I I I I I I I ]
- <— Nmax €XIr. + ® PDG —
C N =24 T A lattice T
=08 = =+ v DSE —
8 ; __ i I & This WorkE
@ 06— T+ L 85T 3 11 a
S [ 1 I ¢ i ]
g Lo g T 1
S 04 & * 5 —+ —
> [[ve= O I ]
g C A @ T 1
8 02 + —
C ° . T ]
C T o 2
0= | | | | | | T | | | | | | ? | $ ?_
Ne e I WYGTI0) X mom oMy Y Y Y'Y(D)Y(E@D)xer X

[DSE: Blank '11, Lattice: HPQCD, '10-'15]
> Test “wavefunction at the origin” (cf. charge radius)

Results are in reasonable agreement with experimental measurements as well as
Lattice and DSE calculations where available.

> Results were extrapolated from Npax = Lmax = 8, 16,24, and there is some
residual regulator dependence.
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Diffractive Vector Meson Production [Chen, in preparation]

Diffractive VM production in DIS is an important tool for studying the
small-z gluon distribution at a future Electron-lon Collider.
y* J/p

In color dipole picture: [Mueller '94, Nikolaev '91]
q * dz
Y*p—=Vp _ 2 it _ -
AT.L - d Tl 'l/)v1/’ T LAqq(zv T, AJ_)
: ’ 4dm ’
P U I (¥v),,. - overlap of photon/vector meson LFWFs
Initial study: ep collision with IP-Sat for A, [Kowalski, Teaney '03]
! 7'p->Jip - 7'p->J/p 102 _reiie
Rl 22 AR AR APARAE Preminany zeus |G @V £ W=90GeV
ko 0 005 7] 0 0. \
\ 32 3.1
a70 5 107
o224 A 10k 4
E .
% 3 % 10 =
g ] 3 ¢ 1 HI |
5 ) F o \ E!
s . o o ZEUS {8
EADGEV(W(lSOGEV N FW=90GeV Boosted Gaussian ¥y
[ Boosted Gaussian Wy " Boosted Gaussian Py 8 Gaus—LC Wy
|- Gas-Lew [ cas-rewy N BLFQ ¥y
° ‘?T\‘?"‘F‘?\*“\ N B mron o d 100 L preliingry
0. 02 04 06 08 1. 12 0 02 04 06 08 1 1 [N LS
Il (GeV?) 1l (GeV?) Q+Mjy,  (GeV?)

1y: boosted Gaussian, Gaus-LC (m. = 1.4 GeV) vs. BLFQ (m. = 1.35 GeV)
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Diffractive Vector Meson Production [Chen, in preparation]

The diffractive VM production tests BLFQ over a dynamical range not
covered by the mass spectroscopy and decay constants.

L e e e e e e I o e e L e e e e AL S e
3 0 Ty @2s)/0y, ZEUS 1 r O iasious ZEUS R
L ] L KMW m,=135 GeV ]
— = = - KMW m=1.4 GeV
[ —— BLFQ ‘l‘v T [ ceeeee KMW me=1.5 GeV ]
0.8 7 0.8 — — Amir m¢=1.27 GeV 7

L ---- Boosted Gaussian ¥y | L A 14 Gev b
...... mir me=1.4 Ge

L - - - - Soyez m=14 GeV q
L RS m.=1.27 GeV Bl

06 RSme=14 GeV . -

c | l

0.4F 5 -

02k [ .
preliminary 1 preliminar

[ | % l
0|||||||||||||||||| 0.L— T T

0 2 60 0 40

0 40 20

Q2 (GeV?®) Q2 (GeV?)
Provides access to excited states that are well constrained by physical
observables (mass spectrum, decay constant etc).
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Generalization to Baryons [work in progress]
The effective interaction can be generalized to the baryon sector:

eﬁ—zpaﬁm -Pr 42 ZVJEH > Vi
abc

» The soft- waII confinement: Vyy = Zxaxb Fol —Tp1)%

» The one-gluon exchange a,b

Jacobi coordinates on the light front (three-body example):

longitudinal: = = 23, x = Izls'

transverse momenta: k| = (1 — a3)fp3. — x3(P1L + Poy), Ri =

T1T1 | —T2To )
z1+x2 )

T1P21 —2P11 .
T1+T2

transverse coordinates: 7| = 73| — pL =711 —To,.

» Taking advantage of the kinematical nature of light-front boosts
Vow = "‘141'(1 - :l:)f‘i + ’434(1 —x)x(1— X)ﬁﬁ_

> The longitudinal confinement

Vi = — iy |0 (21 = 2)02) + £

(m1+ma+ms3 T

44/1



Part 111:

Non-Perturbative Renormalization
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Diagrammatic Representation [Weinberg 62, Carbonell ‘98, Brodsky '98]

Hamiltonian perturbation theory: zT-ordered diagrams
» all particles are on their mass-shells p? = m?;
> Iongitudinal and transverse momenta are conserved at each vertex;
03, /) — PN )= (>, —1); ¢ Z /),77/’ ) < 62 >, L

> the light-front energy is not conserved (' ofF the energy shell”);

> energy denominator for intermediate states;

no72 2
ky ; K ; = (k 4+ k ) Z M
_ 27 - 1 )
ko :q kb sp— M = T,
3= (ki +q + k) M is the mass eigenvalue

Extended to non-perturbative regime by introducing vertex functions I';,

Ly = (sn — M?)ibn.

T',, are also boost invariants.
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Renormalization

e QFT is defined with bare parameters (equivalently, counterterms).
Renormalization relates these bare parameters to “physical” quantities.
The bare parameters may contain divergences which is allowed as they are
not physical observables.

e Renormalization depends on the regularization scheme.
Infinities may arise and the theory has to be regularized first.

o After renormalization, the theory should be free of divergences in all
sectors (e.g. bound states) even in the non-perturbative regime.
Ensuring exactly cancellation of divergences (within the numerical
precision) in the non-perturbative regime is often a challenge as the
solutions often rely on numerical procedures.

e General principles:
o Mass renormalization: imposing the physical mass M — mpp
o Coupling constant renormalization: imposing the physical coupling
on the vertex Fg(_’j_,x*) = gphﬁ at some chosen kinematic point
(k*,2*). i
o Wavefunction renormalization: simply the normalization of the
LFWFs! 3= [dD,|¢n|> =1
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Scalar Yukawa Model [YL et al., Phys.Lett.B 758, 118 (2016)]

& =010y —mPxTx + 20,9" — $120?

+goxxe + omx X + 2okt + -

where m = 0.94 GeV, p = 0.14GeV, a = ¢g?/(167m?). g and dm? are

renormalization parameters yet to be determined.

Yukawa potential: ¢(r) = —ae™H" /7.

Pauli-Villars (PV) regularization with PV mass fipy [Brodsky '01]

Vacuum instability [Baym '60]
> exclude “anti-chion” degrees-of-freedom

> similar to the quenched approximation
> purely for simplicity (cf. Higgs field)

v

A2

v

Fock sector expansion of a physical “chion” state,
1) = 1) + Ixe) + [xe) + Ixppe) + -
> Fock sector truncation (“light-front Tamm-Dancoff") [Perry '90]
> to justify the sector truncation, we compare observables from
successive truncations up to four-body (x + 3¢).

Yukawa: Karmanov '12, QED: Hiller '98, Karmanov '08, Chabysheva '10
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Fock Sector Dependent Renormalization [Karmanov '08]

Sm2_ GB(n—1+1) I‘L\/\/\fgs(nfm)

n is the maximum number of dressing bosons allowed by the truncation, [ is
the number of spectators.
The general Fock sector dependent counterterms:

> dmy = gg1 = 0 (no dressing/coupling allowed by the truncation)
> 0m3,...,0m% 1 and gu2,....gs(n+1) appear in the (n + 1)-body truncation.

> The sector dependent counterterms are determined inductively.
e.g., 2-body truncation — 3-body truncation — 4-body truncation ...

> Resemblance to the perturbative renormalization [Zimmermann '69]
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Fock Sector Dependent Renormalization [Karmanov '08]

Mass renormalization condition:

I I ki x g I om?
{1 = LT = + {1
1
dx d?k n n
=X P [ s [t 2 s,0) + o,
= 0
Coupling constant renormalization: [Karmanov '10]

Pjﬁﬂjé_P:Jff Mﬁ\;ﬂ\% e
Ty Iy RN SR N

IPI 3-point vertex self energy

vz € (0,1), FQ(n)( , ) = g\/Il(n 1) (’%2 + % = m2).

Wavefunction/field strength renormalization Iy + Io +--- + I, = 1,
where I, = /le|¢l(k1,k2,... k)|
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Eigenvalue Equation

I I Iy A\/v\l
! _ ! N +
i f = i f e it
om? Js
oo N oo
{7} = {1} + i |
9s dm?
I3 s




Eigenvalue Equation
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Eigenvalue Equation
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Two- and Three-Body Truncations [vi etal, Phys.Lett8 758, 118 (2016)]

Two-body truncation solution is equivalent to the leading order

perturbation theory.

I (ky,2) =g, 3P (ki,z) = g/(s2 —m?).

» Landau pole for a > ay, = 2.63

Three-body truncation is solved numerically from a linear inhomogeneous

integral equation.

» Bare coupling “constant” gz3 depends on z, as a consequence of the
violation of the Lorentz symmetry.

» Fredholm singularity at a = ap ~ 2.19

[Karmanov '12]

fid
T
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[il 1ev
— 011

T

T
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T
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- — [ weeeeee 0.25 ]
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[ — 949 a=10 4 2r 1.0 ]
> - [—— 20 ]
=t ]
,E/ a=05 1 a.r -2

L £1
=025 b [ ]
a=0.1 7 [ ]
L 1 of ]
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0.2 0.6 0.8 1.
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20¢ Ylk1, ) GV Yalk1, ) 1GeV]

a=0.25

Utk x) IGev"J

a=1.0 a=20
The two-body LFWF 2 (k ., x) at selected couplings
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An important cross-check is the relation I; = Z, in three-body:

S(p?) =
PIm TR
—1
1— Iy Iy B I3 I3 ZX: [1_{%22(]32)]1,2_)“12

Non-perturbative, numerically evaluated:

1S5 1 rrrr T T T T
[ NraaXNigx e?
[ I |- 16xi6 = 24x24 - 32x32 ||
r )
F o ZQ |-o- 16x16 -m- 24x24 -0~ 32x32 [
1. i

B T M N B

0.5

\\\\\\\\\\\\\\\\\\\\\i\\\\\:
% 1.

1.5 2. 25
0%
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Four- BOdy Truncation [YL et al., Phys.Lett.B 758, 118 (2016)]




Four- Body Truncation [YL et al., Phys.Lett.B 758, 118 (2016)]

: sm2 T (k. ! ,
DI (ke 2) = gog D 4 2T (ko )+Z(—1)J

1—x S9—m?2 ;
J'=0

11—z

d?k', /
[ s | G el o e k),
0

» The renormalization conditions have to be imposed numerically.
> On-Shell coupling constant renormalization gives mass poles

o) lim ! 05'(4) ,x, k' ~ lim !
w ( + ) s5—m? 82—77'7,27 3 ( L® ) s5—m? 82—m2

> Isolate the singularities:




Four- BOdy Truncation [YL et al., Phys.Lett.B 758, 118 (2016)]

6m2 F0(4) k* , L ! v
DOk ) = g+ 2 T2 LD Sy

l—z s5—m? :
J'=0

da’ CE, o o
2.’1’,"(1—([;—:1:’)/(2 )3 933(1 x) ! (klﬂz k )

o~

» The renormalization conditions have to be imposed numerically.
> On-Shell coupling constant renormalization gives mass poles

o) lim ! 05" (4) ,x, k' ~ lim !
w ( ) ) 32 m232—m27 3 ( 1,7 ) 32 m282—m2

> Isolate the singularities:
(Ib a b
1 S ~4
) = ! e +
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Four- BOdy Truncation [YL et al., Phys.Lett.B 758, 118 (2016)]

(st F0(4) k* , L ! -/
P00 (k) = gy + 278 T2 LD 5m gy

l—x s5—m?

da’ d?k’,
e | e () 0 kL),

o7

» The renormalization conditions have to be imposed numerically.
» On-Shell coupling constant renormalization gives mass poles

0(4 . 1 04 (4 . 1
2( )(kj_,x) ~ lim  — L 3j i )(k:* z, k| ,z') ~ lim -— -
s5—m?2 s5 —m s5—m?2 s5 —m

> Isolate the singularities:

singular part regular part
ah a - b
= :ﬁ +
= L L)
42 FQ




Four- BOdy Truncation [YL et al., Phys.Lett.B 758, 118 (2016)]

2 10(4) (1.% 1
o) (1) , 0m3 I'y (k1. 2) i
= E -1

2 ( ) 2):2 ¢ 1 —r (55 —m2 + j,:O( )

T a 42K,

€z z’ 05’ (4) k* k 7
/ 2:5’(1—:5—33’)/(277)3 9u(155) V3 (KL, 2, ),
0

» The renormalization conditions have to be imposed numerically.
» On-Shell coupling constant renormalization gives mass poles

1 1
0(4)( ,x)~ lim —— gj(4)( o, k)~ N

2 g5 —m?2’ e —m2
32 m 2 32—)771 2

> Isolate the singularities:
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Numerical Solution [YL et al., Phys.Lett.B 758, 118 (2016)]

e Inhomogeneous linear coupled integral equations

e Approximate the integrals by Gauss-Legendre quadratures
dn~ eradNangN12fx

e Implement an iterative procedure in Fortran w. MPI/OpenMP
typically 50 ~ 100 iterations

e Numerical calculation on Hopper at NERSC
largest single run: 1680 cores x 18 hours

A representative two-body LFWF, 15 (k, , x):

Image credit: NRSC
a=1.0, m =0.94GeV,
u=0.14GeV, ppy = 15GeV
Grid size:

Nigx = 477 Nraq = Nang =20

=
727277 TS+ ....
e e 5 i g
e T T T
B e e e
e e i
= e i
i

4 4 77
...‘f..."..:...




U\/ Convergence [YL et al., Phys.Lett.B 758, 118 (2016)]

0.8

0.6

0.4

0.2

L T T L T T 1 L T L T T T
=== Nip=23, Nrag=Nang=12 10 F == Nix=23, Niag=Nang=12 o0
a=1. a=2.
— Nig=31, Niag=Nang=16 — 0.8 = Nin=31, Nrag=Nang=16
7 F — Nix=41, Niag=Nang=20 b
LR 0.6 h__ o
. 0.4 -
I b e b b
— e —
0. Iy
N I3 - Fo——mm—— B
I I I I I o1k
2 4 8 16 32 64 1 2 4 8 16 32 64
Pauli-Villars mass (nucleon mass unit) Pauli-Villars mass (nucleon mass unit)

I,, well converge with respect to ppy for sufficiently fine grid.

Large coupling « or large Pauli-Villars mass ppy may need finer grid
to achieve convergence.

In our calculation, the grid is independent of pipy.
In practice, UV regulator-dependent meshes are widely used.

In practice, we take ppy = 15 GeV with the numbers of grid points
fo = 4]-7 Nrad = Nang = 20.
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Fock Sector Contributions [YL et al., Phys.Lett.B 758, 118 (2016)]

— 2
In:/Dn |¢n(k1ak27"'kn7p)| ) § I, =1
n
14 AL I B B B e e B s 14 LIS B s e e s s e e e
i PV mass15GeV | i PV mass 15GeV.
08l 4 os
0.6 o - 0.6 —
s+ B
= ay < :
0.4F - 4 _
| *h B o — two-body truncation
0.2 * n | 0l -@- three-body truncation |
L _ : - four-body truncation
0, 4 k i I N T T T T T T T T W B
0.5 1. 15 2. %. 05 1. 15 2.

a a

» For a < 1.7, there exists a sector hierarchy I; > I > I3 > I4. One-
& two-body contributions dominate. I,,~4 are negligible.

> o & 2.6, ap =~ 2.2
» [ saturates in the four-body truncation up to a =~ 2.0.
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Electromagnetic Form Factor [YL et al., Phys.Lett.B 758, 118 (2016)]
Form factors are defined as the current matrix element, as mentioned:

W+ )T 0)w(p) = 2pTF(Q?)

where g7 =0 and Q% = —¢*> = g% > 0, and the e.m. current:
JH = i(DHX)TX —ixtDry.
» Drell-Yan-West formula (overlap of LFWFs)

F(@) = Y [ aDubi (ki (his i)

» The n-body contribution F,(Q* — 0) — I,
» F(Q* — 0) — 1 — charge conservation
» F(Q? — co) — I; — point-like charge

+ Lt + Lk + i
q %q %q %q

(a) one-body (b) two-body (¢) three-body (d) four-body
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EIectromagnetic Form Factor [YL et al., Phys.Lett.B 758, 118 (2016)]
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Electromagnetic form factor saturates as the number of constituents
increase, even with non-perturbative couplings.
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Summary and Outlook

>

Light-Front Hamiltonian formalism is a natural framework for solving
non-perturbative relativistic bound-state problems.

We demonstrate basis light-front quantization as a computational
implementation of LF Hamiltonian approach in electron, positronium
and quarkonium problems.

We present a systematic non-perturbative renormalization scheme
within the LF Hamiltonian formalism in a scalar model.

Many of the calculations can be extended to other systems, and,
hopefully, eventually to QCD. However, several challenges have to
be addressed.

My work is a first step to build a systematic computational
framework to solve QFTs eps. QCD bound-state problems in an ab
initio LF Hamiltonian approach.

Thank youl
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Decay Constants with Running Coupling

Decay constants with running coupling (with IR modeling)
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» Similar quality but the residual regulator dependence is somewhat
stronger.

» HO basis is designed for confinement (IR) and is expected to have a
slower convergence at UV.

> Need larger Nuay, Luax and a careful study of the UV asymptotics (3
of the LFWFs.

» Renormalization
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