Hamiltonian Approach to Quantum Field Theories on the Light Front

Yang Li

Department of Physics and Astronomy, Iowa State University, Ames, IA, U.S.

Working Month 2016
Beijing, Hefei, Nanjing, Shanghai, June 1-25, 2016

Résumé: Yang Li (李 阳)

Birth: September, 1987, Hebei
Contact: M leeyoung@iastate.edu, leeyoung1987@gmail.com
3 © ©AichiLee

Education:

- B.S. in Physics, 2010, University of Science and Technology of China, Hefei, China
- GPA: 3.80/4.3 (Theoretical Physics)
- Research Areas: Quantum Measurement, Computational Physics
- Ph.D. in Nuclear Physics, 2015, Iowa State University, Ames, IA, U.S.
- Dissertation: $A b$ initio approach to quantum field theories on the light front
- Ph.D. Advisors: James P. Vary, Kirill Tuchin (co-major professor)
- Research Areas: Non-Perturbative QCD, Hadronic Physics

Experience:

- 2016 -, Postdoctoral Research Associate
- Iowa State University, Ames, IA, U.S.

Teaching:

- 2010 - 2012, 2016: Teaching Assistant

Nuclear Theory Group at Iowa State

Faculty:

James P. Vary

Kirill Tuchin

Pieter Maris Jian-wei Qiu (Emeritus)

5

Outline

- Light-front Hamiltonian formalism
- Basis light-front quantization
- Non-perturbative renormalization
- Summary and outlooks

Part I:

Introduction to Light-Front QCD

Introduction

Solving QCD in the non-perturbative regime from first principles is one of the central tasks in nuclear physics

- quantum chromodynamics is the underlying theory of strong interaction
- features: asymptotic freedom, confinement, chiral symmetry breaking
- mass spectroscopy and structures of hadrons, deriving realistic nuclear forces, useful tool for Standard Model and beyond, ...
$A b$ initio calculation of quantum field theory (QFT) remains one of the most challenging problems in theoretical and computational physics.

Working Month 2016, Beijing, China

Non-Perturbative Approaches

Lagrangian formalism

Euclidean space correlators: $\left\langle\mathcal{O}\left(x_{1}, \cdots, x_{n}\right)\right\rangle$

$$
\langle\mathcal{O}\rangle=\int \mathcal{D}_{\psi} \mathcal{O} \exp \left(-S_{E}[\psi]\right)
$$

Lattice QCD, DS/BSE advantanges: covariant, tamed gauge symmetry

Hamiltonian formalism

Minkowski space

 wavefunctions: $\left|\psi_{h}\right\rangle$$$
H\left|\psi_{h}\right\rangle=E_{h}\left|\psi_{h}\right\rangle
$$

$$
i \frac{\partial}{\partial t}\left|\psi_{h}(t)\right\rangle=H\left|\psi_{h}(t)\right\rangle
$$

DLCQ, BLFQ, Transverse Lattice
advantanges: Lorentzian (DIS),
access to distributions, real-time

The Hamiltonian and Lagrangian approaches are complementary to each other.
"Quantum field theory is the way it is because it is the only way to reconcile the principles of quantum mechanics with those of special relativity."
— S. Weinberg, The Quantum Theory of Fields

Dirac's Forms of Relativistic Dynamics

Due to relativity, we have the liberty to choose the direction of the dynamical evolution.
Dirac's front form gives maximal number of kinematical operators (7/10).

$$
\begin{aligned}
& P^{ \pm} \triangleq P^{0} \pm P^{3}, \vec{P}^{\perp} \triangleq\left(P^{1}, P^{2}\right), x^{ \pm} \triangleq x^{0} \pm x^{3}, \vec{x}^{\perp} \triangleq\left(x^{1}, x^{2}\right), E^{i}=M^{+i}, \\
& E^{+}=M^{+-}, F^{i}=M^{-i}, K^{i}=M^{0 i}, J^{i}=\frac{1}{2} \epsilon^{i j k} M^{j k} .
\end{aligned}
$$

Light-Front Dynamics

Light-front quantization defines a system on the light front $t+z / c=0$.

- light-front energy: p^{-}, momenta: $\left(p^{+}, p^{1}, p^{2}\right)$, where $p^{\mp}=p^{0} \mp p^{3}$
- dispersion relation (cf. non-relativistic dispersion relation)

$$
p^{\mu} p_{\mu}=m^{2} \Rightarrow \begin{cases}p^{0}=\sqrt{\vec{p}^{2}+m^{2}}, & \text { equal-time } \\ p^{-}=\left(\vec{p}_{\perp}^{2}+m^{2}\right) / p^{+}, & \text {light-front }\end{cases}
$$

- spectral condition: $p^{+} \geq 0, p^{-} \geq 0$

Implication:

light-front vacuum is simple!!

Dynamical evolution in x^{+}direction $\left(x^{+}=x^{0}+x^{3}\right)$:

$$
i \frac{\partial}{\partial x^{+}}\left|\psi\left(x^{+}\right)\right\rangle=\frac{1}{2} \hat{P}^{-}\left|\psi\left(x^{+}\right)\right\rangle .
$$

Hadron spectroscopy and light-front wavefunctions:

$$
\left(P^{+} \hat{P}^{-}-\vec{P}_{\perp}^{2}\right)\left|\psi_{h}\right\rangle=M_{h}^{2}\left|\psi_{h}\right\rangle
$$

Fock Space Representation

LFD is particularly suitable for Fock space expansion:

- intuitive picture;
- vacuum pair production/annihilation is suppressed;
- all three boost transformations are kinematical;

$$
\left|\psi_{h}(P, j, \lambda)\right\rangle=\sum_{n=1}^{\infty} \int \mathrm{d} D_{n} \psi_{h / n}\left(\left\{\vec{k}_{i \perp}, x_{i}, \lambda_{i}\right\}_{n}\right)\left|\left\{p_{i}, \lambda_{i}\right\}_{n}\right\rangle
$$

The Fock sector projections $\psi_{h / n}\left(\left\{\vec{k}_{i \perp}, x_{i}, \lambda_{i}\right\}_{n}\right)=\left\langle\left\{p_{i}, \lambda_{i}\right\}_{n} \mid \psi_{h}\right\rangle$ are called the light-front wavefunctions (LFWFs).

In Fock space, QFT becomes a many-body problem.
By working with $H_{\mathrm{LC}} \equiv P_{\mu} P^{\mu}=P^{+} \hat{P}^{-}-\vec{P}_{\perp}^{2}$ we only need to deal with the relative degrees of freedom.

LFWFs describes the intrinsic structure of hadrons.
Thanks to the kinematical nature of LFD, the LFWFs are frame-independent (boost invariant) and only depend on the intrinsic (boost-invariant) momenta.

$$
x_{i} \equiv p_{i}^{+} / P^{+}, \quad \vec{k}_{i \perp} \equiv \vec{p}_{i \perp}-x_{i} \vec{P}_{\perp} \Longrightarrow \sum_{i} x_{i}=1, \sum_{i} \vec{k}_{i \perp}=0
$$

"Hadron Physics without LFWFs is like Biology without DNA!"

Light-Front Wavefunctions

LFWFs provides intrinsic information of the structure of hadrons:

- Structure functions are the square of LFWFs
- Form factors (e.m., gravitational ...) are the overlap of LFWFs

$$
\begin{gathered}
A\left(q^{2}\right)=\sum_{n} \int \mathrm{~d} D_{n} \sum_{f=1}^{n} x_{f} \psi_{n}^{*}\left(\left\{\vec{k}_{i \perp}^{\prime}, x_{i}, \lambda_{i}\right\}_{f}\right) \psi_{n}\left(\left\{\vec{k}_{i \perp}, x_{i}, \lambda_{i}\right\}_{f}\right) \\
\vec{k}_{i \perp}^{\prime}= \begin{cases}\vec{k}_{i \perp}+\left(1-x_{i}\right) \vec{q}_{\perp}, & \text { for struck partons } \\
\vec{k}_{i \perp}-x_{i} \vec{q}_{\perp}, & \text { for spectators. }\end{cases}
\end{gathered}
$$

- Distributions (hadron tomography)
[Ji '97\&'98]

$$
\vec{k}_{\perp} \leftrightarrow \vec{r}_{\perp}, \vec{\Delta}_{\perp} \leftrightarrow \vec{b}_{\perp}
$$

[Lorce \& Pasquini '11]

- LFWFs are indispensable for exclusive processes in DIS

Diagrammatic Representation

Hamiltonian perturbation theory: x^{+}-ordered diagrams

- all particles are on their mass-shells $p_{i}^{2}=m_{i}^{2}$;
- longitudinal and transverse momenta are conserved at each vertex;

$$
\delta\left(\sum_{i} p_{i}^{+}-P^{+}\right) \Leftrightarrow \delta\left(\sum_{i}-1\right) ; \delta^{2}\left(\sum_{i} \vec{p}_{i \perp}-\vec{P}_{\perp}\right) \Leftrightarrow \delta^{2}\left(\sum_{i} \vec{k}_{i \perp}\right)
$$

- the light-front energy is not conserved ("off the energy shell");
- energy denominator for intermediate states;

$$
\frac{1}{s_{n}-M^{2}}, \quad s_{n} \equiv\left(k_{1}+\cdots+k_{n}\right)^{2}=\sum_{a=1}^{n} \frac{\vec{k}_{a \perp}^{2}+m_{a}^{2}}{x_{a}}
$$

M is the mass eigenvalue
Extended to non-perturbative regime by introducing vertex functions Γ_{n}
$\Gamma_{n}=\left(s_{n}-M^{2}\right) \psi_{n}$.
Γ_{n} are also boost invariants.

Example:

$$
\Longrightarrow \quad \Longrightarrow \quad=
$$

Light-Front QCD within Light-Cone Gauge $\left(A^{+}=0\right)$

$$
\begin{gathered}
\mathscr{L}_{\mathrm{YM}}=-\frac{1}{4} F_{\mu \nu \mathrm{c}} F^{\mu \nu c}+\bar{\psi}(i D D-m) \psi \\
\Downarrow
\end{gathered}
$$

light-front quantization in light-cone gauge
[Dirac '56, Brodsky '98]
\Downarrow

$$
P_{\mathrm{LFQCD}}^{-}=\frac{1}{2} \int \mathrm{~d}^{3} x[\underbrace{\bar{\psi} \gamma^{+} \frac{\left(i \partial^{\perp}\right)^{2}+m^{2}}{i \partial^{+}} \psi+A_{a}^{i}\left(i \partial^{\perp}\right)^{2} A_{a}^{i}}_{\text {kinetic energy }}]+P_{\text {int }}^{-} .
$$

interaction vertices: $P_{\text {int }}^{-}$

Renormalization

- QFT is defined with bare parameters (equivalently, counterterms). Renormalization relates these bare parameters to "physical" quantities. The bare parameters may contain divergences which is allowed as they are not physical observables.
- Renormalization depends on the regularization scheme. Infinities may arise and the theory has to be regularized first.
- After renormalization, the theory should be free of divergences in all sectors (e.g. bound states) even in the non-perturbative regime. Ensuring exactly cancellation of divergences (within the numerical precision) in the non-perturbative regime is often a challenge as finding the solutions often relies on numerical procedures.
- Mass renormalization: imposing the physical mass $M \rightarrow m_{\mathrm{ph}}$
- Coupling constant renormalization: imposing the physical coupling on the vertex $\Gamma_{2}\left(\vec{k}_{\perp}^{\star}, x^{\star}\right)=g_{\mathrm{ph}} \sqrt{Z}$ at some chosen kinematic point ($\vec{k}^{\star}, x^{\star}$) or s^{\star}.
- Wavefunction renormalization: simply the normalization of the LFWFs! $\sum_{n} \int \mathrm{~d} D_{n}\left|\psi_{n}\right|^{2}=1$

Advantages of Light-Front Dynamics

©) Non-perturbative based on first principles in Minkowski space; It provides access to real-time information of the quantum system.
;) Light-front boost transformations are kinematical;
In particular, LFWFs are boost invariant, i.e., frame independent.
light-front wavefunction \neq equal-time wavefunction in rest frame [see e.g. Järvinen '05]
;) LFWFs provide intrinsic information of the structure of the system;
(;) structure functions are the square of LFWFs
[Lepage '80]
() form factors are the overlap of LFWFs
() Light-front vacuum is simple;

(). Light-front kinetic energy resembles the non-relativistic one; IF: $M^{2}=\left(\sum_{i} \sqrt{\vec{p}_{i}^{2}+m_{i}}\right)^{2}-\vec{P}^{2} ;$ FF: $M^{2}=\sum_{i} \frac{\vec{p}_{i \perp}^{2}+m_{i}^{2}}{x_{i}}-\vec{P}_{\perp}^{2}$.
() Light-front dynamics is directly related to the infinite momentum frame in deep inelastic scattering.

Challenges in Light-Front Dynamics

(:) Transverse rotations are dynamical;

$$
\begin{aligned}
P^{2}\left|\psi_{h}(p, s, \lambda)\right\rangle & =M_{h}^{2}\left|\psi_{h}(p, s, \lambda)\right\rangle \\
\vec{S}^{2}\left|\psi_{h}(p, s, \lambda)\right\rangle & =s(s+1)\left|\psi_{h}(p, s, \lambda)\right\rangle
\end{aligned}
$$

spin operator: $\vec{S}^{2}=-W^{2} / P^{2}, W^{\mu}=-\frac{1}{2} \varepsilon^{\mu \nu \rho \sigma} M_{\nu \rho} P_{\sigma}$.
(:) Fock sectors are not gauge invariants;
© Zero-mode issue: $p_{i}^{+}=0$;
LFQCD often offers a drastically different physical picture from Lagrangian formalism. [e.g. Brodsky '10]
"Light-front QCD is not for the faint of heart, but for a few good candidates it is a chance to be a Ideader in a much smaller community of researchers than one faces in the major areas of high-energy physics, with, I believe, unusual promise for interesting and unexpected results." - Kenneth G. Wilson, The Origins of Lattice Gauge Theory, 2005

Some Perspectives on Non-Perturbative LFQCD

LF Tamm-Dancoff coupled integral equations
[Perry '90]

- systematic Fock sector truncation with sector dependent renormalization schemes.
- wave-equation/few-body approach
[see, e.g., YL et al. Phys.Lett.B '15]
[Hiller, Karmanov, Chabysheva, Li]

Direct diagonalization: large sparse matrix eigenvalue problem

- many-body approach: DLCQ, BLFQ, ... [e.g., Pauli '89, Vary '10]
- in parallel with $a b$ initio nuclear structure calculations configuration interaction, Green function Monte-Carlo, coupled cluster ...
- need effective eigensolvers suitable for HPC

Collective modes
[e.g., Vary '05, Misra '00, More '12, Chabysheva '12]

- coherent basis, LF coupled cluster, ...

Transverse lattice
[Burkardt, Dalley, Van de Sande, Chakrabarti]
Effective operator
[Wilson, Głazek, Perry]

- Bloch method
- flow equation/similarity renormalization group (SRG)

Holographic light-front QCD

Part II:
 Basis Light-Front Quantization

Hamiltonian light-front field theory in a basis function approach

Discretized Light Cone Quantization

Pauli \& Brodsky c1985

Basis Light Front Quantization*

$$
\phi(\vec{x})=\sum_{\alpha}\left[f_{\alpha}(\vec{x}) a_{\alpha}^{+}+f_{\alpha}^{*}(\vec{x}) a_{\alpha}\right]
$$

where $\left\{a_{\alpha}\right\}$ satisfy usual (anti-) commutation rules.
Furthermore, $f_{\alpha}(\vec{x})$ are arbitrary except for conditions:
Orthonormal: $\int f_{\alpha}(\vec{x}) f_{\alpha}^{*}(\vec{x}) d^{3} x=\delta_{\alpha \alpha}$
Complete: $\quad \sum_{\alpha} f_{\alpha}(\vec{x}) f_{\alpha}^{*}\left(\vec{x}^{\prime}\right)=\delta^{3}\left(\vec{x}-\vec{x}^{\prime}\right)$
$=>$ Wide range of choices for $f_{a}(\vec{x})$ and our initial choice is

$$
f_{\alpha}(\vec{x})=N e^{i k^{+} x^{-}} \Psi_{n, m}(\rho, \varphi)=N e^{i k^{+} x^{-}} f_{n, m}(\rho) \chi_{m}(\varphi)
$$

Steps to implement Basis Light-Front Quantization

- Enumerate Fock space basis subject to symmetry constraints and regularizations; (keep the bookkeeping under control: cf. No-Core Shell Model)
- Evaluate the LC Hamiltonian operator H_{LC} in that basis;
- Diagonalization (Lanczos, QR, ...);
- Evaluate observables using LFWFs;
- Repeat previous steps for new regulators, and extrapolate to continuum limit.

```
Above achieved for QED test cases - electron in a trap
H. Honkanen, P. Maris, J.P. Vary, S.J. Brodsky, Phys. Rev. Lett. 106, 061603 (2011)
Improvements for QED test cases: trap independence, renormalization,
X. Zhao, H. Honkanen, P. Maris, J.P. Vary, S.J. Brodsky, Phys. Lett. B 737, }65\mathrm{ (2014)
Positronium at strong coupling in harmonic oscillator basis: (first bound-state application)
P. Wiecki, YL, X. Zhao, P. Maris, J.P. Vary, Phys. Rev. D 91, 105009 (2015)
Heavy Quarkonium in a Holographic basis:
YL, P. Maris, X. Zhao, J.P. Vary, Phys. Lett. B 758, 118 (2016)
```


Symmetries and Constraints

Symmetries \& Constraints

$$
\begin{aligned}
& \sum_{i} b_{i}=B \\
& \sum_{i} e_{i}=Q \quad \text { All } J \geq J_{z} \text { states obtained } \\
& \sum_{i}\left(m_{i}+s_{i}\right)=J_{z} \quad \text { in a single calculation } \\
& \begin{array}{l}
\sum_{i} k_{i}=K \\
\sum_{i}\left[2 n_{i}+\left|m_{i}\right|+1\right] \leq N_{\text {max }} \\
\text { Global Color Singlets (QCD) } \\
\text { Light Front Gauge } \\
\text { Optional - Fock space cutoffs }
\end{array} \\
& \mathrm{H} \rightarrow \mathrm{H}+\lambda \mathrm{H}_{C M} \quad \text { Thanks to the kinematical nature of } \\
& \text { light-front boost transformation and } \\
& \text { consistent choice of basis and } \\
& \text { truncation. }
\end{aligned}
$$

Basis Light-Front Quantization (BLFQ)

- BLFQ adopts basis function expansion and basis regularization. Optimal basis is the key to numerical efficiency. The basis functions can be chosen to approximate the solution (e.g. AdS/QCD basis).
- BLFQ exploits the kinematic symmetries of the Hamiltonian. especially: preserves J_{z} while allows separation of center of mass motion
- BLFQ is designed as a many-body method in parallel with the configuration interaction (CI) method in strong coupling non-relativisitic many-body problems.
We can learn from non-relativistic many-body problems.
- BLFQ yields large sparse matrix eigenvalue problems, which need to be solved with modern high performance computing (HPC).
- Time-dependent Basis Light-Front Quantization (tBLFQ). [Zhao '13]

Key insight: nonrelativistic and light-front Hamiltonian problems have much in common. We need effective eigensolvers suitable for modern HPC, similar to e.g., many-fermion dynamics (MFDn) in No-Core Shell Model (NCSM).

What motivates this BLFQ approach?

$>$ Exact treatment of all symmetries (dynamical \& kinematical)
$>$ Success in ab-initio nuclear many-body theory (equal time, non-relativistic)
$>$ High precision results from No-Core Full Configuration (NCFC) approach
$>$ Advances in solving sparse matrix problems on parallel computers
$>$ Growth in the size/capacity of parallel computers

Parameters of the HO basis space

Physical electron is obtained from diagonalizing the (regularized \& truncated) QED Hamiltonian in the single-electron sector.

$$
\left|e_{\mathrm{ph}}\right\rangle=|e\rangle+|e \gamma\rangle+|e \gamma \gamma\rangle+|e e \bar{e}\rangle+|e c \bar{e} \gamma\rangle \cdots
$$

Truncation up to $e \gamma$ is equivalent to 1 -loop QED correction. Note that BLFQ provides the electron wavefunction.
Electron AMM $\left(a_{e}\right)$ - a benchmark calculation for QFT:

$$
\frac{q_{1}-i q_{2}}{2 m_{e}} F_{2}\left(q^{2}\right)=\left\langle e_{\mathrm{ph}}(p+q), \uparrow\right| J^{+}(0)\left|e_{\mathrm{ph}}(p), \downarrow\right\rangle, \quad\left(a_{e}=F_{2}(0)\right)
$$

Largest calculation with basis dimension >28 billion

Positronium

- Positronium is a gold-plated bound-state system in QFT.
- Positronia are obtained from diagonalizing the (regularized \& truncated) QED Hamiltonian in the $e \bar{e}$ sector.

$$
|P s\rangle=|e \bar{e}\rangle+|e \bar{e} \gamma\rangle+|\gamma\rangle+|e \bar{e} \gamma \gamma\rangle+|e \bar{e} e \bar{e}\rangle+|e \bar{e} e \bar{e} \gamma\rangle \cdots
$$

- one-photon exchange: neglecting the annihilation vertex
- use an artificially large coupling $\alpha=0.3$
- Effective Hamiltonian approach is employed where $H_{\text {eff }}$ is obtained from Bloch method with perturbative expansion.

Positronium in QED at Strong Coupling Covariant Basis Light-Front Quantization (BLFQ)

P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary, Phys. Rev. D 91, 105009 (2015)

Positronium in QED at Strong Coupling Covariant Basis Light-Front Quantization (BLFQ)

P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary, Phys. Rev. D 91, 105009 (2015); \& to be published

Tomography of Positronium

Generalized parton distributions (GPDs)
[Ji '97 \& '98]

$$
\begin{aligned}
& H(x, \zeta, t)=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P^{\prime}\right| \bar{\psi}\left(-\frac{1}{2} z\right) \gamma^{+} \psi\left(+\frac{1}{2} z\right)|P\rangle\right|_{z^{+}=z^{\perp}=0} \\
q= & P^{\prime}-P, \zeta=q^{+} / P^{+}, t=q^{2}
\end{aligned}
$$

Impact parameter dependent GPDs:

$$
q\left(x, \vec{b}_{\perp}\right)=\int \frac{\mathrm{d}^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{i \vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}} H\left(x, \zeta=0, t=-\Delta_{\perp}^{2}\right)
$$

- partonic interpretation: $\int \mathrm{d}^{2} b_{\perp} \int_{0}^{1} \mathrm{~d} x\left|q\left(x, \vec{b}_{\perp}\right)\right|^{2}=1$.
- Light-front wavefunction representation [Brodsky '01, Diehl '03]

$1^{1} S_{0}$

Heavy Quarkonium

First application of BLFQ to QCD bound-state problems

Ideal laboratory to study the interplay between perturbative and non-perturbative QCD.

- extensive experimental measurements: BaBar, Belle, CLEO, LHC ...
- many mysteries: XYZ, quark-gluon hybrids, ...
- important for: hadron reactions, SM parameters, ...

Physical picture:

- non-relativistic potential model: confinement plus Coulomb;
- relativity necessary for getting the hyperfine structure;

Theoretical approaches:
Lattice QCD, Effective Field Theory, Dyson-Schwinger/Bethe-Salpeter Equation, Constituent Quark Model, ...

Effective Hamiltonian I

Effective one-gluon exchange from the Bloch method:

$$
\left|\psi_{h / q \bar{q}}\right\rangle=|q \bar{q}\rangle+|q \bar{q} g\rangle+|q \bar{q} g g\rangle+|q \bar{q} q \bar{q}\rangle+|q \bar{q} q \bar{q} g\rangle+\cdots
$$

$$
H_{\mathrm{eff}}=\mathcal{P} H_{0} \mathcal{P}+\mathcal{P} H \mathcal{Q} \frac{1}{\frac{1}{2}\left(\epsilon_{i}+\epsilon_{f}\right)-\mathcal{Q} H_{0} \mathcal{Q}} \mathcal{Q} H \mathcal{P}
$$

Bloch Hamiltonian is based on weak coupling expansion, which is only justified at short-distance.
For long-distance physics, we adopt a confining potential inspired by light-front holographic QCD

$$
V\left(\zeta_{\perp}\right)=\kappa^{4} \zeta_{\perp}^{2}+\text { const. } \quad\left(\zeta_{\perp}=\sqrt{x(1-x)} r_{\perp}\right)
$$

- AdS/QCD: first approximation to QCD inspired by AdS/CFT
- soft-wall AdS/QCD produces Regge trajectory
- LF holography relates AdS/QCD to LF Schrödinger equation
- successful applications: spectrum, form factors, β-function, ...

Effective Hamiltonian II

Quark masses and longitudinal dynamics:

- Soft-wall confinement is purely transverse and were derived for massless quarks
- Invariant mass ansatz: $\frac{\vec{k}_{\perp}^{2}}{x(1-x)} \rightarrow \frac{\vec{k}_{\perp}^{2}+m_{q}^{2}}{x}+\frac{\vec{k}_{\perp}^{2}+m_{\bar{q}}^{2}}{1-x}$

We proposed a longitudinal confinement:

- It generates distribution amplitudes that match pQCD asymptotics:

$$
\chi_{\ell}(x) \sim x^{\alpha}(1-x)^{\beta} P_{\ell}^{(\alpha, \beta)}(2 x-1), \quad P_{\ell}^{(a, b)} \text { Jacobi polynomial }
$$

- In massless limit, it restores the soft-wall model
- In nonrelativistic limit, it sits on equal footing with the transverse confinement transverse \& longitudinal confinements form a 3D HO potential
- No extra free parameters

$$
\begin{gathered}
\text { LF kinetic energy } \quad \text { longitudinal confinement one-glue exchange } \\
H_{\mathrm{eff}}=\frac{\boldsymbol{k}_{\perp}^{2}+m_{q}^{2}}{x}+\frac{\boldsymbol{k}_{\perp}^{2}+m_{q}^{2}}{1-x}+\kappa^{4} \zeta^{2}-\frac{\kappa^{4}}{\left(m_{q}+m_{\bar{q}}\right)^{2}} \partial_{x}\left(x(1-x) \partial_{x}\right)+V_{\mathrm{g}}
\end{gathered}
$$

Confining Potential

Semi-Classical Light-Front Schrödinger equation:

$$
\left[\frac{\vec{k}_{\perp}^{2}+m_{q}^{2}}{x(1-x)}+V\left(\vec{k}_{\perp}, x\right)\right] \psi_{h / q \bar{q}}\left(\vec{k}_{\perp}, x\right)=M_{h}^{2} \psi_{h / q \bar{q}}\left(\vec{k}_{\perp}, x\right)
$$

- Holographic QCD or AdS/QCD
- inspired by the string/gauge duality or AdS/CFT
[Maldacena '98]
- fields in AdS_{5} directly matched to hadrons
- introduce dilaton field $\varphi(z)$ to break the conformal symmetry soft-wall model: $\varphi(z) \sim \kappa^{2} z^{2}$ produces the Regge trajectory
- Light-Front Holography relates the semi-classical LF Schrödinger equation to AdS/QCD

$$
\begin{aligned}
\zeta_{\perp} \triangleq \sqrt{x(1-x)} \vec{r}_{\perp} & \longleftrightarrow z \quad\left(\text { the } 5^{\text {th }}\right. \text { dimension) } \\
V & \longleftrightarrow \frac{1}{2} \varphi^{\prime \prime}(z)+\frac{1}{4} \varphi^{\prime 2}(z)-\frac{3}{2 z} \varphi^{\prime}(z)
\end{aligned}
$$

- the soft-wall confining potential: $V\left(\zeta_{\perp}\right)=\kappa^{4} \zeta_{\perp}^{2}+$ const.
- connection established for arbitrary spin mesons and baryons
- application: spectrum, form factors, β-function,..

Basis Representation

The Hamiltonian is analytically solvable without the one-gluon exchange:

- transverse: 2D HO in holographic variables $\phi_{n m}\left(\vec{k}_{\perp} / \sqrt{x(1-x)}\right)$
- longitudinal: $\chi_{\ell}(x)=x^{\frac{1}{2} \alpha}(1-x)^{\frac{1}{2} \beta} P_{\ell}^{(\alpha, \beta)}(2 x-1)$
$\alpha=2 m_{\bar{q}}\left(m_{q}+m_{\bar{q}}\right) / \kappa^{2}, \beta=2 m_{q}\left(m_{q}+m_{\bar{q}}\right) / \kappa^{2}, P_{\ell}^{(a, b)}(z)$ Jacobi polynomials
- mass eigenvalues:

$$
M_{n m \ell}^{2}=\left(m_{q}+m_{\bar{q}}\right)^{2}+2 \kappa^{2}(2 n+|m|+\ell+3 / 2)+\frac{\kappa^{4}}{\left(m_{q}+m_{\bar{q}}\right)^{2}} \ell(\ell+1)
$$

We adopt these functions (soft-wall LFWFs) as the basis:

$$
\psi_{h / q \bar{q}}\left(\vec{k}_{\perp}, x, s, \bar{s}\right)=\sum_{n, m, l} \Psi_{h / q \bar{q}}(n, m, l, s, \bar{s}) \phi_{n m}\left(\frac{\vec{k}_{\perp}}{\sqrt{x(1-x)}}\right) \chi_{l}(x)
$$

- implement LF holographic QCD for first approximation
- transverse 2D HO functions are scalable in the many-body sector (factorization of c.m. motion)
- basis truncation: $2 n+|m|+1 \leq N_{\text {max }}, l \leq L_{\text {max }}$
- quantum number identification (esp. mirror parity)

We fix α_{s} and fit κ, m_{q} to the experimentally measured masses.

Mass Spectroscopy

Masses show weak m_{J} dependence due to the violation of rotational symmetry. We use boxes to indicate the spread of masses (dashed bars: averaged masses).

	α_{s}	$\mu_{\mathrm{g}}(\mathrm{GeV})$	$\kappa(\mathrm{GeV})$	$m_{q}(\mathrm{GeV})$	$\delta \bar{M}(\mathrm{MeV})$	$N_{\max }=L_{\max }$
$c \bar{c}$	0.3595	0.02	0.938	1.522	$52(8$ states $)$	24
$b \bar{b}$	0.2500		1.490	4.763	$50(14$ states $)$	

Mass Spectroscopy

[YL et al., Phys.Lett.B 758, 118 (2016)]

Masses show weak m_{J} dependence due to the violation of rotational symmetry. We use boxes to indicate the spread of masses (dashed bars: averaged masses).

	α_{s}	$\mu_{\mathrm{g}}(\mathrm{GeV})$	$\kappa(\mathrm{GeV})$	$m_{q}(\mathrm{GeV})$	$\delta \bar{M}(\mathrm{MeV})$	$N_{\max }=L_{\max }$
$c \bar{c}$	0.3595	0.02	0.938	1.522	$52(8$ states $)$	24
$b \bar{b}$	0.2500		1.490	4.763	$50(14$ states $)$	

Mass Spectroscopy: Improvement

Running coupling implements important UV physics:

$$
\alpha_{s}\left(Q^{2}\right)=\frac{\alpha_{s}\left(M_{\mathrm{Z}}^{2}\right)}{1+\alpha_{s}\left(M_{\mathrm{Z}}^{2}\right) \beta_{0} \ln \left(\frac{\mu_{\mathrm{IR}}^{2}+Q^{2}}{\mu_{\mathrm{IR}}^{2}+M_{\mathrm{Z}}^{2}}\right)}, \quad V_{g}=-\frac{4}{3} \times \frac{4 \pi \alpha_{s}\left(Q^{2}\right)}{Q^{2}} \bar{u}_{\sigma^{\prime}} \gamma^{\mu} u_{\sigma} \bar{v}_{s} \gamma_{\mu} v_{s^{\prime}}
$$

The running coupling improves the one-gluon exchange kernel. The m_{J}-dependence of masses becomes weaker. The overall mass spectrum is improved: $\delta \bar{M}=28 \mathrm{MeV}$ (charmonium) 43 MeV , (bottomonium) $\left(N_{\max }=L_{\max }=16, \alpha_{s}(0)=0.6\right)$

Model Parameters and Regulator Sensitivity

\Rightarrow For HO basis, $\Omega_{\mathrm{IR}} \sim b / \sqrt{N_{\max }}, \Omega_{\mathrm{UV}} \sim b \sqrt{N_{\max }}$.
[Coon '12]

- Positronium: continuum limit $N_{\max } \rightarrow \infty, L_{\max } \rightarrow \infty, \mu_{g} \rightarrow 0$ can be reached through successive extrapolations.
[Wiecki '15, Vary '15]
- Quarkonium, $N_{\max }=L_{\max }=8,16,24$
- κ, m_{q} refitted and turned out to be very close ($\lesssim 1 \%$ changes).
- The r.m.s. mass deviations are also comparable.

	α_{s}	$\mu_{\mathrm{g}}(\mathrm{GeV})$	$\kappa(\mathrm{GeV})$	$m_{q}(\mathrm{GeV})$	$\delta \bar{M}(\mathrm{MeV})$	$N_{\text {max }}$
$c \bar{c}$	0.3595	0.02	0.963	1.492	56 (8 states)	8
$b \bar{b}$	0.2500		1.492	4.758	55 (14 states)	
$c \bar{c}$	0.3595	0.02	0.950	1.510	52 (8 states)	16
$b \bar{b}$	0.2500		1.491	4.761	51 (14 states)	
$c \bar{c}$	0.3595	0.02	0.938	1.522	52 (8 states)	24
$b \bar{b}$	0.2500		1.490	4.763	50 (14 states)	
$c \bar{c}$	$\alpha_{s}(Q)$	0.02	0.979	1.587	28 (8 states)	16
$b \bar{b}$			1.451	4.890	43 (14 states)	

Charge Form Factors

Form factors are defined from the matrix elements of the "good current",

$$
I_{\lambda, \lambda^{\prime}}^{+}\left(Q^{2}\right)=\left\langle P^{\prime}, \lambda^{\prime}\right| J^{+}(0)|P, \lambda\rangle /\left(2 P^{+}\right),
$$

where $q=P^{\prime}-P, Q^{2}=-q^{2}$.

- Impulse approximation with only the two-body contribution.
- GK prescription for (axial-)vectors
- pQCD asymptotics: $Q^{2} F_{P}\left(Q^{2}\right) \sim 8 \pi \alpha_{s} f_{P}^{2}$

Charge Radii

The charge radius:

$$
\left\langle r^{2}\right\rangle=-\left.6 \frac{\partial}{\partial Q^{2}} G_{0}\left(Q^{2}\right)\right|_{Q^{2} \rightarrow 0}
$$

- test long-distance physics (cf. decay constants)

Decay Constants

$$
\begin{aligned}
\langle 0| \bar{\psi} \gamma^{\mu} \gamma^{5} \psi|P(p)\rangle & =i p^{\mu} f_{P} \\
\langle 0| \bar{\psi} \gamma^{\mu} \psi\left|V_{\lambda}(p)\right\rangle & =e_{\lambda}^{\mu}(p) m_{V} f_{V}
\end{aligned}
$$

[DSE: Blank '11, Lattice: HPQCD, '10-'15]

- Test "wavefunction at the origin" (cf. charge radius)
- Results are in reasonable agreement with experimental measurements as well as Lattice and DSE calculations where available.
- Results were extrapolated from $N_{\max }=L_{\max }=8,16,24$, and there is some residual regulator dependence.

Diffractive Vector Meson Production

Diffractive VM production in DIS is an important tool for studying the small- x gluon distribution at a future Electron-lon Collider.

In color dipole picture:
[Mueller '94, Nikolaev '91]

$$
\mathcal{A}_{\mathrm{T}, \mathrm{~L}}^{\gamma^{*} p \rightarrow V p}=\int \mathrm{d}^{2} r_{\perp} \int \frac{\mathrm{d} z}{4 \pi}\left[\psi_{\mathrm{v}} \psi\right]_{\mathrm{T}, \mathrm{~L}} \mathcal{A}_{q \bar{q}}\left(z, \vec{r}_{\perp}, \Delta_{\perp}\right)
$$

$\left(\psi_{\mathrm{V}} \psi\right)_{\mathrm{T}, \mathrm{L}}$: overlap of photon/vector meson LFWFs
Initial study: $e p$ collision with IP-Sat for $\mathcal{A}_{q \bar{q}}$
[Kowalski, Teaney '03]

ψ_{v} : boosted Gaussian, Gaus-LC ($m_{c}=1.4 \mathrm{GeV}$) vs. BLFQ ($m_{c}=1.35 \mathrm{GeV}$)

Diffractive Vector Meson Production

The diffractive VM production tests BLFQ over a dynamical range not covered by the mass spectroscopy and decay constants.

Provides access to excited states that are well constrained by physical observables (mass spectrum, decay constant etc).

Generalization to Baryons

The effective interaction can be generalized to the baryon sector:

$$
H_{\mathrm{eff}}=\sum_{a} \frac{\vec{p}_{a \perp}^{2}+m_{a}^{2}}{x_{a}}-\vec{P}_{\perp}^{2}+\frac{1}{2} \sum_{a, b} V_{a b}^{(2)}+\frac{1}{6} \sum_{a, b, c} V_{a b c}^{(3)}+\cdots
$$

- The soft-wall confinement: $V_{\mathrm{SW}}=\frac{1}{2} \sum_{a, b} x_{a} x_{b}\left(\vec{r}_{a \perp}^{a, b, c}-\vec{r}_{b \perp}\right)^{2}$.
- The one-gluon exchange

Jacobi coordinates on the light front (three-body example): longitudinal: $x=x_{3}, \quad \chi=\frac{x_{2}}{1-x_{3}}$;
transverse momenta: $\vec{k}_{\perp}=\left(1-x_{3}\right) \vec{p}_{3 \perp}-x_{3}\left(\vec{p}_{1 \perp}+\vec{p}_{2 \perp}\right), \quad \vec{k}_{\perp}=\frac{x_{1} \vec{p}_{2 \perp}-2 \vec{p}_{1 \perp}}{x_{1}+x_{2}}$; transverse coordinates: $\vec{r}_{\perp}=\vec{r}_{3 \perp}-\frac{x_{1} \vec{r}_{1 \perp}-x_{2} \vec{r}_{2 \perp}}{x_{1}+x_{2}}, \quad \vec{\rho}_{\perp}=\vec{r}_{1 \perp}-\vec{r}_{2 \perp}$.

- Taking advantage of the kinematical nature of light-front boosts

$$
V_{\mathrm{SW}}=\kappa^{4} x(1-x) \vec{r}_{\perp}^{2}+\kappa^{4}(1-x) \chi(1-\chi) \vec{\rho}_{\perp}^{2}
$$

- The longitudinal confinement

$$
V_{L}=-\frac{\kappa^{4}}{\left(m_{1}+m_{2}+m_{3}\right)^{2}}\left[\partial_{x}\left(x(1-x) \partial_{x}\right)+\frac{1}{1-x} \partial_{\chi}\left(\chi(1-\chi) \partial_{\chi}\right)\right]
$$

Part III:
 Non-Perturbative Renormalization

Diagrammatic Representation

Hamiltonian perturbation theory: x^{+}-ordered diagrams

- all particles are on their mass-shells $p_{i}^{2}=m_{i}^{2}$;
- longitudinal and transverse momenta are conserved at each vertex;

$$
\delta\left(\sum_{i} p_{i}^{+}-P^{+}\right) \Leftrightarrow \delta\left(\sum_{i}-1\right) ; \delta^{2}\left(\sum_{i} \vec{p}_{i \perp}-\vec{P}_{\perp}\right) \Leftrightarrow \delta^{2}\left(\sum_{i} \vec{k}_{i \perp}\right)
$$

- the light-front energy is not conserved ("off the energy shell");
- energy denominator for intermediate states;

$$
\frac{1}{s_{n}-M^{2}}, \quad s_{n} \equiv\left(k_{1}+\cdots+k_{n}\right)^{2}=\sum_{a=1}^{n} \frac{\vec{k}_{a \perp}^{2}+m_{a}^{2}}{x_{a}}
$$

M is the mass eigenvalue
Extended to non-perturbative regime by introducing vertex functions Γ_{n}
$\Gamma_{n}=\left(s_{n}-M^{2}\right) \psi_{n}$.
Γ_{n} are also boost invariants.

Renormalization

- QFT is defined with bare parameters (equivalently, counterterms). Renormalization relates these bare parameters to "physical" quantities. The bare parameters may contain divergences which is allowed as they are not physical observables.
- Renormalization depends on the regularization scheme. Infinities may arise and the theory has to be regularized first.
- After renormalization, the theory should be free of divergences in all sectors (e.g. bound states) even in the non-perturbative regime. Ensuring exactly cancellation of divergences (within the numerical precision) in the non-perturbative regime is often a challenge as the solutions often rely on numerical procedures.
- General principles:
- Mass renormalization: imposing the physical mass $M \rightarrow m_{\text {ph }}$
- Coupling constant renormalization: imposing the physical coupling on the vertex $\Gamma_{2}\left(\vec{k}_{\perp}^{\star}, x^{\star}\right)=g_{\mathrm{ph}} \sqrt{Z}$ at some chosen kinematic point $\left(\vec{k}^{\star}, x^{\star}\right)$.
- Wavefunction renormalization: simply the normalization of the LFWFs! $\sum_{n} \int \mathrm{~d} D_{n}\left|\psi_{n}\right|^{2}=1$

Scalar Yukawa Model

$$
\begin{aligned}
& \mathscr{L}=\partial_{\mu} \chi^{\dagger} \partial^{\mu} \chi-m^{2} \chi^{\dagger} \chi+\frac{1}{2} \partial_{\mu} \varphi^{\mu}-\frac{1}{2} \mu^{2} \varphi^{2} \\
&+g_{\mathrm{B}} \chi^{\dagger} \chi \varphi+\delta m^{2} \chi^{\dagger} \chi+\frac{1}{2} \delta \mu^{2} \varphi^{2}+\cdots
\end{aligned}
$$

where $m=0.94 \mathrm{GeV}, \mu=0.14 \mathrm{GeV}, \alpha \equiv g^{2} /\left(16 \pi m^{2}\right) . g_{\mathrm{B}}$ and δm^{2} are renormalization parameters yet to be determined.

- Yukawa potential: $\phi(r)=-\alpha e^{-\mu r} / r$.
- Pauli-Villars (PV) regularization with PV mass μ_{PV}
- Vacuum instability
- exclude "anti-chion" degrees-of-freedom
- similar to the quenched approximation
- purely for simplicity (cf. Higgs field)
- Fock sector expansion of a physical "chion" state,

$$
|\mathcal{X}\rangle=|\chi\rangle+|\chi \varphi\rangle+|\chi \varphi \varphi\rangle+|\chi \varphi \varphi \varphi\rangle+\cdots
$$

- Fock sector truncation ("light-front Tamm-Dancoff")
- to justify the sector truncation, we compare observables from successive truncations up to four-body $(\chi+3 \varphi)$.
Yukawa: Karmanov '12, QED: Hiller '98, Karmanov '08, Chabysheva '10

Fock Sector Dependent Renormalization

n is the maximum number of dressing bosons allowed by the truncation, l is the number of spectators.
The general Fock sector dependent counterterms:

- $\delta m_{1}=g_{\mathrm{B} 1}=0$ (no dressing/coupling allowed by the truncation)
- $\delta m_{2}^{2}, \ldots, \delta m_{n+1}^{2}$ and $g_{\mathrm{B} 2}, \ldots, g_{\mathrm{B}(n+1)}$ appear in the $(n+1)$-body truncation.
- The sector dependent counterterms are determined inductively. e.g., 2-body truncation $\rightarrow 3$-body truncation $\rightarrow 4$-body truncation ...
- Resemblance to the perturbative renormalization

Fock Sector Dependent Renormalization

Mass renormalization condition:

$$
\begin{gathered}
\xrightarrow{\Gamma_{1}}=\stackrel{\Gamma_{2}}{\Longrightarrow} \xrightarrow{\left.\Gamma_{\boldsymbol{k}_{\perp}, x}\right\}_{g_{\mathrm{B}}}}+\stackrel{\Gamma_{1}}{\Longrightarrow} \mathrm{\square} \rightarrow \stackrel{\delta m^{2}}{\times} \\
0=\sum_{j=0}^{1}(-1)^{j} \int_{0}^{1} \frac{\mathrm{~d} x}{2 x(1-x)} \int \frac{\mathrm{d}^{2} k_{\perp}}{(2 \pi)^{3}} g_{\mathrm{B} n} \psi_{2}^{j(n)}\left(\boldsymbol{k}_{\perp}, x\right)+\delta m^{2} \psi_{1}^{(n)} .
\end{gathered}
$$

Coupling constant renormalization:

$$
\forall x \in(0,1), \quad \Gamma_{2}^{0(n)}\left(\boldsymbol{k}_{\perp}^{\star}, x\right)=g \sqrt{I_{1}^{(n-1)}}, \quad\left(\frac{\boldsymbol{k}^{\star 2}}{x}+\frac{\boldsymbol{k}^{\star 2}+\mu^{2}}{1-x}=m^{2}\right)
$$

Wavefunction/field strength renormalization $I_{1}+I_{2}+\cdots+I_{n}=1$, where $I_{l}=\int \mathrm{d} D_{l}\left|\psi_{l}\left(k_{1}, k_{2}, \cdots, k_{l}\right)\right|^{2}$.

Eigenvalue Equation

Eigenvalue Equation

Eigenvalue Equation

Eigenvalue Equation

Two- and Three-Body Truncations

Two-body truncation solution is equivalent to the leading order perturbation theory.

$$
\Gamma_{2}^{j(2)}\left(\boldsymbol{k}_{\perp}, x\right)=g, \quad \psi_{2}^{j(2)}\left(\boldsymbol{k}_{\perp}, x\right)=g /\left(s_{2}-m^{2}\right)
$$

- Landau pole for $\alpha>\alpha_{\mathrm{L}} \approx 2.63$

Three-body truncation is solved numerically from a linear inhomogeneous integral equation.

- Bare coupling "constant" $g_{\mathrm{B} 3}$ depends on x, as a consequence of the violation of the Lorentz symmetry.
[Karmanov '12]
- Fredholm singularity at $\alpha=\alpha_{\mathrm{F}} \approx 2.19$

Yang Li, lowa State U, June 3, 2016

Working Month 2016, Beijing, China

$$
\alpha=0.25
$$

0.0

0.0
$\alpha=0.5$

The two-body LFWF $\psi_{2}\left(k_{\perp}, x\right)$ at selected couplings

An important cross-check is the relation $I_{1}=Z_{\chi}$ in three-body:

$$
\begin{aligned}
& \Sigma\left(p^{2}\right)=\xrightarrow{p} \overbrace{\Gamma_{2} / \sqrt{T_{1}}}^{\overbrace{\boldsymbol{k}_{\perp}, x}^{*}}\}_{g_{\mathrm{B}}} \\
& Z_{\chi}=\left[1-\frac{\partial}{\partial p^{2}} \Sigma\left(p^{2}\right)\right]_{p^{2} \rightarrow m^{2}}^{-1}
\end{aligned}
$$

Non-perturbative, numerically evaluated:

Four-Body Truncation

[YL et al., Phys.Lett.B 758, 118 (2016)]

Four-Body Truncation

$$
\begin{aligned}
& \Gamma_{2}^{j(4)}\left(\boldsymbol{k}_{\perp}, x\right)=g_{\mathrm{B} 4} \psi_{1}^{(4)}+\frac{\delta m_{3}^{2}}{1-x} \frac{\Gamma_{2}^{j(4)}\left(\boldsymbol{k}_{\perp}, x\right)}{s_{2}-m^{2}}+\sum_{j^{\prime}=0}^{1}(-1)^{j^{\prime}} \\
& \int_{0}^{1-x} \frac{\mathrm{~d} x^{\prime}}{2 x^{\prime}\left(1-x-x^{\prime}\right)} \int \frac{\mathrm{d}^{2} k_{\perp}^{\prime}}{(2 \pi)^{3}} g_{\mathrm{B} 3}\left(\frac{x^{\prime}}{1-x}\right) \psi_{3}^{j j^{\prime}(4)}\left(\boldsymbol{k}_{\perp}, x, \boldsymbol{k}_{\perp}^{\prime}, x^{\prime}\right)
\end{aligned}
$$

- The renormalization conditions have to be imposed numerically.
- On-Shell coupling constant renormalization gives mass poles

$$
\psi_{2}^{0(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x\right) \sim \lim _{s_{2}^{\star} \rightarrow m^{2}} \frac{1}{s_{2}^{\star}-m^{2}}, \quad \psi_{3}^{0 j^{\prime}(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x, \boldsymbol{k}_{\perp}^{\prime}, x^{\prime}\right) \sim \lim _{s_{2}^{\star} \rightarrow m^{2}} \frac{1}{s_{2}^{\star}-m^{2}} .
$$

- Isolate the singularities:

Four-Body Truncation

$$
\begin{aligned}
& \Gamma_{2}^{0(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x\right)=g_{\mathrm{B} 4} \psi_{1}^{(4)}+\frac{\delta m_{3}^{2}}{1-x} \frac{\Gamma_{2}^{0(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x\right)}{s_{2}^{\star}-m^{2}}+\sum_{j^{\prime}=0}^{1}(-1)^{j^{\prime}} \\
& \quad \int_{0}^{1-x} \frac{\mathrm{~d} x^{\prime}}{2 x^{\prime}\left(1-x-x^{\prime}\right)} \int \frac{\mathrm{d}^{2} k_{\perp}^{\prime}}{(2 \pi)^{3}} g_{\mathrm{B} 3}\left(\frac{x^{\prime}}{1-x}\right) \psi_{3}^{0 j^{\prime}(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x, \boldsymbol{k}_{\perp}^{\prime}, x^{\prime}\right)
\end{aligned}
$$

- The renormalization conditions have to be imposed numerically.
- On-Shell coupling constant renormalization gives mass poles

$$
\psi_{2}^{0(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x\right) \sim \lim _{s_{2}^{\star} \rightarrow m^{2}} \frac{1}{s_{2}^{\star}-m^{2}}, \quad \psi_{3}^{0 j^{\prime}(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x, \boldsymbol{k}_{\perp}^{\prime}, x^{\prime}\right) \sim \lim _{s_{2}^{\star} \rightarrow m^{2}} \frac{1}{s_{2}^{\star}-m^{2}} .
$$

- Isolate the singularities:

Four-Body Truncation

$$
\begin{aligned}
& \Gamma_{2}^{0(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x\right)=g_{\mathrm{B} 4} \psi_{1}^{(4)}+\frac{\delta m_{3}^{2}}{1-x} \frac{\Gamma_{2}^{0(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x\right)}{s_{2}^{\star}-m^{2}}+\sum_{j^{\prime}=0}^{1}(-1)^{j^{\prime}} \\
& \quad \int_{0}^{1-x} \frac{\mathrm{~d} x^{\prime}}{2 x^{\prime}\left(1-x-x^{\prime}\right)} \int \frac{\mathrm{d}^{2} k_{\perp}^{\prime}}{(2 \pi)^{3}} g_{\mathrm{B} 3}\left(\frac{x^{\prime}}{1-x}\right) \psi_{3}^{0 j^{\prime}(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x, \boldsymbol{k}_{\perp}^{\prime}, x^{\prime}\right),
\end{aligned}
$$

- The renormalization conditions have to be imposed numerically.
- On-Shell coupling constant renormalization gives mass poles

$$
\psi_{2}^{0(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x\right) \sim \lim _{s_{2}^{\star} \rightarrow m^{2}} \frac{1}{s_{2}^{\star}-m^{2}}, \quad \psi_{3}^{0 j^{\prime}(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x, \boldsymbol{k}_{\perp}^{\prime}, x^{\prime}\right) \sim \lim _{s_{2}^{\star} \rightarrow m^{2}} \frac{1}{s_{2}^{\star}-m^{2}} .
$$

- Isolate the singularities:

Four-Body Truncation

$$
\begin{aligned}
& \Gamma_{2}^{0(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x\right)=g_{\mathrm{B} 4} \psi_{1}^{(4)}+\frac{\delta m_{3}^{2}}{1-x} \frac{\Gamma_{2}^{0(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x\right)}{s_{2}^{\star}-m^{2}}+\sum_{j^{\prime}=0}^{1}(-1)^{j^{\prime}} \\
& \int_{0}^{1-x} \frac{\mathrm{~d} x^{\prime}}{2 x^{\prime}\left(1-x-x^{\prime}\right)} \int \frac{\mathrm{d}^{2} k_{\perp}^{\prime}}{(2 \pi)^{3}} g_{\mathrm{B} 3}\left(\frac{x^{\prime}}{1-x}\right) \psi_{3}^{0 j^{\prime}(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x, \boldsymbol{k}_{\perp}^{\prime}, x^{\prime}\right)
\end{aligned}
$$

- The renormalization conditions have to be imposed numerically.
- On-Shell coupling constant renormalization gives mass poles

$$
\psi_{2}^{0(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x\right) \sim \lim _{s_{2}^{\star} \rightarrow m^{2}} \frac{1}{s_{2}^{\star}-m^{2}}, \quad \psi_{3}^{0 j^{\prime}(4)}\left(\boldsymbol{k}_{\perp}^{\star}, x, \boldsymbol{k}_{\perp}^{\prime}, x^{\prime}\right) \sim \lim _{s_{2}^{\star} \rightarrow m^{2}} \frac{1}{s_{2}^{\star}-m^{2}} .
$$

- Isolate the singularities:

Numerical Solution

- Inhomogeneous linear coupled integral equations
- Approximate the integrals by Gauss-Legendre quadratures $d \sim N_{\text {rad }}^{2} N_{\text {ang }} N_{\text {lfx }}^{2}$
- Implement an iterative procedure in Fortran w. MPI/OpenMP typically $50 \sim 100$ iterations
- Numerical calculation on Hopper at NERSC largest single run: 1680 cores $\times 18$ hours
A representative two-body LFWF, $\psi_{2}\left(k_{\perp}, x\right)$:

$\alpha=1.0, m=0.94 \mathrm{GeV}$,
$\mu=0.14 \mathrm{GeV}, \mu_{\mathrm{PV}}=15 \mathrm{GeV}$
Grid size:
$N_{\text {lfx }}=47, N_{\text {rad }}=N_{\text {ang }}=20$

UV Convergence

- I_{n} well converge with respect to μ_{PV} for sufficiently fine grid.
- Large coupling α or large Pauli-Villars mass μ_{PV} may need finer grid to achieve convergence.
- In our calculation, the grid is independent of μ_{PV}. In practice, UV regulator-dependent meshes are widely used.
- In practice, we take $\mu_{\mathrm{PV}}=15 \mathrm{GeV}$ with the numbers of grid points $N_{\text {lfx }}=41, N_{\text {rad }}=N_{\text {ang }}=20$.

Fock Sector Contributions

$$
I_{n} \equiv \int D_{n}\left|\psi_{n}\left(k_{1}, k_{2}, \cdots k_{n} ; p\right)\right|^{2}, \quad \sum_{n} I_{n}=1
$$

- For $\alpha \lesssim 1.7$, there exists a sector hierarchy $I_{1}>I_{2}>I_{3}>I_{4}$. One\& two-body contributions dominate. $I_{n>4}$ are negligible.
- $\alpha_{\mathrm{L}} \approx 2.6, \alpha_{\mathrm{F}} \approx 2.2$
- I_{1} saturates in the four-body truncation up to $\alpha \approx 2.0$.

Electromagnetic Form Factor

Form factors are defined as the current matrix element, as mentioned:

$$
\langle\psi(p+q)| J^{+}(0)|\psi(p)\rangle=2 p^{+} F\left(Q^{2}\right)
$$

where $q^{+}=0$ and $Q^{2}=-q^{2}=\boldsymbol{q}_{\perp}^{2}>0$, and the e.m. current:
$J^{\mu}=i\left(D^{\mu} \chi\right)^{\dagger} \chi-i \chi^{\dagger} D^{\mu} \chi$.

- Drell-Yan-West formula (overlap of LFWFs)

$$
F\left(Q^{2}\right)=\sum_{n} \int \mathrm{~d} D_{n} \psi_{n}^{*}\left(\left\{\boldsymbol{k}_{i \perp}^{\prime}, x_{i}\right\}\right) \psi_{n}\left(\left\{\boldsymbol{k}_{i \perp}, x_{i}\right\}_{n}\right)
$$

- The n-body contribution $F_{n}\left(Q^{2} \rightarrow 0\right) \rightarrow I_{n}$
- $F\left(Q^{2} \rightarrow 0\right) \rightarrow 1$ - charge conservation
- $F\left(Q^{2} \rightarrow \infty\right) \rightarrow I_{1}$ - point-like charge

Electromagnetic Form Factor

Electromagnetic form factor saturates as the number of constituents increase, even with non-perturbative couplings.

Summary and Outlook

- Light-Front Hamiltonian formalism is a natural framework for solving non-perturbative relativistic bound-state problems.
- We demonstrate basis light-front quantization as a computational implementation of LF Hamiltonian approach in electron, positronium and quarkonium problems.
- We present a systematic non-perturbative renormalization scheme within the LF Hamiltonian formalism in a scalar model.
- Many of the calculations can be extended to other systems, and, hopefully, eventually to QCD. However, several challenges have to be addressed.
- My work is a first step to build a systematic computational framework to solve QFTs eps. QCD bound-state problems in an $a b$ initio LF Hamiltonian approach.
Thank you!

Decay Constants with Running Coupling

Decay constants with running coupling (with IR modeling)

- Similar quality but the residual regulator dependence is somewhat stronger.
- HO basis is designed for confinement (IR) and is expected to have a slower convergence at UV.
- Need larger $N_{\max }, L_{\max }$ and a careful study of the UV asymptotics of the LFWFs.
- Renormalization

