Dalitz analysis of D⁰->K⁻π⁺η

Yeqi Chen (for Group IV) Wednesday Meeting, *2018.01.10*

Outline

- Motivation
- Belle Detector
- Selection & Reconstruction
- M-Q fit
- Dalitz analysis
 - Mass resolution
 - Efficiency plane
 - Combinatorial BG
 - Dalitz plot fit
- Systematic uncertainty
- Summary

Motivation

- CLEO studied $D^0 \rightarrow \overline{K}^{*0}\eta$, presented signal of $D^0 \rightarrow K^-\pi^+\eta$
- Dalitz analysis: $D^0 -> K_S \pi^0 \eta$ <u>PRL 93, 111801 (2004)</u>

- dominant from a₀(980)⁰, K^{*}(892)⁰
- not sufficient to describe data
- ⇒ unknown intermediate resonances
- Light scalar meson $a_0(980)^{\pm}$ nature unclear
 - \implies measure Flatte parameter $g_{n\pi^{\pm}}$ in D⁰->K⁻ $\pi^{+}\eta$

$$\mathcal{A}_0(K^{\mp}\pi^{\pm}\eta|a_0(980)^{\pm}) = \frac{1}{M^2_{a_0(980)^{\pm}} - m^2_{\pm} - i(g^2_{\eta\pi^{\pm}}\rho_{\eta\pi^{\pm}} + g^2_{K^0K^{\pm}}\rho_{K^0K^{\pm}})}$$

Belle Detector at KEKB

- KEKB: asymmetry electron-positron collider at KEK
- Word record: highest peak luminosity 2.1×10³⁴ cm⁻²s⁻¹
- $Vs = 10.58 \text{ GeV} \implies B$ -Factory, charm Factory $\sigma_{b\bar{b}} = 1.1 \text{ nb}; \sigma_{c\bar{c}} = 1.3 \text{ nb}$

Selection & Reconstruction

≻charged track:

◇ PID:LK=p(K)/(p(K)+p(π))>0.7 for K;others for π µId < 0.95 and eld < 0.95</pre>

 $\diamond \geq 2$ SVD hit(charged particle of D⁰ in r φ and z planes)

 \Rightarrow Nchg \geq 3; N(π) \geq 2, N(K) \geq 1

≻gamma candidates

↔ E(γ) > 60/120 MeV for barrel/end-cup ↔ e9/e25 > 0.8, N(γ) ≥ 2

≻η candidates

Data sample(<mark>953 *fb*-1</mark>) Ƴ (nS)(n=1, 2, 3), continuum, Ƴ (4S), Ƴ (5S)

e

Selection & Reconstruction

 $> D^0/D^*$ candidates $\Rightarrow 1.72 < M(M_{D^0}) < 2.0 \text{ GeV}/c^2$ $-3 < Q(M_{D*}-M_{D^{0}}-m_{\pi s}) < 21 \text{ MeV}/c^{2}$ \Rightarrow D⁰ flavour tagged by π_{ς} charge $\Rightarrow D^0$ decay vertex fit by K π , add P_n to D⁰ for right momentum \Rightarrow D⁰ product vertex (D^{*}) fit by D⁰ and IP π_{e} \diamond refit D^{*} vertex with D⁰ product vertex and π_s \Rightarrow sum three vertex fit qualities $\Sigma \chi^2 / \Sigma ndf < 20$ e⁻ \Rightarrow D⁰ lifetime error σ_{t} < 800 fs $\Rightarrow p^*(D^*) > 2.4/2.5/3.1 \text{ GeV}/c \text{ for } \Upsilon(nS) + \text{continuum}/$ Υ (4S)/ Υ (5S) to suppress combinatorial background or veto D^{*} signals from B decay ➤multi-candidates:

↔ Best Candidate Selection(BCS) by smallest vertex fitting quality $∑χ^2/∑$ ndf

≻Dalitz plot variables

♦ After D⁰ mass constraint fit Wendesday meeting

Figure of Merit

M-Q distribution

Wendesday meeting

M-Q projection

Fig. 6. The projections of M (left) and Q (right) of real data (a-b) and of four streams generic MC (c-d) in fit region $1.80 < M < 1.92 \text{ GeV}/c^2$ and $0 < Q < 15 \text{ MeV}/c^2$.

Fig. 9. The projections of M and Q of four streams generic MC with different processed components in fit region $1.80 < M < 1.92 \text{ GeV}/c^2$ and $0 < Q < 15 \text{ MeV}/c^2$.

category	fit region	signal region
total signal	38.44%	95.00%
random π_s BG	0.93%	0.18%
all combinatorial BG	60.63%	4.82%
signal pure / All signal	97.87%	99.25%
signal w/ FSR / All signal	0.93%	0.33%
signal w/ π_s decay/ All signal	1.20%	0.42%
rnd BG / All signal	2.362%	0.187%
COR cmb BG / All cmb BG	76.97%	83.76%
other cmb BG / All cmb BG	23.03%	16.24%

M-Q correlation of signal

M-Q fit for signal

M: doubly Gaussian + doubly bifurcated Gaussian
 Q: bifurcated Student+Gaussian+Cruijff

M-Q fit for bkg in S.R.

• random π_s bkg: M function used from signal

 $F_{rnd}(M,Q) = F_{sig}(M) \times (Q^{\alpha} \cdot e^{-\beta \cdot Q})$

 correlated combinatorial bkg: bilinear interpolation

other combinatorial bkg

 $F_{cmb}(M,Q) = P_3(m;a,b,c) \times (Q^{\alpha} e^{-\beta \cdot Q})$

I/O check for M-Q fit

• generic MC samples

SR	sig+rnd count(purity)	sig+rnd fit(purity)	cmb Count	cmb fit
stream 0	136118(95.18%)	136619±504(95.54%)	6892	6828±108
stream 1	136829(95.21%)	137199±524(95.47%)	6878	6833±108
stream 2	135781(95.17%)	136238±533(95.49%)	6895	6810±109
stream 3	136981(95.18%)	137435±506(95.49%)	6944	6815±104

one stream generic MC combined fit in signal region

M-Q fit and purity

Dalitz analysis formalism

- Dalitz standard form: $d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{32M^3} |\mathcal{M}|^2 dm_{AB}^2 dm_{BC}^2$
- **Isobar model:** $\mathcal{M}(m_{AB}^2, m_{BC}^2) = a_{NR}e^{i\phi_{NR}} + \sum a_r e^{i\phi_r} \mathcal{A}_r(m_{AB}^2, m_{BC}^2)$
- A.: $\mathcal{A}(ABC|r) = F_D \times F_r \times T_r \times \Omega_J$
 - form factor: F_n, F_D
 - angular distribution function Ω_1
 - dynamical function T_r

Wendesday meeting

Dalitz analysis formalism

• Isobar model:

$$\mathcal{M}(m_{AB}^2, m_{BC}^2) = a_{NR} e^{i\phi_{NR}} + \sum_r a_r e^{i\phi_r} \mathcal{A}_r(m_{AB}^2, m_{BC}^2)$$

• Signal p.d.f of DP (corrected by efficiency plane)

$$p_{sig}(m_{K\pi,i}^2, m_{\pi\eta,i}^2) = \frac{\sum_{j=con,4S,5S} |\mathcal{M}(m_{K\pi,i}^2, m_{\pi\eta,i}^2)|^2 \epsilon_j(m_{K\pi,i}^2, m_{\pi\eta,i}^2)}{\sum_{j=con,4S,5S} \iint_{DP} dm_{K\pi}^2 dm_{\pi\eta}^2 |\mathcal{M}(m_{K\pi}^2, m_{\pi\eta}^2)|^2 \epsilon_j(m_{K\pi}^2, m_{\pi\eta}^2)}$$

 An un-binned maximum likelihood: (fraction extracted from M-Q fit)

$$-2ln\mathcal{L}(m_{AB}^2, m_{BC}^2) = -2\sum_{i=1}^n ln[f_{sig}^i p_{sig}(m_{AB,i}^2, m_{BC,i}^2) + f_{bkg}^i p_{bkg}(m_{AB,i}^2, m_{BC,i}^2)]$$

Generalization of Dalitz fit

Mass resolution

• Dalitz variables with D⁰ mass constraint fit in M-Q S.R.

Wendesday meeting

Efficiency plane

- Signal MC samples produced at PHSP by Evtgen and Gsim
- obtain efficiency plane via bilinear interpolation

Combinatorial BG of DP

- S.B.: M sideband (1.755<M<1.775 or 1.935<M<1.955 GeV/c²) with Q signal region (5.35<Q<6.35 MeV/c²)
- directly use DP background of real data in S.B. to estimate background of real data in S.R.

MC test on 3 res

- Multiparameter fit, check unbiasedness
- MC test at generator level and reconstruction level

Resonance	data	Amplitude	$Phase(^{\circ})$	Fraction(%)		
	Input	$1.0(\mathrm{fix})$	$0.0(\mathrm{fix})$	55.34		
$K^{*}(892)^{0}$	Gen.ed	$1.0(\mathrm{fix})$	$0.0(\mathrm{fix})$	55.20 ± 0.15		
	Rec.ed	$1.0(\mathrm{fix})$	$0.0(\mathrm{fix})$	54.87 ± 0.79		
	Input	2.000	80.0	30.90		
	Gen.ed	2.000 ± 0.005	80.2 ± 0.1	30.90 ± 0.15		
$a_{-}(080)^{\pm}$	Rec.ed	2.032 ± 0.025	80.6 ± 0.5	31.46 ± 0.78		
$u_0(980)$	$g_{\pi\eta}$	0.6000				
	(GeV/c^2)	0.5995 ± 0.0007				
		0.6015 ± 0.0033				
	Input	0.500	160.0	0.35		
$K_0^*(1430)^0$	Gen.ed	0.488 ± 0.011	160.8 ± 1.1	0.34 ± 0.02		
	Rec.ed	0.493 ± 0.060	165.2 ± 5.8	0.34 ± 0.08		
	Input	2.500	130.0	7.78		
non-res.	Gen.ed	2.529 ± 0.010	130.2 ± 0.3	7.94 ± 0.06		
	Rec.ed	2.491 ± 0.052	129.6 ± 1.4	7.66 ± 0.32		
Total	Input	94.37%				
fraction	Gen.ed	$(94.37 \pm 0.22)\%$				
	Rec.ed	$(94.32 \pm 1.12)\%$				

The output values are **consistent** with input values

MC test on 11 res

Resonance	data	Amplitude	Phase(°)	Fraction(%)
$\bar{K}^{*}(802)^{0}$	Input	1.0(fix) 0.0(fix)		43.49
K (092)	Gen.ed	1.0(fix)	0.0(fix)	43.34 ± 0.36
	Rec.ed	1.0(fix)	0.0(fix)	43.54 ± 1.92
	Input	2.160	299.2	32.37
$a_0(980)^\pm$	Gen.ed	2.153 ± 0.010	299.3 ± 0.2	32.06 ± 0.31
	Rec.ed	2.224 ± 0.055	300.2 ± 0.9	34.01 ± 1.67
	$g_{\pi n}$	0.565		
	(GeV/c^2)		0.565 ± 0.001	
			0.568 ± 0.006	
(1900)	Input	0.929	239.7	0.55
$a_2(1320)$	Gen.ed	0.955 ± 0.014	238.0 ± 0.9	0.58 ± 0.02
	Rec.ed	0.845 ± 0.070	242.3 ± 5.1	0.46 ± 0.08
- (1450)	Input	1.504	152.0	2.41
$a_0(1450)$	Gen.ed	1.554 ± 0.023	152.9 ± 0.8	2.57 ± 0.08
	Rec.ed	1.591 ± 0.125	161.4 ± 4.1	2.70 ± 0.43
$V_{*}(1410) =$	Input	0.356	325.5	0.17
$\mathbf{K}^{*}(1410)$	Gen.ed	0.364 ± 0.008	324.2 ± 1.3	0.17 ± 0.01
	Rec.ed	0.425 ± 0.042	328.5 ± 5.9	0.24 ± 0.05
$\bar{V}_{*}(1410)0$	Input	3.068	2.7	1.54
$K^{*}(1410)^{\circ}$	Gen.ed	3.014 ± 0.026	1.9 ± 0.4	1.48 ± 0.03
	Rec.ed	2.508 ± 0.140	5.0 ± 2.7	1.03 ± 0.11
V*(1690) -	Input	2.433	255.6	0.49
N (1080)	Gen.ed	2.534 ± 0.047	249.6 ± 1.3	0.53 ± 0.02
	Rec.ed	2.854 ± 0.241	260.9 ± 6.2	0.67 ± 0.11
$\bar{V}^{*}(1420)^{0}$	Input	7.032	69.3	27.70
$K_0(1430)^{\circ}$	Gen.ed	6.996 ± 0.018	69.5 ± 0.2	27.32 ± 0.14
	Rec.ed	6.892 ± 0.096	69.2 ± 0.9	26.64 ± 0.74
$V^{*}(1490) -$	Input	1.494	4.5	2.09
$\Lambda_0(1430)$	Gen.ed	1.497 ± 0.006	4.7 ± 0.2	2.09 ± 0.02
	Rec.ed	1.530 ± 0.033	6.5 ± 1.3	2.19 ± 0.09
$\bar{V}^{*}(1490)^{0}$	Input	3.403	281.7	3.16
$K_2(1430)^\circ$	Gen.ed	3.761 ± 0.034	284.6 ± 0.7	3.85 ± 0.07
	Rec.ed	3.686 ± 0.186	281.7 ± 3.8	3.71 ± 0.37
$V_{*}(1490) -$	Input	0.320	96.1	0.14
$\Lambda_2(1430)$	Gen.ed	0.331 ± 0.006	97.4 ± 1.0	0.15 ± 0.01
	Rec.ed	0.321 ± 0.031	90.9 ± 5.4	0.14 ± 0.03
Total	Input		114.1%	
186/ac/tion	Gen.ed	($114.1 \pm 0.5)\%$	Wend
- / -/	Rec.ed	$(115.3 \pm 2.7)\%$		

Dalitz fit on exp. data

- 12 resonances + NR (BW+Flatte):
- All possible component
 a₀(980), a₀(1320), a₀(1450), K^{*}(892)⁰,
 K^{*}(1410)^{0,-}, K^{*}₀(1430)^{0,-}, K^{*}₂(1430)^{0,-},
 K^{*}(1680)^{0,-}, non-res

- 11 resonances + NR (BW+Flatte):
 - removing K*(1680)⁰
 K*(1410)⁰ VS. K*(1680)⁰
 - similar contribution, $\Delta \phi \sim 180^{\circ}$ destructive interf.

Dalitz fit on exp. data

• 11 resonances (BW+Flatte+LASS):

18/1/10

significance test

Model	Likelihood	Δndf	significance
11 res	63164	31	-
-K*(1410) ⁻	63109(55)	29	7.1σ
-K*(1410) ⁰	63099(65)	29	7.8σ
-K [*] (1680)⁻	63113(51)	29	6.8σ
-K [*] ₀ (1430) ⁰	59646(3518)	24	>>10o
-K [*] ₀(1430) ⁻	61490(1674)	24	>>10o
-K [*] ₂ (1430) ⁰	63025(139)	29	11.6σ
-K [*] ₂(1430) ⁻	63077(87)	29	9.1σ
-a ₂ (1320)+	63017(147)	29	11.9σ
-a ₀ (1450)+	63115(49)	29	6.7σ

All 11 resonances have significant contributions

Wendesday meeting

fitting results

• 11 resonances (BW+Flatte+LASS):

Resonances	Amplitude	$Phase(^{\circ})$	Fraction(%)
$ar{K}^{*}(892)^{0}$	$1.0(\mathrm{fix})$	0.0(fix)	43.49 ± 2.85
$a_0(980)^+$	2.160 ± 0.058	299.2 ± 1.1	32.37 ± 1.74
$a_2(1320)^+$	0.929 ± 0.064	239.7 ± 4.7	0.55 ± 0.08
$a_0(1450)^+$	1.504 ± 0.143	152.0 ± 5.0	2.41 ± 0.46
$K^*(1410)^0$	3.068 ± 0.285	2.655 ± 3.2	1.54 ± 0.29
$K^{*}(1410)^{-}$	0.356 ± 0.039	325.5 ± 6.9	0.17 ± 0.04
$K^{*}(1680)^{-}$	2.433 ± 0.209	255.6 ± 7.1	0.49 ± 0.08
$\bar{K}_{2}^{*}(1430)^{0}$	3.403 ± 0.133	281.7 ± 5.2	3.16 ± 0.25
$K_2^*(1430)^-$	0.320 ± 0.031	96.1 ± 5.0	0.14 ± 0.03
$K\pi$ S-wave	7.032 ± 0.276	69.3 ± 2.9	27.70 ± 2.17
$K\eta$ S-wave	1.494 ± 0.050	4.5 ± 9.7	2.09 ± 0.14
\sum fraction			114.1 ± 4.0

8			
LASS model parameters	$K\pi$ S-wave	$K\eta$ S-wave	
F	0.549 ± 0.041	0.523 ± 0.083	
$\phi_F(^\circ)$	177.3 ± 0.5	$41.3 {\pm} 6.1$	
R	$1.0(\mathrm{fix})$	1.0(fix)	
$\phi_R(^\circ)$	1.9 ± 3.3	69.1 ± 4.6	
$a({ m GeV}^{-1}c)$	4.358 ± 0.114	0.286 ± 0.014	
$r(GeV^{-1}c)$	-3.554 ± 0.066	-16.24 ± 0.82	
$a_0(980)$ parameters	m (GeV/ c^2)	$g_{\pi^{\pm}\eta} \; (\mathrm{GeV}/c^2)$	$g_{\bar{K}^0K^{\pm}} \; (\text{GeV}/c^2)$
$a_0(980)^{\pm}$	0.999(fix)	0.565 ± 0.007	0.464(fix)
	Wendesd	ay meeting	

Summary

- Using Belle Υ (nS)(n=1,2,3), near or on Υ (4S) and Υ (5S) data, a Dalitz amplitude analysis for D⁰->K⁻ π ⁺ η is presented.
- After cut criteria optimization, signal & bkg fractions have been extracted via M-Q fit.
- After efficiency plane obtained, combinatorial BG's DP described, we optimize Dalitz model and study the intermediate resonances and give the fit fractions.
- K^{*}(1410)⁻->Kη, K^{*}(1680)⁻->Kη are firstly observed with 5σ.

BACK UP

Data sample & Cut criteria

CF, DCS. RS, WS

图 1.15 错误符号道 $D^0 \to K^+\pi^-\pi^0$ 的两个途经 (左图)。正确符号道 $D^0 \to K^-\pi^+\pi^0$ 的两个途经 (右图)。

图 **1.16** 正确符号道 $D^0 \rightarrow K^-\pi^+\pi^0$ 的卡比玻允许 CF 过程 (左图) 和错误符号道 $D^0 \rightarrow K^+\pi^-\pi^0$ 的双卡比玻压低 DCS 过程 (右图) 的最低阶费曼图的外部 W 过程的树图之一。(此 DCS 衰变最低阶树图完整应该包括外部 W 过程,内部 W 过程和 W 交换过程。)

Mixing

 D^0

Dalitz analysis formalism

- R. H. Dalitz (1925-2006), Australian Physicsit, To study " $\tau \rightarrow 3\pi$ "(kaon) decays. [Published: Philosophical Magazine Series 7, V. 44, Issue 357, Oct. 1953, p1068-1080.]
- Lorentz invariant phase space for n-body decay:

$$d\Phi_n(P; p_1, p_2, p_n) = \delta^4(P - \sum_{i=1}^n p_i) \prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 2E_i}$$

• Degree of freedom:

Decay types	$P \rightarrow PPP$	$P \rightarrow PPPP$	$P \rightarrow VPP$
Examples	$D^0 ightarrow K^- \pi^+ \pi^0$	$D^0 o 4\pi$	$B^0 ightarrow \psi(2S) K^- \pi^+$
4-vectors	3×4	4×4	3×4
E-p const. laws	-4	-4	-4
final state mass	-3	-4	-3
arbitrary rotations	-3	-3	-1(2 vector helicity)
Total d.o.f	2	5	4

Dalitz analysis formalism

• decays of $P_M \rightarrow P_1 P_2 P_3$:

$$m_{12}^2 + m_{13}^2 + m_{23}^2 = M^2 + m_1^2 + m_2^2 + m_3^2 = const.$$

Standard form of Dalitz plot (DP):

$${\it d}\Gamma = rac{1}{(2\pi)^3} rac{1}{32 {\it M}^3} \overline{|{\cal M}|^2} {\it dm}^2_{12} {\it dm}^2_{23}$$

• DP kinematic limit: (eg: the form related to $\cos \theta_H$) $m_{23}^2 = (m_{23}^2)_{min} \frac{1 + \cos \theta_{hel}}{2} + (m_{23}^2)_{max} \frac{1 - \cos \theta_{hel}}{2}$ $\cos \theta_{hel} = -1 \Longrightarrow (m_{23}^2)_{min}$ $\cos \theta_{hel} = +1 \Longrightarrow (m_{23}^2)_{max}$

DP structure of different spin-J particle

Some functions

• Gaussian function

$$G(M;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(M-\mu)^2}{2\sigma^2}}$$
(A.1)

(A.2)

• bifurcated Gaussian function

Two different expression forms of bifurcated Gaussian function:

$$G_{bif}(M;\mu,\sigma,r\sigma) = \begin{cases} \frac{2}{\sqrt{2\pi}(\sigma+r\sigma)}e^{-\frac{(M-\mu)^2}{2\sigma^2}}, \text{ for } M \ge \mu;\\ \frac{2}{\sqrt{2\pi}(\sigma+r\sigma)}e^{-\frac{(M-\mu)^2}{2(r\sigma)^2}}, \text{ for others.} \end{cases}$$
(A.3)

$$G_{bif}(Q; \mu_g, \sigma_g, \delta_{\sigma_g}) = \frac{1}{\sqrt{2\pi}\sigma_g} \begin{cases} e^{-\frac{(Q-\mu_g)^2}{2(\sigma_g + \delta_{\sigma_g})^2}}, \text{ for } Q \ge \mu_g; \\ e^{-\frac{(Q-\mu_g)^2}{2(\sigma_g - \delta_{\sigma_g})^2}}, \text{ for others.} \end{cases}$$
(A.4)

• bifurcated Student function

$$S_{bif}(Q;\mu_s,\sigma_s,\delta_{\sigma_s},N_h,N_l) = \frac{2P_H P_L}{(P_H + P_L)\sqrt{\pi}} \begin{cases} \left[1 + \frac{1}{N_h} \left(\frac{Q-\mu_s}{\sigma_s + \delta_{\sigma_s}}\right)^2\right]^{-\frac{N_h+1}{2}}, & \text{for } Q \ge \mu_s; \\ \left[1 + \frac{1}{N_l} \left(\frac{Q-\mu_s}{\sigma_s - \delta_{\sigma_s}}\right)^2\right]^{-\frac{N_l+1}{2}}, & \text{for others.} \end{cases}$$

here the factors P_H and P_L in normalization factor are calculated as follows:

$$P_H = \frac{\Gamma(\frac{N_h+1}{2})}{(\sigma_s + \delta_{\sigma_s})\Gamma(\frac{N_h}{2})} \frac{1}{\sqrt{N_h}}; \ P_L = \frac{\Gamma(\frac{N_l+1}{2})}{(\sigma_s - \delta_{\sigma_s})\Gamma(\frac{N_l}{2})} \frac{1}{\sqrt{N_l}}.$$
 (A.6)

• bifurcated Cruijff function

$$CF_{bif}(Q;\mu_{cf},\sigma_{cf},\delta_{\sigma_{cf}},\alpha_{R},\alpha_{L}) = \frac{1}{\sqrt{2\pi}\sigma_{cf}} \begin{cases} e^{-\frac{(Q-\mu_{cf})^{2}}{2(\sigma_{cf}+\delta_{\sigma_{cf}})^{2}+\alpha_{R}(Q-\mu_{cf})^{2}}}, \text{ for } Q \ge \mu_{qf} \dot{A}.7) \\ e^{-\frac{(Q-\mu_{cf})^{2}}{2(\sigma_{cf}-\delta_{\sigma_{cf}})^{2}+\alpha_{L}(Q-\mu_{cf})^{2}}}, \text{ for others.} \end{cases}$$

Model systematic uncertainty

- model uncertainty sources:
 - Form factor R_r choose: 1.5 GeV⁻¹ -> 1-2 GeV⁻¹
 - Angular distribution: denominator $M_r^2 \rightarrow M_{ab}^2$
 - LASS parameters: float each parameter within 1σ
 - Add kappa

other systematic uncertainty

- uncertainty sources:
 - M sideband region :
 - M_{low}[1.755-1.775] -> [1.750-1.770], [1.760-1.780]
 - M_{up} [1.935-1.955] -> [1.930-1.950], [1.940-1.960]
 - efficiency plane: -> efficiency = constant
 - Best Candidate Selection: move multiple candidates
 - ratio of signal & bkg in F.R.: change within 1σ
 - mass resolution: float width of resonances