Hadron Spectroscopy

A few introductory comments

Stephen Lars Olsen Center for Underground Physics Institute of Basic Science Daejeon Korea

Self Introduction

Home town: Brooklyn, New York City "Bay Ridge- Sunset Park" area: from ≈1920 → ≈1970: "Little Norway" ≈1970 → now: NYC's "Chinatown #3"

BS Physics City College of New York MS & PhD University of Wisconsin

1972-1992 Professor at U. of Rochester

1992-2009 Professor at U. of Hawaii

2009-2014 Professor at Seoul National U.

1990 \rightarrow now member of the Belle Experiment 1992 \rightarrow now member of the BESI, BESII, & BESIII expt

Research interests: CP violation Hadron Spectroscopy

1984 1st time in China; started long-time collaboration with Prof. Zheng ZhiPeng (Zheng YangHeng's father)

Spectroscopy

Powerful tool for understanding fundamental laws of Physics

Atomic (especially Hydrogen) spectra → Discovery of QM & Pauli Exclusion Principle

Nuclear Spectroscopy \rightarrow Discovery & properties of the strong force

Hadron Spectroscopy \rightarrow Discovery of Flavor & Quarks

Hydrogen Atom Spectrum

Balmer formula:
$$E_n = \frac{13.6eV}{n^2}$$

$$13.6 \text{eV} = \frac{\mu_e e^4}{2\hbar^2}$$

Decoding atomic spectra

1924 Otto Laporte

Allowed quantum states are either even or odd

Wigner: Laporte rule is a consequence of Left-Right symmetry of Nature

Left ↔ Right symmetry = "Parity" symmetry

Rules governing Atomic Physics (E&M) are $L \leftrightarrow R$ symmetric:

i.e., they "Conserve" Parity

1963 Nobel Physics prize "for the discovery and application of fundamental symmetry principles"

Even & Odd quantum functions

Even Function

Odd Function

Atomic shell structure

80: Mercury

2,8,18,32,18,2

properties of
$$Y_l^m(\theta, \varphi) \rightarrow$$
 shells

$$\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin^2\theta \frac{\partial Y}{\partial\theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2 Y}{\partial\varphi^2} = -\lambda Y$$
Solutions: $Y_l^m(\theta, \varphi)$; $\lambda = l(l+1) \& |m| \le l$
 $m \& l$ are integers

Same for all spherically symmetric systems

Nuclear Spectroscopy

Hadron Spectroscopy

Atomic- vs Nuclear- vs Hadronspectroscopy

Constituent particles

Interparticle force

Atoms electrons/protons well understood

Nuclei protons/neutrons well understood

well understood

Coulombic

Nuclear potential empirical models

Hadronsquarks/antquarks/gluonsLong-range QCD color forceNOT well understoodNOT well understood

The QCD "dilemma"

r fm

QCD Lagrangian

$$\mathcal{L}_{ ext{QCD}} = ar{\psi}_i \left(i (\gamma^\mu D_\mu)_{ij} - m \, \delta_{ij}
ight) \psi_j - rac{1}{4} G^a_{\mu
u} G^{\mu
u}_a$$

$$G^a_{\mu
u} = \partial_\mu \mathcal{A}^a_
u - \partial_
u \mathcal{A}^a_\mu + g f^{abc} \mathcal{A}^b_\mu \mathcal{A}^c_
u \qquad A^a_\mu, a=1, ..., 8, are$$

the gluon fields

- In principle, all details of hadron spectroscopy are contained in this Lagrangian
- For distances the size of hadrons (or nuclei), it is hopelessly difficult to solve
- No useful mathematical expressions relevant to hadron spectroscopy that are based on first principle QCD calculations have ever been realized.
- Maybe a better understanding of the hadron spectrum will translate into a better understanding of long-distance QCD

Plan for these classes

Plan for the course

Main Lectures

1^{s⊤} hadrons, quantum numbers, notation -- octets and decuplets – special topics

Dalitz plots

SU(3) and quarks light-quark spectroscopy -- discovery of QCD---

angular distributions

Charmonium mesons, QCD's "hydrogen atom"

multi-dimensional analyses

tetra-quarks, pentaquarks, hadronic molecules, ...